ON PASCU TYPE α-CLOSE-TO-STAR FUNCTIONS

R. Paravatham and S. Srinivasan

Abstract. We introduce a new class of functions $CS(\alpha)$ and study some of its properties. Let $CS(\alpha)$ denote the class of holomorphic functions f in the unit disc E, with f(0) = 0 = f'(0) - 1 and $f(z) \neq 0$, $\alpha z f'(z) + (1 - \alpha) f(z) \neq 0$ in E satisfying

$$\int_{\theta_1}^{\theta_2} \operatorname{Re} \left\{ \frac{\alpha z (zf'(z))' + (1-\alpha)zf'(z)}{\alpha zf'(z) + (1-\alpha)f(z)} \right\} d\theta > -\pi$$

whenever $0 \le \theta_1 < \theta_2 \le \theta_1 + 2\pi$, $z = re^{i\theta}$, 0 < r < 1 and α is a non negative real number. The functions in $CS'(\alpha)$ unify the class CS^{\bullet} of Reade $(\alpha = 0)$ [4] and the class C of Kaplan $(\alpha = 1)$ [3]. Though the class $P(\alpha)$ of Bharati [1] also unifies these two classes, the class $CS(\alpha)$ is quite different from the class $P(\alpha)$.

Introduction. Let f be a holomorphic function in the open unit disc E with f(0) = 0 = f'(0) - 1. Let the class of functions be denoted by A.

Let $CS(\alpha)$ denote the class of functions f in A with $f(z) \neq 0$ and $\alpha z f'(z) + (1-\alpha)f(z) \neq 0$ in $E - \{0\}$ satisfying

$$\int_{\theta_1}^{\theta_2} \operatorname{Re} \left\{ \frac{\alpha z (z f'(z))' + (1 - \alpha) z f'(z)}{\alpha z f'(z) + (1 - \alpha) f(z)} \right\} d\theta > -\pi$$

whenever $0 \le \theta_1 < \theta_2 \le \theta_1 + 2\pi$, $z = re^{i\theta}$, 0 < r < 1 and α non negative real number. The functions in the class $CS(\alpha)$ will be called α -close-to-star functions.

When $\alpha=0$ this class $CS(\alpha)$ reduces to the class CS^* of Reade [4] and when $\alpha=1$ this is the class C of Kaplan [3]. Thus the classes $CS(\alpha)$ provide a continuous passage from the class CS^* to the class C.

Bharati [1] introduced the class $P(\alpha)$ — the class of functions f analytic in the unit disc E with f(0) = 0, $f(z) \neq 0$ for $z \neq 0$ and $f'(z) \neq 0$ in E satisfying the condition

$$\int_{\theta_1}^{\theta_2} \operatorname{Re}\left\{\alpha\left(1 + \frac{zf''(z)}{f'(z)}\right) + (1 - \alpha)\frac{zf'(z)}{f(z)}\right\} d\theta > -\pi$$

whenever $0 \le \theta_1 < \theta_2 \le \theta_1 + 2\pi$, $z = re^{i\theta}$, 0 < r < 1 and α is a positive real number. In spite of the fact that the class $P(\alpha)$ also unifies the classes of close-to-starlike $(\alpha = 0)$ and close-to-convex $(\alpha = 1)$ functions, this class $CS(\alpha)$ is quite different from $P(\alpha)$.

In this paper, we study some properties of the class $CS(\alpha)$. In particular employing a lemma due to Blezu and Pascu, we derive the invariant property of this class $CS(\alpha)$ under the transform by certain integral operator.

First let us state without proof two results which will be used in the sequel.

LEMMA 1. Blezu and Pascu [2]. Let q be holomorphic in E with q(0) = 1. If for every $r \in (0,1)$, $\gamma \in [0,1]$, a, θ_1, θ_2 with $\operatorname{Re} a \geq 0$, $0 \leq \theta_1 < \theta_2 \leq \theta_1 + 2\pi$

$$\int_{\theta_1}^{\theta_2} \operatorname{Re}\left\{q(z) + \frac{zq'(z)}{a + q(z)}\right\} d\theta > -\pi\gamma,$$

then $\int_{\theta_1}^{\theta_2} \operatorname{Re} q(z) d\theta > -\pi \gamma$, $z = re^{i\theta}$.

LEMMA 2 [5]. Let ϕ be a convex univalent function and g be a starlike univalent function. Then for any function F holomorphic in E with $\operatorname{Re} F(z) > 0$ in E we have $\operatorname{Re}((\phi * Fg)(z)/(\phi * g)(z)) > 0$, where * stands for Hadamard product or convolution.

As a result of Theorem 3 in [4] we can define the class $CS(\alpha)$ in another equivalent form namely $f \in CS(\alpha)$ if and only if $\{\alpha z f'(z) + (1-\alpha)f(z)\} \in CS^*$ of Reade. That is there exists a g(z) in S^* — the class of starlike univalent functions — such that

$$\operatorname{Re}\left\{\left(\alpha z f'(z) + (1-\alpha)f(z)\right)/g(z)\right\} > 0 \text{ in } E.$$

THEOREM 1 (Integral representation). Any $f \in A$ is in the class $CS(\alpha)$ if and only if there exists a $g \in S^*$ and $p \in P$ — the Caratheodory class — such that

$$f(z) = \frac{1}{\alpha z^{1/\alpha - 1}} \int_0^z t^{1/\alpha - 2} p(t) g(t) dt \quad \text{for } \alpha \neq 0$$
$$= p(z) g(z) \qquad \qquad \text{for } \alpha = 0.$$

Proof. $f \in CS(\alpha) \iff \alpha z f'(z) + (1-\alpha)f(z) \in CS^*$. Hence there is a $g(z) \in S^*$ such that

$$\operatorname{Re}\left\{\left(\alpha z f'(z) + (1-\alpha)f(z)\right)/g(z)\right\} > 0 \text{ in } E,$$

or $\alpha z f'(z) + (1-\alpha)f(z) = p(z)g(z)$, where $g \in S^*$ and $p \in P$ —the Caratheodory class of functions. If $\alpha \neq 0$, then multiplying the above equation by $\alpha^{-1}z^{1/\alpha-2}$ and integrating with respect to z, we get

$$z^{1/\alpha - 1} f(z) = \frac{1}{\alpha} \int_0^z t^{1/\alpha - 2} p(t) g(t) dt$$

OL

$$f(z) = \frac{1}{\alpha z^{1/\alpha - 1}} \int_0^z t^{1/\alpha - 2} p(t) g(t) dt.$$

If $\alpha = 0$ then f(z) = p(z)g(z) where $p \in P$ and $g \in S^*$. The converse is immediate.

THEOREM 2 (Coefficient estimate). If $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ is an α -close-to-star function, then

$$a_n \le n^2/(\alpha n + 1 - \alpha)$$
 for $\alpha \ge 0$

This result is sharp for $\alpha \geq 0$.

Proof. Since $f \in CS(\alpha)$ there exists a starlike function $g(z) = z + \sum_{n=2}^{\infty} g_n z^n$ and an analytic function $p(z) = 1 + \sum_{n=1}^{\infty} p_n z^n$ with $\operatorname{Re} p(z) > 0$ in E such that

$$\alpha z f'(z) + (1 - \alpha)f(z) = p(z)g(z);$$

or

$$z + \sum_{n=2}^{\infty} (\alpha n + 1 - \alpha) a_n z^n$$

$$= (1 + p_1 z + \dots + p_n z^n + \dots) (z + g_2 z^2 + \dots + g_n z^n + \dots)$$

$$= z + (p_1 + g_2) z^2 + \dots + (p_{n-1} p_{n-2} g_2 + \dots + g_{n-1} p_1 + g_n) z^n.$$

Now by comparing the coefficients on both sides we get

$$(\alpha n + 1 - \alpha)a_n = p_{n-1} + p_{n-2}g_2 + \cdots + g_{n-1}p_1 + g_n.$$

Using the fact that $|g_n| \le n$, $\forall n \ge 2$, and $|p_n| \le 2$, $\forall n \ge 1$, we get

$$(\alpha n + 1 - \alpha)|a_n| \le 2(1 + 2 + \dots + n - 1) + n = n^2.$$

Thus $|a_n| \leq n^2/(\alpha n + 1 - \alpha)$.

The bounds are attained by the function

$$f(z) = \frac{1}{\alpha z^{1/\alpha - 1}} \int_0^z \frac{t^{1/\alpha - 1}(1 + t)}{(1 - t)^3} dt, \quad \text{for } \alpha > 0.$$

For $\alpha = 0$ the extremal function is the Robertson function starlike in one direction.

Remark. We get the sharp inequality $|a_n| \leq n$ for the Kaplan's class C (proved in [4]), as a special case of our theorem with $\alpha = 1$. Similarly when $\alpha = 0$ we get the sharp inequality $|a_n| \leq n^2$ for the class CS^* proved in [4] as a particular case of our theorem.

THEOREM 3. Let $f \in CS_{\alpha}$. Then $f \in CS^*$ for $0 \le \alpha \le 1$.

Proof. Let
$$q(z) = zf'(z)/f(z)$$
. Then
$$z(zf'(z))' = zg'(z)f(z) + zg(z)f'(z).$$

Now

$$\frac{\alpha z(zf'(z))'+(1-\alpha)zf'(z)}{\alpha zf'(z)+(1-\alpha)f(z)}=\frac{zq'(z)}{q(z)+(1/\alpha)-1}+q(z).$$

Since $f \in CS_{\alpha}$ we have for $0 \le \theta_1 < \theta_2 \le \theta_1 + 2\pi$, $z = re^{i\theta}$, $r \in (0,1)$

$$\int_{\theta_1}^{\theta_2} \operatorname{Re} \left\{ \frac{\alpha z (z f'(z))' + (1 - \alpha) z f'(z)}{\alpha z f'(z) + (1 - \alpha) f(z)} \right\} d\theta > -\pi$$

or

$$\int_{\theta_1}^{\theta_2} \operatorname{Re} \left\{ \frac{z q'(z)}{q(z) + (1/\alpha) - 1} + q(z) \right\} d\theta > -\pi.$$

An application of Lemma 1 gives

$$\int_{\theta_1}^{\theta_2} \operatorname{Re} q(z) d\theta > -\pi \quad \text{for } 0 \le \theta_1 < \theta_2 \le \theta_1 + 2\pi, \ z = re^{i\theta},$$
$$r \in (0, 1), \text{ and } 0 \le \alpha \le 1.$$

Thus for $0 \le \alpha \le 1$, $f \in CS^*$.

THEOREM 4. Let f be an α -close-to-star function. Then F defined by

$$F(z) = \frac{1}{\alpha z^{1/\alpha - 1}} \int_0^z t^{1/\alpha - 2} f(t) dt$$

is also an α -close-to-star function for $0 < \alpha \le 1$.

Proof. It is clear that F is holomorphic in E with F(0) = 0 = F'(0) - 1. Now differentiation of the above integral with respect to z gives

$$z^{1/\alpha-1}F'(z) + (1/\alpha - 1)z^{1/\alpha-2}F(z) = \alpha^{-1}z^{1/\alpha-2}f(z);$$

or

$$\alpha z F'(z) + (1-\alpha)F(z) = f(z)$$
 and $\alpha z (zF'(z))' + (1-\alpha)zF'(z) = zf'(z)$.

Thus

$$\frac{\alpha z(zF'(z))'+(1-\alpha)zF'(z)}{\alpha zF'(z)+(1-\alpha)F'(z)}=\frac{zf'(z)}{f(z)}.$$

Now

$$\int_{\theta_1}^{\theta_2} \operatorname{Re} \left\{ \frac{\alpha z (z F'(z))' + (1 - \alpha) z F'(z)}{\alpha z F'(z) + (1 - \alpha) F(z)} \right\} d\theta = \int_{\theta_1}^{\theta_2} \operatorname{Re} \left\{ \frac{z f'(z)}{f(z)} \right\} d\theta$$
with $0 < \theta_1 < \theta_2 < 2\pi + \theta_1, z = re^{i\theta}, r \in (0, 1).$

Since $f \in CS^*$ for $0 < \alpha \le 1$ (by the previous theorem) we have for $0 \le \theta_1 < \theta_2 \le \theta_1 + 2\pi$, $z = re^{i\theta}$, $r \in (0, 1)$

$$\int_{\theta_1}^{\theta_2} \operatorname{Re} \left\{ \frac{\alpha z (z F'(z))' + (1 - \alpha) z F'(z)}{\alpha z F'(z) + (1 - \alpha) F(z)} \right\} d\theta > -\pi,$$

or $F \in CS(\alpha)$ for $0 < \alpha \le 1$.

THEOREM 5. Let ϕ be a convex univalent function and $f \in CS(\alpha)$. Then $F = \phi * f \in CS(\alpha)$.

Proof. Let $f \in CS(\alpha)$. Then there is a $g \in S^*$ such that

Re
$$\frac{\alpha z f'(z) + (1-\alpha)f(z)}{g(z)} > 0$$
 in E .

Let ϕ be a convex univalent function and let further $F(z) = \phi * f$. Then

$$\alpha z F'(z) + (1-\alpha)F(z) = \alpha \phi(z) * z f'(z) + (1-\alpha)\phi(z) * f(z)$$

$$= \phi(z) * [\alpha z f'(z) + (1-\alpha)f(z)]$$

$$\operatorname{Re}\left\{\frac{\alpha z F'(z) + (1-\alpha)F(z)}{(\phi * g)(z)}\right\} = \operatorname{Re}\left\{\frac{\phi(z) * [\alpha z f'(z) + (1-\alpha)f(z)]}{(\phi * g)(z)}\right\}$$

$$= \operatorname{Re}\left\{\frac{\phi(z) * \frac{\alpha z f'(z) + (1-\alpha)f(z)}{g(z)}}{(\phi * g)(z)}\right\}.$$

It is well known that $G(z) = (\phi * g)(z)$ is in S^* whenever $g \in S^*$ and ϕ is convex univalent in E. Now since $f \in CS_{\alpha}$

$$\operatorname{Re}\left\{\frac{\alpha z f'(z) + (1-\alpha)f(z)}{g(z)}\right\} > 0 \quad \text{in } E.$$

Hence an application of Lemma 2 gives

$$\operatorname{Re}\left\{\frac{\alpha z F'(z) + (1-\alpha)F(z)}{G(z)}\right\} > 0,$$

where $G(z) = (\phi * g)(z) \in S^*$ which means $F \in CS(\alpha)$.

As a corollary we have: if $\alpha = 1$ then $f \in C$. Thus from the theorem above we get $\phi * f \in C$ whenever ϕ is a convex univalent function. This result had been conjectured and proved by Ruscheweyh and Sheil Small in [5].

Acknowledgement. This paper was prepared under the minor research project of the U.G.C.

REFERENCES

- [1] R. Bharati, On α-close-to-convex functions, Proc. Indian Acad. Sci. 88A (1979), 93-103.
- [2] D. Blezu and N. N. Pascu, Integral of univalent functions, Mathematica (Cluj) 23 (46) (1981), 5-8.
- [3] W. Kaplan, Close-to-convex Schlicht functions, Michigan Math. J. 1 (1952), 169-185.

India

- [4] M.O. Reade, On close-to-convex univalent functions, Michigan Math. J. 3 (1955-56), 59-62.
- [5] St. Rusheweyh and T. Sheil Small, Hadamard product of Schlicht functions and the Polya-Schoenberg conjecture, Comment. Math. Helvetici 48 (1973), 119-135.

Ramanujan Institute University of Madras Madras – 600 005 India Department of Mathematics Presidency College Madras - 600 005 (Received 08 04 1990)