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EXISTENCE OF MONOTONE, »-MINIMAL
SOLUTIONS OF DIFFERENTIAL INCLUSIONS

Nikolaos S. Papageorgiou

‘Abstract. We establish the cxistence of ¥-minimal, monotone solutions for a class of
differential inclusions in L. The criterion ¥(-) is continuous, convex and the preorder P(-) is
Hausdorff continuous. The proof uses a lemma on the lower semicontinuity of the multifunction
z — T(z) which we prove separately. Finally we use the main existence result to prove the
existence of feedback controls that generate ¥-minimal and monotone trajectories for a class of
nonlinear control systems. -

1. Introduction. In this note we establish the existence of v¥-minimal
monotone trajectories for a class of differential inclusions in R". such solutions are
important in the study of certain dynamic economic models of resource allocation
(see Aubin-Cellina [2, chapter 6] and Henry [6]), in the stabilization of systems and
in feedback systems [2]. ‘

Recently Falcone-S.uint Pierre [4] addresed the same problem and determined
conditions guaranteeing the existence of ¥-minimal solutions.

Here not only we want our solution to be ¥-minimal, but we also want it to
be monotone with respect to a preorder. Despite this additional requirement on the
solutions, our hypotheses on the data are weaker than those of Falcone-Saint Pierre
[4]. This way we achieve a two-fold generalization of their work. Our proof makes
use of a lemma concerning certgain lower semicontinuity property of the contingent
cone of a given sequence of sets, which we believe is of i ndependent interest. We
conclude the note with an application to finite dimensional control systems.

2. Preliminaries. Throughout this note By Pre(X) we will denote the
family of nonempty closed (convex) subsets of a Banach space X. Also if Y, Z are
Hausdorff topological spaces, a multifunction F : Y — 2% \ {@} is said to be lower

Key words and phrases: Upper semicontinucus multifunction, Lower semicontinuous,
Hausdorff continuous, preorder, ¥-minimal trajectory, monotone trajectory, Bouligand cone, open
graph, control system.

AMS Subject Classification (1980): Primary 34 A 60



Existence of monotone, -minimal solutions of differential inclusions 77

semicontinuous (1.s.c.), if for all U C Z open, F~(U)={y €Y : F(y)NU # B} is
openinY. If Y, Z are metric spaces, this definition is equivalent to saying that for
any y, — vy, we have F(y) C limF(ya) = {z € Z : limdz(z, F(ya)) = 0}, where
dz(-,-) is the metric on Z and dz(z, F(yn)) = inf{||lz = 2|| : 2’ € F(ya)}. We
will say that F : Y — 27 \ {@} is upper semicontinuous (u.s.c.), if for all U C Z
open, F*(U) = {y € Y : F(y) C U} is open in Y (see Delahaye-Denel [3]). A
multifunction F(-) is said to be continuous, if it is both u.s.c. and ls.c.

If X is a Banach space, then on P;(X) we can define a generalized metric
h(-, ), known as the Hausdorff metric, by setting

h(A, B) = max{sup inf |la — b]|, sup inf |la — b||}
acAbeB beBacA

Recall that (P;(X),h) is a complete metric space. A multifunction F : X —
P;(X) is said to be Hausdorff continuous (h-continuous), if it is continuous as a
function from X into the metric space (Py(X), h).

Let X be a Banach space, K C X nonempty and £ € K. The “Bouligand or
contingent cone” to K at z defined by

T (z) = {heX :@M:O},
Al0

where for any v € X, dg(v) = inf{|lv — 2|| : 2’ € K} (see Aubin-Cellina [2]). It
is clear that this cone is closed, that Tk (z) = T (z) and furthermore if z € int K,
then Tk (z) = X. In general Tk (z) is not convex. However, if K is a convex set,
then so is Tk (z). Also note that if int K # &, then int Tk (z) # D (see Aubin-
Cellina [2]).

For a given multifunction F : Y — 2%\ {@}, by the “graph of F'(-)” we will
mean the set Gr F = {(z,y) € X xY :y € F(z)}.

Now we will state two lemmata that we will need in the sequel and which
are also of independent interest. The first gives us sufficient conditions for the
intersection of two multifunctions to be ls.c..

LEMMA 1. IfY, Z are Hausdorff topological spaces, G : Y — 27\ {@D} is
Ls.c., F:Y — 2%\ {D) has open graph and for ally € Y, G(y) N F(y) # 9, then
y— H(y) = Gy) N F(y) ts Ls.c.

Proof. We need to show that for every U C Z open H~(U) = {y € Y :
H(y)NU # @} isopeninY. Let y € H~(U) and z € G(y) N F(y) N U. Then
(y,2z) € Gr FN(Y x U). By hypothesis F(-) has an open graph. So Gr FN(U x U)
is an open subset Y x Z. So we can find U;(y) (a neighborhood of y) and Vi(z)
(a neighborhood of z) such that Ui(y) x Vi(z) € GrFn(Y x U). Note that
G(y) N Vi(2) # O since it contains z. Recalling that G(-) is l.s.c., we can find
Us(y) (an open neighborhood of y) such that G(y') N Vi(z) # & for all ¢ € Ua(y).
Set U(y) = U1(y) N Ua2(y). Then for all ¥ € U(y) we have G(¥') N Vi(z) # 9,
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while U(y) x Vi(z) CGr FN(Y x U). Thus forall y € U(y), GW)NFY)NU =
HY)YNU #9 = H~-(U)isopen => H(-)isls.c.. QE.D.

The second lemma establishes an interesting lower semicontinuity property of
the Bouligand cone. Let X be a reflexive Banach space which along with its dual
is strictly convex and let K C X be nonempty, convex. For ¢ € K we define the
cone Sk (z) spanned by K — z; i.e. Sk(z) = Uy50 A~ (K — z). Observe that for
every € K, K C z + Sk(z) C z + Tk (z) and Tk (z) = Sk(z).

~ LemMa 3. If P: X — Pi(X) is an h-continuous mullifunction, then z —
T= Tp(,)(z) s ls.c.

Proof. Let z, — z and let ¢ € Sp(z)(z). Then by definition there exists
X > 0 such that = + Av € P(z). Set w, = projp(s,)(z + Mv). Since P(-) is k-
continuous, from theorem 3.33, p. 322 of Attouch [1], we have w, — z+Av. Hence
vy = (Wn — To)/X — v and clearly 2, + Avy = wn € P(2n). So vn € Tp(z,)(Zn)
=> Tp(z)(2) C imTp(z,)(%n) and this implies that () = Tp.)(-) is Ls.c. (see
the beginning of this section).

3. Main theorem. In this section we state and prove our result on the
existence of ¥-minimal monctone trajectories.

Let K be a nonempty, closed convex subset of R™. A preorder <X on K is
a binary relation z < y, which is (i) reflexive and (ii) transitive. A trajectory
z: T — K of a given differential inclusion is said to be “monotone” if and only if
forallt,s € T, s <t == z(t) < z(s). It is convenient to equivalently characterize
a preorder using a multifunction P(-) from K into 2%X. So.y € P(z) if and only
y < z. Thus a trajectory x(-) is monotone for the given preorder if and only if
forall s,t € T, t > s == z(t) € P(z(s)). In economic models a typical example
of a preorder is defined by a family of utility functions {Vi(-)}p_;, Vx : K — R,
k= 1,2,...,n. Then for all z € K, P(z) = {y € K : Vi(y) < Vi(z) for all
k= 1,2,...,n}. In this case a trajectory z : T — K is monotone if and only if
for all 5,t € T, t > s, we have Vi(z(t)) < Vi(z(s)) for all k = 1,2,...,n. Haddad
[5] proved that a necessary and sufficient condition for the existence of a monotone
trajectory, is that for all z € K, F(z)NTp(z)(z) # D. Note that if P(z) = K for all
z € K, then monotone trajectories are simply viable trajectories and then Haddad’s
condition is nothing else but the well known Nagumo tangential condition, stated
in the language of contingent cones.

A trajectory z : T — X is said to be y-minimal, if its derivative minimizes
a given criterion ¥(-); i.e. ¥(2(¢)) = min{¥(z) : = € R(z(t))} a.e. where R(z) =
F(2) N Tp(z)(z). When 9¥(z) = ||z||, then -minimal trajectories are just slow (i.e.
with minimal velocity) solutions, which appear often in dynamic economic models
and in systems theory.

Let T = [0, ] and let the state space be R". The differential inclusion under
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consideration defined on R"”, is the following:

z(t) € F(z(t)) ae.
z(0) = zo € K; z(t)e K, teT.

We will need the following hypotheses on the data of ().

H(K): K CR" is a nonempty, closed convex set.
H(F): F: K — Pi(R") is a multifunction s.t.

(1) F(-) is continuous.

(2) F(2)] = sup{llz]| : = € F(&)} < k(1 +[[al]), k>0
H(P): P: K — P(K) is an h-continuous preorder.
H,: TForeevery z € K, F(z)NTp(s)(z) # 9.

We will also need a hypothesis on the criterion (). Recall that a function

¢ € RR" is inf-compact if and only if for every A € R, {z € R" : ¢(z) < A} is
compact.

H(y): ¥ :R" — R" is convex, continuous and inf-compact.

THEOREM 3.1. If hypotheses H(K), H(F), H(P), H., and H() hold, then
(*) edmits a Y-minimal, monotone trajectory in K.

Proof. Let By = {z € R" : ||z|| < 1} (i.e. the closed unit ball in R").
Set Fn(z) = F(z) + Bi/n. Then int Fy(z) = F(z) + (int B)/n, where int By =
{z € R™ : ||z|| < 1}. Clearly for all n > 1 int F,(-) has an open graph. Also
from Lemma 2 we know that 2 — Tp(z)(z) is L.s.c.. Hence Lemma 1 tells us that

z — Ra(z) = int Fo(z) N Tp(z)(2) is.ls.c. => Ra(z) = Fa(z) N Tp(z)(z) is Ls.c..
Define Gn : K — 2R" by Ga(z) = {y € R" : ¥(y) < inl,¢r,(s)¥(2)}. Since
#(-) is continuous and Rn(-) is compact valued, it is clear that Gn(z) # &. Also
from the continuity and convexity hypotheses on ¥(-), we deduce that Gn(-) is
P:(R")-valued. We claim that Ga(-) has a closed graph in K x R". To this end
let {(Zm,¥m)}m>1 € GrG and assume that (zm,ym) — (,¥) in R™ x R". By
setting Bn(z) = inf{¥(2) : z € Ra(x)}, we have: '

Wam) < PolEm) = lim $(yn) = ¥(y) < T fa(zm)

But from Theorem 4, p. 51 of Aubin-Cellina [2], we know that for every n > 1,
Bn(-) 1s us.c.. Hence we get

V() < Ba(z) = (2,y) € GrGn = GrG, is closed, as claimed.

Invoking theorem 1, p. 41 of Aubin-Cellina [2], we deduce that z — L(z) =
Fn(z) N Gn(z) is us.c.. Now consider the following viabilty problem:

Zn(t) € Ln(zn(t)) ae.

!
z,{(0) = =0, z,(t)EK, teT. ()
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Observe that from the construction of Ln(-), we have La(z) N Tp(z)(z) # &
for all z € K. So invoking Haddad’s result [5], we get that (), has a viable solution
z, : T — K. Observe that

2a (@Il < (k4 1) + kllza (Ol 2. => ditllrn(t)ll < (k+1) +kl|za(t)]] ace..

Integrating the above inequality and invoking Gronwall’s lemma, we get [|z,||.,

M < oo for all n > 1. Hence {¢s(-)}np1 is uniformly integrable in L(T, R") =
Li(T) and this in turn implies that {zn(-)}s»1 is an equicontinuous subset
of C(T,R") = Cn(T). Applying the Arzela-Ascoli theorem, we deduce that
{za(-)}nx1 is relatively compact in Co{T"). So by passing to a subsequence if
necessary, we may assume that z, — z in C,(7) and z,, ~, zin LI(T). Also note
that by construction, for every n > 1 z,(-) is the ¥-minimal trajectory of ().
Since by hypothesis H (%) ¥( - ) is inf-compact, we can apply Theorem 2.11, p. 132 of
Attouch [1] and get that 8,(z) 1 B(z) for all z € K. If we set I3 (y) = [, ¥(u(t)) dt
for all A € B(T) = Borel v-field of T, y(-) € L}(T) and because ¥(-) is convex,
we can easily check that I(-) is weakly-ls.c. on LL(T’). So we have:

[ #te0at <tim [ w(a@)ar < T [ Butantea

S/l—i—r-ﬁﬁ(:c,,(t)) dt (by Fatou’s lemma)
A

< /A,B(a:(t)) dt (since B(-) is u.s.c.)

Since A € B(T) was arbitrary, we deduce that ¥(£(t)) < B(z(t)) a.e. On the other
hand, since &, — & in LL(7T), from theorem 3.1 of [7] we have:

i(t) € Tonv w- Im{&,(¢)}ny1 C TOAV im Fo(24(1)) ace.

But note that lim Fn(za(t)) = hm(F(:c,,(t)) + Bi/n) C limF(:c,,(t)) +
limB;/n. Since by hypothesis H(F), F(- () is us.c. and 2, — z in Cu(T),
we have imF(zn(t)) C F(z(t)). Also limBi/n = {0}. So finally we get
im Fa(2a(t)) € F(z(t)) a.e. and thus we can write that z(t) € F(z(t)) a.e. Fur-
thermore for all n > 1 and all t,s € T', t > s, we have z,(t) € P(z,(s)). Since by
hypothesis H(P), P(-)is h-continuous, in the limit as n — co we get z(t) € P(z(s))
forallt,s € T, t > s. Therefore z(-) € Cn(T) is the desired -minimal, monotone
trajectory of (¥). Q.E.D.

4. Control systems. In this section, we will apply Theorem 3.1, get feed-
back controls that generate monotone trajectories for a nonlinear control system.

More specifically, the problem under consideration is the following:

(P):  “Find a “state-control” pair (X (-),u()) € Cu(T) x LL(T) satisfying
z(t) = f(z(t),u(t)) a.e., z(0) = zo, u(t) € U(z(t)) a.e., so that the state
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z(-) is ¢-minimal and P-monotone for a given criterion ¥(-) and a given
preorder P(-) on the viablity domain K.”

We will need the following hypotheses on the data of (P).

H(K)': K C R" is nonempty, closed and convex.

H(f): f:KxR™— R" is a continuous map s.t. |f(z,u)| < k(1 +{lzll + [Jul),
k>0.

H(P): P:K — Pr(K) is an h-continuous preorder.

HU): U :K — P(R™) continuous |U(z)| = sup{||v]] : v € U(z)} < ¥'||z|| and
f(2,U()) = Uyeu(e) f(z, u) is convex.

H,: G(z)N{u € U(z) : f(z,u) € Tp)(x) # S} forallz € K.

THEOREM 4.1. If hypotheses H(K)', H(f), H(P)Y, H(U) and H] hold, then
there exists feedback control u(-) solving problem (P).

Proof. Let F(z) = f(z,U(z)). From hypotheses H(f) and H(U) we know
that F(-) has nonempty, compact, convex values. Also for every v € R", we
define: op(z)(v) = sup{(v, f(z,u)) : u € U(z)}. (the support function of F(z)).
From theorem 6, p. 53 of Aubin-Cellina {2], we have that £ — op(s)(v) continuous
= F continuous and |F(z)| < k(1 + (1 + k¥')||z]]). Also note that because of ; we
have F(z) N Tp(z)(z) # D for all z € K. Hence we can apply Theorem 3.1 and get
a ¥-minimal, monotone trajectory for the differential inclusion £(t) € F(z(1)) a.e.,
2(0) = zo. Then let I'(t) = {u € U(z(1)) : 2(t) = f(z(t),u)}. By redefining I'(-)
on a Lebesgue null set, we may assume that I'(t) # @ for all t € T'. Also

GrT' = {(t,u) € Gt U(z(-)) : 2(t) — f(=(t),uw) = 0}.

Since U(-) is u.s.c., it is measurable (see Wagner [8]) and so GrU(z(-)) € B(T) x
B(R™), (where B(T) and B(R™) are the Borel o-fields of T and R™ repsectively),
while from hypothesis H(f), we get that (¢, u) — &(t)— f((t), u) is a Caratheodory
function, hence jointly measurable. Thus GrI' € B(T) x B(R™). Apply Aumann’s
selection theorem (see Wagner (8)), to get u: ' — R™ measurable s.t. u(t) € I'(t)
for all t € T. Then u(-) is the desired feedbac control. Q.E.D.
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