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TWO PROPOSITIONS ON SLOWLY VARYING FUNCTIONS

Dusan D. Adamovié

Abstract. The paper contains two statements which both assert that, under certain
conditions, the function f(z) = F(Ri(z),... ,Rm(z)), where F : (R*)™ — R*, Ry : Rt — R,
k=1,...,m, is slowly varying.

1. Our first theme is the following:

ProposiTioN 1. Let Ly (k = 1,...,m) be slowly varying functions and let the
real function F be defined and continuous on the adherence (closure) D in (R™)™
of the set E = Li(RY) x --- x L, (RY) and with the properties

m= inf F(tl,...,tm)>0, M= sup F(tl,...,tm)<+00.
(t1,- tm)EE (t1,- tm)EE

Then the function
fl&)y = F(Li(z), ... , Lm(2)) {(z>0)

1s slowly varying.

Here R* denotes the extended system (space) of real numbers, R* = (0, +00)
and the continuity on D means especially that, if (a1,...,a,) € D and 400 €
{e1,...,am}, then

I F(ty,... ,tym) = Flag, ...,
E3(t,,... ytml)r—r’l(ahm ,am) ( ! m) (Ql am)

exists.

Proof. Under the conditions of the proposition, the function f is obviously
defined and positive for z > 0, and also measurable on R7% if the measurability
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on R of the functions Li (k= 1,...,m) is clamed (by the accepted definition of
slowly varying function). Moreover,

0<m< flz) <M< 40 (z > 0). (1)

Suppose that f is not slowly varying. This function cannot be regularly
varying, because that would imply limy— 4o f(2) = 400 or limz— 400 f(z) = 0,
contradicting (1). Besides, (1) implies that for no A € (0, +o0)

f02) _ i 102) _
el (IR S

n possible.
Hence, there exists A > 0 such that f(Azx)/f(z) oscillates as £ — +o0, and
consequently, for the same A, there exist numbers A and B such that
0<A<B< 4+ (2)

and the sequences (z,) and (y,) of positive numbers, tending +oo, for which

. f(/\zn) . f(Ayn)

him = A, lim ——=* = B. 3
A TG % 7o) ©
But then there exist the elements a, 8 € D, the subsequence (&) of (z,) and the
subsequence (,) of (yn) such that

lim Lk(in):ak, lim Lk(ﬂn):ﬂk (k:l,... ,m),

n—oo

where @ = (a1,...,am), 8 = (F1,...,8m). By the definition of slowly varying
function, we have

nli.ngoLk(/\i") = ag, nlLrg)oLk(Ag,,) = Gk (k=1,...,m),
and further

lim f(Az,) — lim F(Li(AZy), ..., Ln(AZ,)) _ F(ay,...,am) _ 1
n—oo f(Z,) n—oo F(Li(Zg),...,Lm(Zs)) F(ay,...,am) ’

similarly,

 fO) _ F(Bu,... . m)
1 = =
w2 TG S FBy By

and two last conclusions contradict (2) and (3). This proves our statement.

We can remark that simple examples show that none of the conditions con-
cerning the function F' can be omitted. For example, if m = 1, L1(z) = In(z + 1),
F(z) = 2 + sinz, then the function F is not continuous on D = [0,+0c0] in the
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previous sense, and the function f(z) = 2 + sinln(z + 1) is not slowly varying. On
the other hand, for m = 1, Li(2) = In(z + 1) and F(z) = €, F is continuous on
D (F can be considered as a function whose values belong to R*), but (1) is not
satisfied; in this case f(z) = ¢ + 1 is not a slowly varying function.

2. Besides the previous proposition, one can give the following one, in some
sense similar, but really incomparable to it.

PropPosITION 2. Let Ri(z) (k = 1,...,m) be regularly varying functions
tending to infinity with x, and let the function F : (R+)’" — R* be continuous
and slowly varying, in Karamata-BajSanski sense [1]. Then the function f(z) =
F(Ry(z),...,Rm(z)) (z > 0) is slowly varying.

Proof. First, recall that, by the definition given by Karamata and Bajsanski
in [1], the function F : (R*)™ — R™ is slowly varying if

. F(/\l.’L'l,... ,)\ml‘m)
lim
min{x;,...,zm}—>+o? F(Z‘l,... ,Z’m)

=1 foreach A= (A1,..., ) €(RT)™

and that the theorem on uniform convergence in [1] implies that, for such a function
and for 0 < ap < By < +oo (k=1,...,m),

F(/\lxl, . ,/\m:lfm)

=1
min{zi,... . &m}—+00 F(Z‘l,... ,.’L'm)

uniformly for A = (Ay,...,An) € H[ak,ﬁk]
k=1

Under the hypotheses of the proposition, the function f(z) is defined and
measurable on R¥.

Let A > 0 be arbitrarly chosen. By hypothesis,
Ri(z) = 2®* Le(z), withpr >0 (k=1,...,m),

where Ly (z) {k =1, ... ,m) are slowly varying functions. Then, for z large enough,
we have

1/2 < Le(Az)/Li(z) < 2 (k=1,...,m),

and hence, on account of what we have supposed on Ry and by the just mentioned
uniform convergence property of F',

lim f(/\:c): lim F(fa(dz), ..., Bn(A2))
z—too f(z) o=t F(Ri(z),..., Rm(z))

Rida) oo Rm(2) o
F(Rl(z) R, 20D g ))
Fon(®))

= i
50 F(Ri(z), ..
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1M . T MM : z
= lim F<'\P Ly(z) (), . ¥ Lm(z) i )> =1
g—r4oo F(Ry(z), ..., Rm(z)) ‘

So the function f(z) is slowly varying.

Finally, we note that special cases of Propositions 1 and 2 were given in (2,
Theorem II, 1°, 2°, 3°]).

-
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