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K-CONVERGENCE AND THE ORLICZ-PETTIS THEOREM

Li Ronglu and Charles Swartz

Abstract. A sequence {zx} in a topological vector space (X,7) is said to be 7-K con-
vergent if every subsequence of {zx} has a subsequence {z., } such that the subseries 3 Ta, is
7-convergent in X. We show that the notion of K convergence can be used to give a generaliza-
tion of the Orlicz-Pettis Theorem in the following sense. Let a and 8 be vector topologies on a
vector space X such that o C 8 and § has a neighborhood base at 0 of a-closed sets. If every
a-K convergent sequence is §-convergent to 0, then every series Y i in X which is o subseries
convergent is ( subseries convergent. Thus, any statement of the form “a-K convergence implies
B convergence to 0" along with the appropriate accompanying hypothesis implies an Orlicz-Pettis
Theorem for oo and 8. We estabilish such results in a number of different situations.

The classical Orlicz-Pettis Theorem concerning subseries convergence in the
weak and norm topologies of a normed linear space has proven to be a very useful
result with applications to many situations in measure and integration theory and
the geometric theory of B-spaces [3]. In this paper we show that results concerning
the K convergence of sequences introduced by Antosik and Mikusinski can be used
to deduce Orlicz-Pettis type results. We then establish several results concerning
K convergent sequences in various settings.

If (G, B) is a topological group, then a (formal) series ¥~z in G is said to be
B-subseries (f-s.s.) convergent if for every subsequence {z,, }, the subseries 3" z,,,
is fJ-convergent in G. A sequence {z;} in G is said to be §-K convergent (or K
convergent with respect to ) if every subsequence of {z;} has a subsequence {z, }
such that the subseries ) z,, is B-convergent in G [1, 3.1]. A sequence {z}} such
that the series ) z; is B-s.s. convergent is clearly -K convergent, but the converse
does not hold (consider z; = 1/k in R). Also, a 5-K convergent sequence is 3
convergent to 0, but the converse does not hold in general [2, 3.3].

In what follows let G be an abelian group with two Hausdorff group topologies
o and § on G with @« C 3. A general Orlicz-Pettis Theorem for G is a result
which asserts that any a-s.s. convergent series is $-s.s. convergent; for example,
the classical Orlicz-Pettis Theorem for normed spaces asserts that any weak-s.s.
convergent series is norm-s.s. convergent ([9], [10], [1], [3]). We first show that a
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corresponding result concerning K convergence of sequences in the two topologies
will yield an Orlicz-Pettis result as a corollary, and, therefore, such a result can be
considerd to be a strengthening of the Orlicz-Pettis Theorem.

LemMA 1. A sequence {uz} is B-Cauchy if end only if for every pair
of increasing sequences of positive integers {p;}, {q¢;}, with p; < g; < pjt1,
B-lim(ug; — up;) =0.

THEOREM 2. Suppose o C B and (G, B) has a neighborhood basis at 0 con-
sisting of a-closed sets (B is F linked to o in Wilansky’s terminology [13, 6.1.9.]).
If every a-K convergent sequence is B-convergent to 0, then every series Y z) in
G which is a-s.s. convergent is §-s.s. convergent.

Proof. Let )_ zi be a-s.s. convergent and let {z,,, } be a subsequence of {z}.
Set s = Z;f:l Tn,;. We claim that {s;} is 5-Cauchy. Let {p;} and {g;} be as in
Lemma 1. By the lemma it suffices to show that

95
Zj = Sq; — Sp; = E: Tn;

i=pj+1

is f-convergent to 0. But, {z;} is a-K convergent since }_ z; is a-s.s. convergent
being a subseries of 3 ;. Therefore, by hypothesis, {z;} is 8-convergent to 0.

If {si} is a-convergent to = € G, since 3 is F linked to « it follows that {s;}
is B-convergent to z [13, 6.1.11].

It follows from Theorem 2 that any result of the form, “{z} is a-K convergent
implies that {z;} is B-convergent to 0”, immediately implies an Orlicz-Pettis result
for the topologies o and B, that is, any series which is a-s.s. convergent is $-s.s.
convergent. Thus, any result of this form can be regarded as a strengthening of
the Orlicz-Pettis Theorem. We consider establishing this result for several diverse
situations. As a first example, it was shown in [1, 3.7] that if X is a normed space,
then any weak-K convergent sequence is norm convergent to 0. From this result, we
then obtain from Theorem 2 the classical Orlicz-Pettis Theorem for normed spaces
([9], [10]). We can also obtain the analogus result for locally convex spaces.

THEOREM 3. Let (E,7) be a Hausdorff, locally convez tvs. If {z}} is o(E, E')-
K convergent, then r-limzy = 0.

Proof. By replacing E by span{z;}, we may assume that E is separable. To
show 7-limzy = 0, it suffices to show that sup{|(z’,z:)| : 2’ € U°} — 0, where
U is a T-neighborhood of 0 in E 8, 21.3(2)]. For this it suffices to show that
(z), zx) — O for every {z}} C U°. Now U° with the weak* topology, o(E’, E),
is weak™ compact by the Banach-Alaoglu Theorem (8, 20.9(4)], and is metrizable
since E is separable 8, 21.3.(4)]. Therefore, {2} has a subsequence {27, } which
is weak® convergent to some 2’ € U°.

Now consider the matrix M = [(z},,, zn,})]. In the terminology of [1], M is a
K-matrix so by the Basic Matrix Theorem 2.2 of [1], it follows that (z/,, ,zn,) — 0.
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Since this argument can be applied to any subsequence of {{z},, zx)}, it follows that
{zf,zx) — 0, and the proof is complete.

As an immediate corollary of Theorems 2 and 3, we obtain the locally convex
version of the Orlicz-Pettis Theorem {6].

We next consider the weak* topology on the dual of a locally convex space. We

first have the following interesting result which gives an improvement of Theorem
3.6 of [1].

THEOREM 4. Let E be a locally conver tvs such that (E',0(E’,E)) is a
Banach-Mackey space [13,10.4.3]. If {z}.} is o(E', E)-K convergent then {z}} is
weakly convergent to 0.

Proof. If {z}} is not weakly convergent to 0, we may assume that there
exist z” € E” and § > 0 such that (z”,z}) > é for all k. Then there exists a
subsequence {z,, } such that the series ) z;,, is o(E’, E) convergent so the partial

sums {E;ﬂxﬁ,j} are o(E’, E) bounded and, therefore, S(E’, E) bounded since
(E’',0(E', E)) is a Banach-Mackey space. But then {E;;l :cﬁ,j} is also o(E', E")
bounded by Mackey’s Theorem [13, 8.4.1]. However, (:c", }:;":1 x;,j> > ém for each

m implies that {Z;’;l zﬁ,j} is not weakly bounded. This contradiction establishes
the result.

If E is a barrelled space, then (E',o(E’, E)) is a Banach-Mackey space so
Theorem 4 is applicable in this case {13, 10.4.14].

Note that we cannot obtain an Orlicz-Pettis Theorem for the weak* topology
form Theorem 2 since the weak topology is not F' linked to the weak* topology in
general. Indeed, let e; be the unit vector in I°° with a 1 in the k-th coordinate and
0 elsewhere. The series ) ex is weak*-s.s. convergent to the sequence e which has
a 1 in each coordinate, the sequence of partial sums s, = Y ¢..; ex is weak Cauchy
but is not weakly convergent to e.

The basic Orlicz-Pettis Theorem for the weak* topology on the dual of a
B-space is a result due to Diestel and Faires [4]: if X is a B-space, then every
weak*-s.s. convergent series in X’ is norm s.s. convergent if and only if X’ contains
no subspace isomorphic to . We next establish the analogue of this result for K
convergent sequences.

THEOREM 5. Let X be a B-space whose dual X' contains no subspace
isomorphic to 1%°. If {x},} C X' is weak* K-convergent, then {|z}|| — 0 [so {z}} is
[|[-X convergent to 0 since X' is complete].

Proof. Suppose {||z}||} doesn’t converge to 0. Then we may assume that
flzill > 6 > 0 for each k. By Theorem 4 {z}} is weakly convergent to 0 so
{z%/lz; |} also converges to 0 since

=", 22 /llzkl)] < (=", zi) /6 — 0

for every 2 € X".
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We next claim that X' contains a subspace isomorphic to ¢o. Otherwise,
{z}/llz:ll} = {¥;} has no subsequence equivalent to the unit vector base {ex} of
co. By Elton’s Theorem [3, p. 253], {y;} has a subsequence {3, } such that if
{y{”‘j} is an arbitrary subsequence, then

m

'
T
Z Bk

j=1

= 00

Iim
m

m
= lgn - ||x§,ijyﬁ,,‘j
i=

since {[I:cgkjll} ¢ co. Hence, no subsequence of {z}, } is weak*-K convergent. It

follows that X’ contains a subspace isomorphic to ¢y. But, then the theorem of
Bessaga and Pelcynski {3, V. 10] implies that X’ contains a subspace isomorphic
to I*°, and the result follows.

The proof of Theorem 5 is much more complicated than the proof of the
Diestel-Faires result on weak*-s.s. convergent series (see, for example [1, 10.10]),
using Elton’s Theorem and the Bessage-Pelcynski result. However, the techniques
used in the proof of the Diestel-Faires result don’t seem to carry over to the K
convergent case. It would be desirable to have a simpler proof of Theorem 5 which
does not require the use of so much heavy machinery.

We next consider K-convergence for continuous linear operators between
normed spaces. Let X and Y be normed linear spaces and L(X,Y) (K(X,Y)) the
space of all continuous {compact) linear operators from X into Y. The weak oper-
ator topology (strong operator topology) on L(X,Y) is the locally convex topology
generated by the semi-norms T' — [(', Tz}, ¥ € Y, 2 € X (T — ||Tz||, z € X).
We have the following elementary observation.

ProrosiTIoN 6. If {T:} C L(X,Y) is K convergent with respect to the weak
operator topology, then {T}} is K convergent with respect to the strong operator
topology. '

" Proof. If a subseries ) Ty, is convergent in the weak operator topology,
then for each z € X the series ) T, z is weakly convergent. Thus, for each z € X,
{Tiz} is weakly K convergent in Y and, therefore, norm K convergent in Y [1, 3.8].

Proposition 6 cannot be improved to a statement concerning the norm topol-
ogy of L(X,Y). For example, define Ti : co — co by Tx({t;}) = trex. Then for
each z = {t;}, the series ) Ty is s.s. convergent in cg, but for each finite subset
g CN, ”Ekea T ” = 1. Hence, {T%} is K convergent with respect to the strong
operator topology but not norm K convergent.

However, for the space of compact operators, we have the following result
which generalizes a theorem of Kalton for subseries convergence in K(X,Y) ([7],

(1, 7.5)).

THEOREM 7. Let X be a B-space and suppose that X' contains no subspace
isomorphic to I®°. If {T}} is K convergent in K(X,Y) with respect to the weak
operator topology, then ||Tx|| — 0. Consequently, {T} is norm-K convergent.
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Proof. First, since each T} has separable range, we may assume that Y is
separable. :

Next, observe that if the series ), T,, is convergent in K(X,Y) with respect
to the weak operator topology, then foreach ¢/ € Y, z € X,

W (v (zijnk)x>=Z<y',Tnkx>=Z< ' ¥a) <(ZTM) V.2

k k

and Zk L is weak* convergent to (37, T,,,‘) y for each ¢ € Y’. Therefore, if
{Tx} is IC convergent with respect to the weak operator topology, then for each
¥y €Y' {T{y'} is weak*-K convergent in X', and since X’ contains no subspace
isomorphic to I*°,

(2) ITiy]| =0 foreach y €Y’ (Theorem 5).
For each k pick y; € Y/, |ly;]| = 1, such that
ITegkell + 1/& > TR = ||Tfl-

To show [[Ti]] — 0, it suffices to show that there is a subsequence such that
1T, vn, Il — O since we can apply this statement to any arbitrary subsequence
of {Tk} By the separability of Y and the Banach-Alaoglu Theorem, we may as-
sume, by passing to a subsequence if necessary, that {y,} is weak* convergent to
somey €Y.

Consider the matrix M = [T/(y} — ¢/)]. By the observation above,
lim; ||T; (! — )|l = O for each i. By the compactness of each Tj, lim; |7} (3} — y’)”
= 0[5, VI 5.6]. Therefore, there is an increasing sequence of positive mtegers {m;}
such that ||T7, (v, — y’)” < 2777 for i # j; for convenience of notation, we as-
sume m; = i. Since {T} is K convergent in K(X,Y) with respect to the weak
operator topology, there is a subsequence {n;} such that the subseries > Th, i
convergent to a compact operator T with respect to the weak operator topology
Using (1), we have

T3 vhll 175 (v, — I+ T3,V

TT;,(y;i—y')[jﬂu > T, = )| + T2V

i=1,j#i
hd - .
<N, =M+ 27 7 +ITL Y.
i=1
The first term on the right side of (3) goes to 0 by the compactness of T [5 V1.5.6],
the second term is 27¢, and the third term goes to 0 by (2). Hence, ||}, Yndl—0,

and the proof is complete ‘
Kalton’s Theorem [7] is an immediate corollary of Theorem 7.

We can also establish several K convergence results for the topology of point-
wise convergence in certain function spaces. For these results let G be a metric
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Abelian topological group. Let S be a compact Hausdorff space and let Cg(5) be
the space of all continuous functions f : § — G. Let |f|, = sup{|f(?)| : t € S},
where | | is a quasi-norm generating the topology of G. We have the following
results.

THEOREM 8. (i) If {fi} C Cg(S) is K convergent with respect 1o the topology
of pointwise convergence in Cg(S), then |fir]|,, — 0.

(ii) If S is metrizable, D C S is a dense subset of S and if {fi} is K convergent
with respect to the topology of poiniwise convergence on D, then |fi],, — 0.

Theorem 8 generalizes Theorems 7.6 and 7.7 of [1]. Theorem 8 can be proved
by the same matrix methods employed in [1] so we do not repeat the proofs.

Let 0 < p < oo and let IP(G) be all G-valued sequences {z;} = f with
3" |zk]P < co. Define a quasi-norm | |, on i(G) by |f|, = S lzklPif0<p< 1and

flp= x l-’ﬂklp)llp if 1 < p < 00. For IP(G), we have

TeorEM 9. If {fi} C IP(G) is K convergent with respect to the topology of
pointwise convergence on G, then |fi|, — 0.

This result generalizes Theorem 7.9 of 1}, and again since the proof is similar,
it is omitted. :

Finally, an Orlicz-Pettis Theorem of Stiles for series in an F-space (not ne-
cessarily convex) with a Schauder basis ([11]; see also [2]) can be improved to a
statement about K convergence [12].
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