$\mathcal{K} ext{-} ext{CONVERGENCE}$ AND THE ORLICZ-PETTIS THEOREM

Li Ronglu and Charles Swartz

Abstract. A sequence $\{x_k\}$ in a topological vector space (X,τ) is said to be τ - \mathcal{K} convergent if every subsequence of $\{x_k\}$ has a subsequence $\{x_{n_k}\}$ such that the subseries $\sum x_{n_k}$ is τ -convergent in X. We show that the notion of \mathcal{K} convergence can be used to give a generalization of the Orlicz-Pettis Theorem in the following sense. Let α and β be vector topologies on a vector space X such that $\alpha \subseteq \beta$ and β has a neighborhood base at 0 of α -closed sets. If every α - \mathcal{K} convergent sequence is β -convergent to 0, then every series $\sum x_k$ in X which is α subseries convergent is β subseries convergent. Thus, any statement of the form " α - \mathcal{K} convergence implies β convergence to 0" along with the appropriate accompanying hypothesis implies an Orlicz-Pettis Theorem for α and β . We estabilish such results in a number of different situations.

The classical Orlicz-Pettis Theorem concerning subseries convergence in the weak and norm topologies of a normed linear space has proven to be a very useful result with applications to many situations in measure and integration theory and the geometric theory of B-spaces [3]. In this paper we show that results concerning the $\mathcal K$ convergence of sequences introduced by Antosik and Mikusinski can be used to deduce Orlicz-Pettis type results. We then establish several results concerning $\mathcal K$ convergent sequences in various settings.

If (G, β) is a topological group, then a (formal) series $\sum x_k$ in G is said to be β -subseries (β -s.s.) convergent if for every subsequence $\{x_{n_k}\}$, the subseries $\sum x_{n_k}$ is β -convergent in G. A sequence $\{x_k\}$ in G is said to be β - \mathcal{K} convergent (or \mathcal{K} convergent with respect to β) if every subsequence of $\{x_k\}$ has a subsequence $\{x_{n_k}\}$ such that the subseries $\sum x_{n_k}$ is β -convergent in G [1, 3.1]. A sequence $\{x_k\}$ such that the series $\sum x_k$ is β -s.s. convergent is clearly β - \mathcal{K} convergent, but the converse does not hold (consider $x_k = 1/k$ in \mathbb{R}). Also, a β - \mathcal{K} convergent sequence is β convergent to 0, but the converse does not hold in general [2, 3.3].

In what follows let G be an abelian group with two Hausdorff group topologies α and β on G with $\alpha \subseteq \beta$. A general Orlicz-Pettis Theorem for G is a result which asserts that any α -s.s. convergent series is β -s.s. convergent; for example, the classical Orlicz-Pettis Theorem for normed spaces asserts that any weak-s.s. convergent series is norm-s.s. convergent ([9], [10], [1], [3]). We first show that a

corresponding result concerning K convergence of sequences in the two topologies will yield an Orlicz-Pettis result as a corollary, and, therefore, such a result can be considerd to be a strengthening of the Orlicz-Pettis Theorem.

LEMMA 1. A sequence $\{u_k\}$ is β -Cauchy if and only if for every pair of increasing sequences of positive integers $\{p_j\}$, $\{q_j\}$, with $p_j < q_j < p_{j+1}$, β -lim $(u_{q_j} - u_{p_j}) = 0$.

THEOREM 2. Suppose $\alpha \subseteq \beta$ and (G, β) has a neighborhood basis at 0 consisting of α -closed sets (β is F linked to α in Wilansky's terminology [13, 6.1.9.]). If every α -K convergent sequence is β -convergent to 0, then every series $\sum x_k$ in G which is α -s.s. convergent is β -s.s. convergent.

Proof. Let $\sum x_k$ be α -s.s. convergent and let $\{x_{n_k}\}$ be a subsequence of $\{x_k\}$. Set $s_k = \sum_{j=1}^k x_{n_j}$. We claim that $\{s_k\}$ is β -Cauchy. Let $\{p_j\}$ and $\{q_j\}$ be as in Lemma 1. By the lemma it suffices to show that

$$z_j = s_{q_j} - s_{p_j} = \sum_{i=p_j+1}^{q_j} x_{n_i}$$

is β -convergent to 0. But, $\{z_j\}$ is α - \mathcal{K} convergent since $\sum z_j$ is α -s.s. convergent being a subseries of $\sum x_j$. Therefore, by hypothesis, $\{z_j\}$ is β -convergent to 0.

If $\{s_k\}$ is α -convergent to $x \in G$, since β is F linked to α it follows that $\{s_k\}$ is β -convergent to x [13, 6.1.11].

It follows from Theorem 2 that any result of the form, " $\{x_k\}$ is α - \mathcal{K} convergent implies that $\{x_k\}$ is β -convergent to 0", immediately implies an Orlicz-Pettis result for the topologies α and β , that is, any series which is α -s.s. convergent is β -s.s. convergent. Thus, any result of this form can be regarded as a strengthening of the Orlicz-Pettis Theorem. We consider establishing this result for several diverse situations. As a first example, it was shown in [1, 3.7] that if X is a normed space, then any weak- \mathcal{K} convergent sequence is norm convergent to 0. From this result, we then obtain from Theorem 2 the classical Orlicz-Pettis Theorem for normed spaces ([9], [10]). We can also obtain the analogus result for locally convex spaces.

THEOREM 3. Let (E, τ) be a Hausdorff, locally convex tvs. If $\{x_k\}$ is $\sigma(E, E')$ - \mathcal{K} convergent, then τ - $\lim x_k = 0$.

Proof. By replacing E by span $\{x_k\}$, we may assume that E is separable. To show τ -lim $x_k = 0$, it suffices to show that $\sup\{|\langle x', x_k\rangle| : x' \in U^\circ\} \to 0$, where U is a τ -neighborhood of 0 in E [8, 21.3(2)]. For this it suffices to show that $\langle x'_k, x_k \rangle \to 0$ for every $\{x'_k\} \subseteq U^\circ$. Now U° with the weak* topology, $\sigma(E', E)$, is weak* compact by the Banach-Alaoglu Theorem [8, 20.9(4)], and is metrizable since E is separable [8, 21.3.(4)]. Therefore, $\{x'_k\}$ has a subsequence $\{x'_{n_k}\}$ which is weak* convergent to some $x' \in U^\circ$.

Now consider the matrix $M = [\langle x'_{n_i}, x_{n_j} \rangle]$. In the terminology of [1], M is a \mathcal{K} -matrix so by the Basic Matrix Theorem 2.2 of [1], it follows that $\langle x'_{n_k}, x_{n_k} \rangle \to 0$.

Since this argument can be applied to any subsequence of $\{\langle x'_k, x_k \rangle\}$, it follows that $\langle x'_k, x_k \rangle \to 0$, and the proof is complete.

As an immediate corollary of Theorems 2 and 3, we obtain the locally convex version of the Orlicz-Pettis Theorem [6].

We next consider the weak* topology on the dual of a locally convex space. We first have the following interesting result which gives an improvement of Theorem 3.6 of [1].

THEOREM 4. Let E be a locally convex tvs such that $(E', \sigma(E', E))$ is a Banach-Mackey space [13, 10.4.3]. If $\{x'_k\}$ is $\sigma(E', E)$ -K convergent, then $\{x'_k\}$ is weakly convergent to 0.

Proof. If $\{x_k'\}$ is not weakly convergent to 0, we may assume that there exist $x'' \in E''$ and $\delta > 0$ such that $\langle x'', x_k' \rangle > \delta$ for all k. Then there exists a subsequence $\{x_{n_k}'\}$ such that the series $\sum x_{n_k}'$ is $\sigma(E', E)$ convergent so the partial sums $\{\sum_{j=1}^k x_{n_j}'\}$ are $\sigma(E', E)$ bounded and, therefore, $\beta(E', E)$ bounded since $(E', \sigma(E', E))$ is a Banach-Mackey space. But then $\{\sum_{j=1}^k x_{n_j}'\}$ is also $\sigma(E', E'')$ bounded by Mackey's Theorem [13, 8.4.1]. However, $\langle x'', \sum_{j=1}^m x_{n_j}' \rangle \geq \delta m$ for each m implies that $\{\sum_{j=1}^m x_{n_j}'\}$ is not weakly bounded. This contradiction establishes the result.

If E is a barrelled space, then $(E', \sigma(E', E))$ is a Banach-Mackey space so Theorem 4 is applicable in this case [13, 10.4.14].

Note that we cannot obtain an Orlicz-Pettis Theorem for the weak* topology form Theorem 2 since the weak topology is not F linked to the weak* topology in general. Indeed, let e_k be the unit vector in l^{∞} with a 1 in the k-th coordinate and 0 elsewhere. The series $\sum e_k$ is weak*-s.s. convergent to the sequence e which has a 1 in each coordinate, the sequence of partial sums $s_n = \sum_{k=1}^n e_k$ is weak Cauchy but is not weakly convergent to e.

The basic Orlicz-Pettis Theorem for the weak* topology on the dual of a B-space is a result due to Diestel and Faires [4]: if X is a B-space, then every weak*-s.s. convergent series in X' is norm s.s. convergent if and only if X' contains no subspace isomorphic to l^{∞} . We next establish the analogue of this result for K convergent sequences.

THEOREM 5. Let X be a B-space whose dual X' contains no subspace isomorphic to l^{∞} . If $\{x'_k\} \subseteq X'$ is weak* K-convergent, then $||x'_k|| \to 0$ [so $\{x'_k\}$ is $||\cdot||-K$ convergent to 0 since X' is complete].

Proof. Suppose $\{||x'_k||\}$ doesn't converge to 0. Then we may assume that $||x'_k|| \ge \delta > 0$ for each k. By Theorem 4 $\{x'_k\}$ is weakly convergent to 0 so $\{x'_k/||x'_k||\}$ also converges to 0 since

$$|\langle x'', x_k'/||x_k'||\rangle| \le |\langle x'', x_k'\rangle|/\delta \to 0$$

for every $x'' \in X''$.

We next claim that X' contains a subspace isomorphic to c_0 . Otherwise, $\{x'_k/||x'_k||\} = \{y'_k\}$ has no subsequence equivalent to the unit vector base $\{e_k\}$ of c_0 . By Elton's Theorem [3, p. 253], $\{y'_k\}$ has a subsequence $\{y'_{n_k}\}$ such that if $\{y'_{n_k}\}$ is an arbitrary subsequence, then

$$\lim_{m} \left\| \sum_{j=1}^{m} x'_{n_{k_{j}}} \right\| = \lim_{m} \left\| \sum_{j=1}^{m} \| x'_{n_{k_{j}}} \| y'_{n_{k_{j}}} \right\| = \infty$$

since $\{||x'_{n_{k_j}}||\} \notin c_0$. Hence, no subsequence of $\{x'_{n_k}\}$ is weak*- \mathcal{K} convergent. It follows that X' contains a subspace isomorphic to c_0 . But, then the theorem of Bessaga and Pelcynski [3, V. 10] implies that X' contains a subspace isomorphic to l^{∞} , and the result follows.

The proof of Theorem 5 is much more complicated than the proof of the Diestel-Faires result on weak*-s.s. convergent series (see, for example [1, 10.10]), using Elton's Theorem and the Bessage-Pelcynski result. However, the techniques used in the proof of the Diestel-Faires result don't seem to carry over to the $\mathcal K$ convergent case. It would be desirable to have a simpler proof of Theorem 5 which does not require the use of so much heavy machinery.

We next consider K-convergence for continuous linear operators between normed spaces. Let X and Y be normed linear spaces and L(X,Y) (K(X,Y)) the space of all continuous (compact) linear operators from X into Y. The weak operator topology (strong operator topology) on L(X,Y) is the locally convex topology generated by the semi-norms $T \to |\langle y', Tx \rangle|, y' \in Y', x \in X$ ($T \to ||Tx||, x \in X$). We have the following elementary observation.

PROPOSITION 6. If $\{T_k\} \subseteq L(X,Y)$ is K convergent with respect to the weak operator topology, then $\{T_k\}$ is K convergent with respect to the strong operator topology.

Proof. If a subseries $\sum T_{n_k}$ is convergent in the weak operator topology, then for each $x \in X$ the series $\sum T_{n_k} x$ is weakly convergent. Thus, for each $x \in X$, $\{T_k x\}$ is weakly \mathcal{K} convergent in Y and, therefore, norm \mathcal{K} convergent in Y [1, 3.8].

Proposition 6 cannot be improved to a statement concerning the norm topology of L(X,Y). For example, define $T_k: c_0 \to c_0$ by $T_k(\{t_j\}) = t_k e_k$. Then for each $x = \{t_j\}$, the series $\sum T_k x$ is s.s. convergent in c_0 , but for each finite subset $\sigma \subseteq \mathbb{N}$, $\left\|\sum_{k \in \sigma} T_k\right\| = 1$. Hence, $\{T_k\}$ is \mathcal{K} convergent with respect to the strong operator topology but not norm \mathcal{K} convergent.

However, for the space of compact operators, we have the following result which generalizes a theorem of Kalton for subseries convergence in K(X,Y) ([7], [1, 7.5]).

THEOREM 7. Let X be a B-space and suppose that X' contains no subspace isomorphic to l^{∞} . If $\{T_k\}$ is K convergent in K(X,Y) with respect to the weak operator topology, then $||T_k|| \to 0$. Consequently, $\{T_k\}$ is norm-K convergent.

Proof. First, since each T_k has separable range, we may assume that Y is separable.

Next, observe that if the series $\sum_{k} T_{n_k}$ is convergent in K(X,Y) with respect to the weak operator topology, then for each $y' \in Y$, $x \in X$,

$$(1) \qquad \left\langle y', \left(\sum_{k} T_{n_{k}}\right) x \right\rangle = \sum_{k} \langle y', T_{n_{k}} x \rangle = \sum_{k} \langle T'_{n_{k}} y', x \rangle = \left\langle \left(\sum_{k} T_{n_{k}}\right)' y', x \right\rangle$$

and $\sum_k T'_{n_k} y'$ is weak* convergent to $(\sum_k T_{n_k})' y'$ for each $y' \in Y'$. Therefore, if $\{T_k\}$ is \mathcal{K} convergent with respect to the weak operator topology, then for each $y' \in Y'$ $\{T'_k y'\}$ is weak*- \mathcal{K} convergent in X', and since X' contains no subspace isomorphic to l^{∞} ,

(2)
$$||T'_k y'|| \to 0$$
 for each $y' \in Y'$ (Theorem 5).

For each k pick $y'_k \in Y'$, $||y'_k|| = 1$, such that

$$||T'_k y'_k|| + 1/k \ge ||T'_k|| = ||T_k||.$$

To show $||T_k|| \to 0$, it suffices to show that there is a subsequence such that $||T'_{n_k}y'_{n_k}|| \to 0$ since we can apply this statement to any arbitrary subsequence of $\{T_k\}$. By the separability of Y and the Banach-Alaoglu Theorem, we may assume, by passing to a subsequence if necessary, that $\{y'_k\}$ is weak* convergent to some $y' \in Y$.

Consider the matrix $M = [T'_j(y'_i - y')]$. By the observation above, $\lim_j ||T'_j(y'_i - y')|| = 0$ for each i. By the compactness of each T_j , $\lim_j ||T'_j(y'_i - y')|| = 0$ [5, VI.5.6]. Therefore, there is an increasing sequence of positive integers $\{m_j\}$ such that $||T'_{m_j}(y'_{m_i} - y')|| < 2^{-i-j}$ for $i \neq j$; for convenience of notation, we assume $m_i = i$. Since $\{T_j\}$ is \mathcal{K} convergent in K(X,Y) with respect to the weak operator topology, there is a subsequence $\{n_j\}$ such that the subseries $\sum T_{n_j}$ is convergent to a compact operator T with respect to the weak operator topology. Using (1), we have

$$\begin{split} ||T'_{n_{i}}y'_{n_{i}}|| &\leq ||T'_{n_{i}}(y'_{n_{i}} - y')|| + ||T'_{n_{i}}y'|| \\ &\leq \left\| \sum_{j=1}^{\infty} T'_{n_{j}}(y'_{n_{i}} - y') \right\| + \left\| \sum_{j=1, j \neq i}^{\infty} T'_{n_{j}}(y'_{n_{i}} - y') \right\| + ||T'_{n_{i}}y'|| \\ &< ||T'(y'_{n_{i}} - y')|| + \sum_{j=1}^{\infty} 2^{-i-j} + ||T'_{n_{i}}y'||. \end{split}$$

The first term on the right side of (3) goes to 0 by the compactness of T [5, VI.5.6], the second term is 2^{-i} , and the third term goes to 0 by (2). Hence, $||T'_{n_i}y'_{n_i}|| \to 0$, and the proof is complete.

Kalton's Theorem [7] is an immediate corollary of Theorem 7.

We can also establish several K convergence results for the topology of pointwise convergence in certain function spaces. For these results let G be a metric

Abelian topological group. Let S be a compact Hausdorff space and let $C_G(S)$ be the space of all continuous functions $f: S \to G$. Let $|f|_{\infty} = \sup\{|f(t)| : t \in S\}$, where $|\cdot|$ is a quasi-norm generating the topology of G. We have the following results.

THEOREM 8. (i) If $\{f_k\} \subseteq C_G(S)$ is K convergent with respect to the topology of pointwise convergence in $C_G(S)$, then $|f_k|_{\infty} \to 0$.

(ii) If S is metrizable, $D \subseteq S$ is a dense subset of S and if $\{f_k\}$ is K convergent with respect to the topology of pointwise convergence on D, then $|f_k|_{\infty} \to 0$.

Theorem 8 generalizes Theorems 7.6 and 7.7 of [1]. Theorem 8 can be proved by the same matrix methods employed in [1] so we do not repeat the proofs.

Let $0 and let <math>l^p(G)$ be all G-valued sequences $\{x_k\} = f$ with $\sum |x_k|^p < \infty$. Define a quasi-norm $|\ |_p$ on $l^p(G)$ by $|f|_p = \sum |x_k|^p$ if $0 and <math>|f|_p = (\sum |x_k|^p)^{1/p}$ if $1 \le p < \infty$. For $l^p(G)$, we have

TEOREM 9. If $\{f_k\} \subseteq l^p(G)$ is K convergent with respect to the topology of pointwise convergence on G, then $|f_k|_p \to 0$.

This result generalizes Theorem 7.9 of [1], and again since the proof is similar, it is omitted.

Finally, an Orlicz-Pettis Theorem of Stiles for series in an F-space (not necessarily convex) with a Schauder basis ([11]; see also [2]) can be improved to a statement about K convergence [12].

REFERENCES

- [1] P. Antosik and C. Swartz, Matrix Methods in Analysis, Springer-Verlag, Lecture Notes in Mathematics 1113, Heidelberg, 1985.
- [2] B. Basit, On a theorem of Gelfand and a new proof of the Orlicz-Pettis Theorem, Rend. Inst. Matem. Univ. Trieste 18 (1986), 159-162.
- [3] J. Diestel, Sequences and Series in Banach Spaces, Springer-Verlag, N.Y., 1984.
- [4] J. Diestel and B. Faires, On vector measures, Trans. Amer. Math. Soc. 198 (1974), 253-271.
- [5] N. Dunford and J. Schwartz, Linear Operators I, Interscience, N.Y., 1958.
- [6] A. Grothendieck, Sur les applications lineaires faiblement compactes d'espaces du type C(K), Canad. J. Math. 5 (1953), 129-173.
- [7] N. Kalton, Spaces of compact operators, Math. Ann. 208 (1974), 267-278.
- [8] G. Köthe, Topological Vector Spaces I, Springer-Verlag, N.Y., 1969.
- [9] W. Orlicz, Über unbedingte Konergenz in Funktionräumen, Studia Math. 4 (1933), 33-37.
- [10] B. J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 49 (1938), 277-304.
- [11] W. J. Stiles, On subscries convergence in F-spaces, Israel J. Math. 8 (1970), 53-56.
- [12] C. Swartz, A generalization of Stiles' Orlicz-Pettis theorem, Rend. Inst. Matem. Univ. Trieste 20 (1988), 109-111.
- [13] A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw-Hill, N.Y., 1978.

Mathematics Department New Mexico State University Las Cruces, N.M. 88003 U.S.A. (Received 07 04 1989)