BARWISE COMPLETENESS THEOREMS FOR LOGICS WITH INTEGRALS

Radosav S. Dorđević

Abstract. We prove the Barwise completeness theorem for the logic $L_{A\,f_1\,f_2}$ for both absolutely continuous and singular cases.

0. Let \mathcal{A} be a countable admissible set and $\omega \in \mathcal{A}$. The logics $L^a_{\mathcal{A} f_1 f_2}$ and $L^s_{\mathcal{A} f_1 f_2}$ are similar to the standard logic $L_{\mathcal{A} f}$ (see [3]). The only difference is that two types of integral operators $\int_1 \ldots dx$ and $\int_2 \ldots dx$ are allowed.

A biprobability model for L is a structure $\mathfrak{M}=(M,R_i^{\mathfrak{M}},c_j^{\mathfrak{M}},\mu_1,\mu_2)$ where μ_k is a countably additive probability measure on M such that each singleton is measurable, each $R_i^{\mathfrak{M}}$ is $\mu_k^{(n_i)}$ -measurable (k=1,2), and each $c_j^{\mathfrak{M}}\in M$. (The measure $\mu_k^{(n)}$ is the restriction of the completion of μ_k^n to the σ -algebra generated by the measurable rectangles and the diagonal sets $\{\mathbf{x}\in M^n: x_i=x_j\}$.)

We shall see the difference in semantics for logics $L^a_{A f_1 f_2}$ and $L^s_{A f_1 f_2}$ using the following types of models.

Definition 1. (a) A biprobability model for $L^a_{\mathcal{A}f_1f_2}$ logic is a biprobability structure \mathfrak{M} such that μ_1 is absolutely continuous with respect to μ_2 , i.e. $\mu_1 \ll \mu_2$. (b) A biprobability model for $L^s_{\mathcal{A}f_1f_2}$ logic is a biprobability structure \mathfrak{M} such that μ_1 is singular with respect to μ_2 .

A graded biprobability structure for L is a structure

$$\mathfrak{M} = (M, R_i^{\mathfrak{M}}, c_j^{\mathfrak{M}}, \mu_n^k)_{i \in I, j \in J, n \in \mathbb{N}, k=1,2}$$

such that:

- (a) each μ_n^k is a countable additive probability measure on M^n ;
- (b) each *n*-placed relation $R_i^{\mathfrak{M}}$ is μ_n^k -measurable and the identity relation is μ_n^k -measurable;
 - (c) $\mu_n^k \times \mu_m^k \subseteq \mu_{m+n}^k$.

- (d) each μ_n^k is preserved under permutation of $\{1, 2, ..., n\}$;
- (e) $(\mu_n^k : n \in \mathbb{N})$ has the Fubini property: If B is μ_{m+n}^k -measurable then
 - (1) For each $x \in M^m$, the section $B_x = \{y : B(x, y)\}$ is μ_n^k -measurable.
 - (2) The function $f(\mathbf{x}) = \mu_n^k(B_{\mathbf{x}})$ is μ_m^k -measurable.
 - $(3) \int f(\mathbf{x}) d\mu_m^k = \mu_{m+n}^k(B).$

Let us introduce two sorts of auxiliary models.

Definition 2. (a) A graded biprobability structure for $L^a_{\mathcal{A}_{f_1,f_2}}$ logic is a graded biprobability structure \mathfrak{M} such that $\mu^1_n \ll \mu^2_n$ for each $n \in \mathbb{N}$. (b) A graded biprobability structure for $L^s_{\mathcal{A}_{f_1,f_2}}$ logic is a graded biprobability structure \mathfrak{M} such that $\mu^1_n \perp \mu^2_n$ for each $n \in \mathbb{N}$.

We shall prove the Barwise completeness theorem for logics $L^a_{\mathcal{A}\,f_1\,f_2}$ and $L^s_{\mathcal{A}\,f_1\,f_2}$, that means that the set of all sentences ψ of $L_{\mathcal{A}\,f_1\,f_2}$ which are valid in all biprobability models is Σ_1 over \mathcal{A} .

1. In order to prove the main result for the absolutely continuous case, let us introduce one more logic $L^a_{\mathcal{A}_{f_1}f_2X}$, as in [5]. Biprobability models for the logic $L^a_{\mathcal{A}_{f_1}f_2X}$ are of the form

$$\mathfrak{M} = \left(M, R_i^{\mathfrak{M}}, c_j^{\mathfrak{M}}, [X \geq r]^{\mathfrak{M}}, [X \leq r]^{\mathfrak{M}}, \mu_k\right)_{i \in I, j \in J, r \in \mathbf{Q}, k = 1, 2}$$

(a countable number of new unary relation symbols $[X \ge r]$, $[X \le r]$, for $r \in \mathbb{Q}$, are added to the language of $L^a_{\mathcal{A}_{f_1}f_2}$), where $X^{\mathfrak{M}}: M \to \mathbb{R}_+$ is the Radon-Nikodym derivative of μ_1 with respect to μ_2 .

The axioms and rules of inference for the logic $L^a_{\mathcal{A}_{f_1}f_2X}$ are those of $L_{\mathcal{A}_f}$ as listed in [3], — remark that both integral operators f_1 and f_2 can play the role of f, together with the following axioms:

Axioms of continuity:

A₁
$$\bigwedge_{n} \bigvee_{\mathbf{w}} \bigvee_{\mathbf{k}} \int_{\mathbf{i}} G_{\mathbf{k}} \left(\int_{\mathbf{j}} \tau(\mathbf{x}, \mathbf{y}) \, d\mathbf{x} \right) d\mathbf{y} < \frac{1}{n}, \quad (i, j = 1, 2)$$

where $d\mathbf{x} = dx_1 \dots dx_p$ and

$$G_k(s) = \begin{cases} 1 & \text{if } r - 1/m + 1/k \le s \le r - 2/k \\ 0 & \text{if } s \le r - 1/m \text{ or } s \ge r - 1/k \\ \text{linear for } r - 1/m \le s \le r - 1/m + 1/k \text{ or } r - 2/k \le s \le r - 1/k. \end{cases}$$

A₂
$$\bigwedge_{n} \bigvee_{m} \bigvee_{k} \int_{i} H_{k} \left(\int_{j} \tau(\mathbf{x}, \mathbf{y}) d\mathbf{x} \right) d\mathbf{y} < \frac{1}{n}, \quad (i, j = 1, 2)$$

where

$$H_k(s) = \begin{cases} 1 & \text{if } r + 2/k \le s \le r + 1/m - 1/k \\ 0 & \text{if } s \le r + 1/k \text{ or } s \ge r + 1/m \\ \text{linear for } r + 1/k \le s \le r + 2/k \text{ or } r + 1/m - 1/k \le s \le r + 1/m. \end{cases}$$

Axioms of random variable (i = 1, 2):

$$A_3 \qquad \bigvee_k \int_i J_k(\mathbf{1}[X < r](x), \mathbf{1}[X \ge s](x)) \, dx \ge 1 \qquad (r \ge s)$$

where

$$J_k(s,t) = \begin{cases} 1 & \text{if } s \ge 2/k \text{ or } t \ge 2/k \\ 0 & \text{if } s \le 1/k \text{ and } t \le 1/k \\ \text{linear for other cases.} \end{cases}$$

$$A_4 \qquad \bigvee_{p} \bigvee_{k} \int_{i} J_k \left(\mathbf{1}[X \le r](x), \sum_{n=1}^{p} \mathbf{1}[X \ge r + 1/n](x) \right) dx \ge 1.$$

$$A_5 \qquad \bigvee_{p} \bigvee_{k} \int_{i} J_k \left(\sum_{n=1}^{p} \mathbf{1}[X < r - 1/n](x), \mathbf{1}[X \ge r](x) \right) dx \ge 1$$

$$A_6 \qquad \bigvee_{p} \bigvee_{k} \int_{i} L_k \left(\sum_{n=1}^{p} \mathbf{1}[X \ge -n](x), \sum_{n=1}^{p} \mathbf{1}[X \le n](x) \right) dx \ge 1$$

where

$$L_k(s,t) = \begin{cases} 1 & \text{if } s \ge 2/k \text{ and } t \ge 2/k \\ 0 & \text{if } s \le 1/k \text{ or } t \le 1/k \\ \text{linear for other cases.} \end{cases}$$

Radon-Nikodym axioms $(n \in \mathbb{N}; s_0, \ldots, s_n \in \mathbb{Q})$:

$$A_{7} \qquad \left(\bigwedge_{0 \leq i \leq n-1} \int_{2} \tau(x) \cdot \mathbf{1}[X < s_{i+1}](x) \cdot \mathbf{1}[X \geq s_{i}](x) \, dx \geq r_{i} \right)$$

$$\Rightarrow \left(\int_{1} \tau(x) \, dx \geq \sum_{i=0}^{n-1} r_{i} s_{i} \right), \qquad (s_{0} \leq s_{1} \leq \ldots \leq s_{n}).$$

$$A_{8} \qquad \left(\bigwedge_{0 \leq i \leq n-1} \int_{2} \tau(x) \cdot \mathbf{1}[X < s_{i+1}](x) \cdot \mathbf{1}[X \geq s_{i}](x) \, dx \leq r_{i} \right)$$

$$\Rightarrow \left(\int_{1} \tau(x) \cdot \mathbf{1}[X \leq m](x) \, dx \leq \sum_{i=0}^{n-1} r_{i} s_{i+1} \right),$$

$$(s_{0} \leq s_{1} \leq \ldots \leq s_{n} = m, \ m \in \mathbb{N}).$$

We shall first prove the completenses theorem for the logic $L^a_{\mathcal{A}_{f_1}f_2X}$. The soundness theorem holds because all the axioms represent known properties of random variables and the Radon-Nikodym derivative. The method of proof is similar to the completeness proof of Hoover [2]. It uses Loeb's construction in [4] which corresponds to the Daniell integral. We first state a simple case of Loeb's result as a lemma.

LEMMA (Loeb [3]). In an ω_1 -saturated nonstandard universe, let L be an internal vector lattice of functions from an internal set M into *R (the set of hyper real numbers), and let I be an internal positive linear functional on L, such that $1 \in L$ and I(1) = 1. Then there is a complete probability measure μ on M such that for each finitely bounded $\phi \in L$, the standard part of ϕ is integrable with respect to μ and its integral is equal to the standard part of $I(\phi)$.

THEOREM 1 (Completeness theorem for $L^a_{A_{f_1}f_2X}$). Every sentence which is consistent in $L^a_{A_{f_1}f_2X}$ has a biprobability model.

Proof. Let ψ be a sentence which is consistent in $L^a_{\mathcal{A}f_1f_2X}$. Our plan is to use a Henkin construction to build a weak model of ψ , i.e. a structure $\mathfrak{M}=(M,R_1^{\mathfrak{M}},[X\geq r]^{\mathfrak{M}},[X\leq r]^{\mathfrak{M}},c_j^{\mathfrak{M}},I_k)_{i\in I,j\in J,r\in Q,\,k=1,2}$ where I_k is a positive linear real function on the set of terms of $L^a_{\mathcal{A}f_1f_2X}$ with at most one free varible and parameters from M. Let C be a countable set of new constant symbols. We use the Henkin construction to obtain a maximal consistent set Φ of sentences of $K^a_{\mathcal{A}f_1f_2X}$, where $K=L\cup C$, such that:

- (1) $\psi \in \Phi$
- (2) if $(\int_k \tau(x) dx > 0) \in \Phi$, then $(\tau(c) > 0) \in \Phi$ for some $c \in C$.

The witness properties (1) and (2) are obtained using the rule of generalization. Since Φ is complete and contains all the axioms of $K^a_{\mathcal{A}_{f_1,f_2,X}}$ the Henkin theory Φ induces a weak structure \mathfrak{M} with universe M=C, such that every sentence in Φ holds in \mathfrak{M} .

The next step is the construction of the graded biprobability model. This structure is formed in the non-standard universe. Using Lemma we obtain probability measures μ_1 and μ_2 on *M such that for each *-term $\tau(x)$, the standard part ${}^*I_k(\tau)$ is the integral $\int_0^0 \tau(b)^{\mathfrak{M}} d\mu_k(b)$. Define measures μ_n^k using iterated integrals. This graded biprobability model $\widehat{\mathfrak{M}} = ({}^*M, {}^*R_i, {}^*[X \geq r], {}^*[X \leq r], {}^*c_j, \mu_n^k)$ can be used to produce a biprobability model (\mathcal{N}, ν_k) of ψ (see [3]).

Let $X^{\mathcal{N}}(a) = \sup\{r \mid [X \leq r]^{\mathcal{N}}(a)\}, a \in \mathbb{N}$. Radon-Nikodym axioms guarantee that $\nu_1(B) = \int_B X^{\mathcal{N}} d\nu_2$, holds for any measurable set B, i.e. $\nu_1 \ll \nu_2$.

A biprobability model \mathfrak{M} for $L^a_{\mathcal{A}_{f_1,f_2}}$ can be expanded to a model of $L^a_{\mathcal{A}_{f_1,f_2}X}$ simply by taking $X^{\mathfrak{M}} = d\mu_1/d\mu_2$ and defining $[X \leq r]^{\mathfrak{M}}(a)$ if $X^{\mathfrak{M}}(a) \leq r$. The set of all valid $L^a_{\mathcal{A}_{f_1,f_2}X}$ sentences is Σ_1 definable, for example by the formula $\exists P (P \text{ is a proof of } \psi)$.

As a consequence of the preceding, we obtain our main result.

THEOREM 2 (Barwise Completeness Theorem for $L^a_{A f_1 f_2}$). The set of all valid sentences of the logic $L^a_{A f_1 f_2}$ is Σ_1 definable over A.

2. In order to prove the Barwise completeness theorem for singular case, let us introduce one more logic $L^s_{A_{f_1 f_2} R}$. That means that one more unary relation symbol R is added to the language of $L^s_{A_{f_1 f_2}}$.

Axioms and rules of inference for the logic $L_{A f_1 f_2 R}^s$ are those of $L_{A f}$ together with the following axiom:

$$\int_{1} \mathbf{1}(R(x)) dx = 0 \wedge \int_{2} \mathbf{1}(R(x)) dx = 1.$$

The completeness theorem for $L_{A f_1 f_2 R}^s$ is easy to prove. The proof makes use of the Loeb-Hoover-Keisler construction as in the absolutely continuous case. The only remark is that for the set $B = \{a \in \mathbb{N} \mid R^{\mathcal{N}}(a)\}$ we obtain $\nu_1(B) = 0$ and $\nu_2(B) = 1$, i.e. $\nu_1 \perp \nu_2$.

A biprobability model \mathfrak{M} can be expanded to a model of $L^{\mathfrak{s}}_{A_{f_1}f_2R}$ simply by taking $R^{\mathfrak{M}}(a)$ iff $a \in B$, where B is the set given by the condition $\mu_1 \perp \mu_2$. As a consequence of the preceding, we obtain the Barwise completeness theorem for $L^{\mathfrak{s}}_{A_{f_1}f_2}$.

THEOREM 3. The set of all valid sentences of the logic $L^s_{\mathcal{A}_{f_1,f_2}}$ is Σ_1 -definable over \mathcal{A} .

REFERENCES

- [1] J. Barwise, Admissible Sets and Structures, Springer-Verlag, Berlin, 1975.
- [2] D. Hoover, Probability logic, Ann. Math. Logic 14 (1978), 287-313.
- [3] H. J. Keisler, Probability quantifiers, chapter 14 in Model Theoretic Languages (J. Barwise and S. Feferman editors), Springer-Verlag, Berlin, 1985.
- [4] P.A. Loeb, A functional approach to nonstandard measure theory, Contemporary Math. 26 (1984), 251-261.
- [5] M. D. Rašković, R. Živaljević, Barwise completeness theorem for some biprobability logics, Zeitschr. Math. Logik Grundlagen Math. 32 (1986), 133-135.

Prirodno-matematički fakultet 34000 Kragujevac Jugoslavija

(Received 18 05 1990)