## TWO PROPOSITIONS ON SLOWLY VARYING FUNCTIONS

## Dušan D. Adamović

**Abstract.** The paper contains two statements which both assert that, under certain conditions, the function  $f(x) = F(R_1(x), \ldots, R_m(x))$ , where  $F: (\mathbf{R}^+)^m \to \mathbf{R}^+$ ,  $R_k : \mathbf{R}^+ \to \mathbf{R}^+$ ,  $k = 1, \ldots, m$ , is slowly varying.

## 1. Our first theme is the following:

PROPOSITION 1. Let  $L_k$  (k = 1, ..., m) be slowly varying functions and let the real function F be defined and continuous on the adherence (closure) D in  $(\mathbf{R}^*)^m$  of the set  $E = L_1(\mathbf{R}^+) \times \cdots \times L_m(\mathbf{R}^+)$  and with the properties

$$m = \inf_{(t_1,\dots,t_m)\in E} F(t_1,\dots,t_m) > 0, \qquad M = \sup_{(t_1,\dots,t_m)\in E} F(t_1,\dots,t_m) < +\infty.$$

Then the function

$$f(x) = F(L_1(x), \ldots, L_m(x)) \qquad (x > 0)$$

is slowly varying.

Here  $\mathbf{R}^*$  denotes the extended system (space) of real numbers,  $\mathbf{R}^+ = (0, +\infty)$  and the continuity on D means especially that, if  $(\alpha_1, \ldots, \alpha_n) \in D$  and  $+\infty \in \{\alpha_1, \ldots, \alpha_m\}$ , then

$$\lim_{E\ni(t_1,\ldots,t_m)\to(\alpha_1,\ldots,\alpha_m)}F(t_1,\ldots,t_m)=F(\alpha_1,\ldots,\alpha_m)$$

exists.

**Proof.** Under the conditions of the proposition, the function f is obviously defined and positive for x > 0, and also measurable on  $\mathbb{R}^+$  if the measurability

42 Adamović

on  $\mathbb{R}^+$  of the functions  $L_k$   $(k=1,\ldots,m)$  is clamed (by the accepted definition of slowly varying function). Moreover,

$$0 < m \le f(x) \le M < +\infty \qquad (x > 0). \tag{1}$$

Suppose that f is not slowly varying. This function cannot be regularly varying, because that would imply  $\lim_{x\to+\infty} f(x) = +\infty$  or  $\lim_{x\to+\infty} f(x) = 0$ , contradicting (1). Besides, (1) implies that for no  $\lambda \in (0, +\infty)$ 

$$\lim_{x \to +\infty} \frac{f(\lambda x)}{f(x)} = +\infty \lor \lim_{x \to +\infty} \frac{f(\lambda x)}{f(x)} = 0$$

in possible.

Hence, there exists  $\lambda > 0$  such that  $f(\lambda x)/f(x)$  oscillates as  $x \to +\infty$ , and consequently, for the same  $\lambda$ , there exist numbers A and B such that

$$0 < A < B < +\infty \tag{2}$$

and the sequences  $(x_n)$  and  $(y_n)$  of positive numbers, tending  $+\infty$ , for which

$$\lim_{n \to \infty} \frac{f(\lambda x_n)}{f(x_n)} = A, \qquad \lim_{n \to \infty} \frac{f(\lambda y_n)}{f(y_n)} = B. \tag{3}$$

But then there exist the elements  $\alpha, \beta \in D$ , the subsequence  $(\bar{x}_n)$  of  $(x_n)$  and the subsequence  $(\bar{y}_n)$  of  $(y_n)$  such that

$$\lim_{n\to\infty} L_k(\bar{x}_n) = \alpha_k, \quad \lim_{n\to\infty} L_k(\bar{y}_n) = \beta_k \qquad (k=1,\ldots,m),$$

where  $\alpha = (\alpha_1, \ldots, \alpha_m)$ ,  $\beta = (\beta_1, \ldots, \beta_m)$ . By the definition of slowly varying function, we have

$$\lim_{n\to\infty} L_k(\lambda \bar{x}_n) = \alpha_k, \quad \lim_{n\to\infty} L_k(\lambda \bar{y}_n) = \beta_k \qquad (k=1,\ldots,m),$$

and further

$$\lim_{n\to\infty}\frac{f(\lambda\bar{x}_n)}{f(\bar{x}_n)}=\lim_{n\to\infty}\frac{F(L_1(\lambda\bar{x}_n),\ldots,L_m(\lambda\bar{x}_n))}{F(L_1(\bar{x}_n),\ldots,L_m(\bar{x}_n))}=\frac{F(\alpha_1,\ldots,\alpha_m)}{F(\alpha_1,\ldots,\alpha_m)}=1;$$

similarly,

$$\lim_{n\to\infty}\frac{f(\lambda \tilde{y}_n)}{f(\tilde{y}_n)}=\frac{F(\beta_1,\ldots,\beta_m)}{F(\beta_1,\ldots,\beta_m)}=1,$$

and two last conclusions contradict (2) and (3). This proves our statement.

We can remark that simple examples show that none of the conditions concerning the function F can be omitted. For example, if m = 1,  $L_1(x) = \ln(x+1)$ ,  $F(x) = 2 + \sin x$ , then the function F is not continuous on  $D = [0, +\infty]$  in the

previous sense, and the function  $f(x) = 2 + \sin \ln(x+1)$  is not slowly varying. On the other hand, for m = 1,  $L_1(x) = \ln(x+1)$  and  $F(x) = e^x$ , F is continuous on D (F can be considered as a function whose values belong to  $\mathbb{R}^*$ ), but (1) is not satisfied; in this case f(x) = x+1 is not a slowly varying function.

2. Besides the previous proposition, one can give the following one, in some sense similar, but really incomparable to it.

PROPOSITION 2. Let  $R_k(x)$  (k = 1, ..., m) be regularly varying functions tending to infinity with x, and let the function  $F: (\mathbf{R}^+)^m \to \mathbf{R}^+$  be continuous and slowly varying, in Karamata-Bajšanski sense [1]. Then the function  $f(x) = F(R_1(x), ..., R_m(x))$  (x > 0) is slowly varying.

*Proof.* First, recall that, by the definition given by Karamata and Bajšanski in [1], the function  $F: (\mathbf{R}^+)^m \to \mathbf{R}^+$  is slowly varying if

$$\lim_{\min\{x_1,\ldots,x_m\}\to+\infty} \frac{F(\lambda_1x_1,\ldots,\lambda_mx_m)}{F(x_1,\ldots,x_m)} = 1 \text{ for each } \lambda = (\lambda_1,\ldots,\lambda_m) \in (\mathbf{R}^+)^m$$

and that the theorem on uniform convergence in [1] implies that, for such a function and for  $0 < \alpha_k < \beta_k < +\infty$  (k = 1, ..., m),

$$\lim_{\min\{x_1,\dots,x_m\}\to+\infty} \frac{F(\lambda_1 x_1,\dots,\lambda_m x_m)}{F(x_1,\dots,x_m)} = 1$$
 uniformly for  $\lambda = (\lambda_1,\dots,\lambda_m) \in \prod_{k=1}^m [\alpha_k,\beta_k]$ 

Under the hypotheses of the proposition, the function f(x) is defined and measurable on  $\mathbb{R}^+$ .

Let  $\lambda > 0$  be arbitrarly chosen. By hypothesis,

$$R_k(x) = x^{\rho_k} L_k(x)$$
, with  $\rho_k \ge 0$   $(k = 1, \dots, m)$ ,

where  $L_k(x)$  (k = 1, ..., m) are slowly varying functions. Then, for x large enough, we have

$$1/2 \le L_k(\lambda x)/L_k(x) \le 2 \qquad (k = 1, \dots, m),$$

and hence, on account of what we have supposed on  $R_k$  and by the just mentioned uniform convergence property of F,

$$\lim_{x \to +\infty} \frac{f(\lambda x)}{f(x)} = \lim_{x \to +\infty} \frac{F(R_1(\lambda x), \dots, R_m(\lambda x))}{F(R_1(x), \dots, R_m(x))}$$

$$= \lim_{x \to +\infty} \frac{F\left(\frac{R_1(\lambda x)}{R_1(x)} \cdot R_1(x), \dots, \frac{R_m(\lambda x)}{R_m(x)} \cdot R_m(x)\right)}{F(R_1(x), \dots, R_m(x))}$$

44 Adamović

$$= \lim_{x \to +\infty} \frac{F\left(\lambda^{p_1} \frac{L_1(\lambda x)}{L_1(x)} \cdot R_1(x), \dots, \lambda^{p_m} \frac{L_m(\lambda x)}{L_m(x)} \cdot R_m(x)\right)}{F(R_1(x), \dots, R_m(x))} = 1.$$

So the function f(x) is slowly varying.

Finally, we note that special cases of Propositions 1 and 2 were given in [2, Theorem II, 1°, 2°, 3°]).

## REFERENCES

- B. Bajšanski, J. Karamata, Regularly varying functions and the principle of equicontinuity, Publ. Ramanujan Inst, 1 (1968-1969), 235-242.
- [2] D. Adamović, Sur quelques propriétes des fonctions à croissance lente de Karamata, I, II, Mat. Vesnik 3 (1966), 123-136, 161-172.

Matematički fakultet Studentski trg 16 11000 Beograd, Yugoslavia (Received 10 10 1989)