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SOLVABILITY OF OPERATOR EQUATIONS
AND PERIODIC SOLUTIONS
OF SEMILINEAR HYPERBOLIC EQUATIONS

P. S. Milojevié

Abstract. Let A be a closed densely defined linear map in a Banach space with infinite
dimensional null space and N be a nonlinear map such that A — N is pseudo A-proper. We
present a solvability theory for the equation Az — Nz = f using only the Brouwer degree theory
and the finite dimensional Morse theory. Applications to the problem of existence of weak periodic
solutions of (systems of) hyperbolic equations in one and several space variables are given. Both
nonresonance as well as resonance problems are considered.

1. Introduction

Let H be a separable real Hilbert space, X be a Banach space density and
continuously embedded in H, A : D(A) C H — H be a densely defined closed
linear map and N be a nonlinear map from D(A) N X into H. We are interested
in studying operator equations of the form

(1.1) Az —Nz=f

where f € H is given.

Equations of this form appear in a variety of situations, and in particular
in the theory of ordinary and partial differential equations. For example, they
can describe nonlinear elliptic boundary value problems, or problems concerning
periodic solutions of semilinear hyperbolic equations, or Hamiltonian systems of
ordinary differential equations, etc.

Eq. (1.1) has been studied extensively by various topological as well as vari-
ational methods. When A is a Fredholm map of nonnegative index, depending
on the nature of a nonlinearity, various degree theories (e.g., for the compact or
condensing perturbations of the identity, coincidence degree, etc.) have been used
in conjunction with the Liapunov-Schmidt technique (cf. the references). When
the null space of A is infinite dimensional, Eq. (1.1) is much harder to study and
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the most often used topological approach is a combination of the Leray-Schauder
and coincidence degrees and the monotone operator theory (cf. Brezis-Nirenberg
[Br-Ni-1-2], Mawhin [Ma-1-3] and the references in there). Essential to this ap-
proach is the existence of a compact partial inverse A=l : R(A) — H of A, where
the range R(A) of A is closed. However, if A contains also nonzero eigenvalues of
infinity multiplicity, then A~! is not compact and this approach is not suitable.
This is the situation that occurs when studying the existence of periodic weak solu-
tions of semilinear wave equations in more than one space variables. We note that,
using the monotone operator theory and certain approximation procedure, Amann
[Am-2] was able to obtain rather general unique solvability results for Eq. (1.1)
without requiring the compactness of A™1.

In [Mi-4], we initiated a new approach for the study of Eq. (1.1) (with
dimker A = oo) based on a Galerkin type method. This approach requires that
A — N is pseudo A-proper w.r.t. a scheme I' = {H,, Hy, P,,’} for (X, H), i.e. that
the corresponding Galerkin procedure leads to a solution of (1.1). Here {H,} is a
sequence of finite dimensional subspaces of D(A)N X, whose union is dense in both
X and H, and P, : H — H, are the orthogonal projections. The only topological
tool the method requires is the Brouwer degree theory and, as shown in [Mi-4-8],
it is applicable to the situations studied by the above authors as well as to many
new ones when neither A~! is compact nor N is of monotone type. Moreover, in
studying the existence of nontrivial solutions, we also utilize the finite-dimensional
Morse theory.

In this paper we shall present a solvability theory for Eq. (1.1) using the
pseudo A-proper mapping approach and give applications to the problem of exis-
tence of periodic weak solutions of (systems of) hyperbolic equations in one and
more space variables. Both nonresonance as well as resonance cases are considered,
i.e. when the nonlinearity N stays away from the spectrum o(A) of A, or interacts
with it in some way.

Section II is devoted to the study of nonresonance problems for Eq. (1.1) with
nonlinearities N that are asymptotically close to linear maps or are asymptotically
{B1, B2}-quasilinear. We prove a number of solvability results for Eq. (1.1) for
each f as well as the existence of nontrivial solutions of Az + Nz =0 when A+ N
is of gradient type. Resonance problems for Eq. (1.1) are studied in Section IV,
using both direct and perturbation methods. The abstract theory is then used
in Sections ITT and V to study the existence of weak periodic solutions.of various
classes of semilinear hyperbolic equations without resonance as well as in resonance.

II. Semilinear equations without resonance

In this part we shall study nonresonance problems for Eq. (1.1) assuming
that A — N is a pseudo A-proper map. We begin by studying such problems
involving not necessarily monotone quasibounded nonlinear pertubations of both
selfadjoint and nonselfadjoint linear maps with possibly infinite dimensional null
space. We continue our study of Eq. (1.1) involving asymptotically {B;, B2}~
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quasilinear nonlinearities under the nonresonance conditions introduced by Amann
[Am-2]. Finally, the existence of nontrivial solutions is studied using Morse theory.

2.1 Semilinear Equations with Quasibounded Nonlinearities.. We
begin by defining precisely the class of (pseudo) A-proper maps. Let X and YV
be separable Banach spaces, {X,} and {Y,} be finite dimensional subspaces of X
and Y with dimX,, = dimY, and dist(z, X,) — 0 as n — oo for each z € X.
If Qn : Y — Y, are linear projections such that § = max||Qu|| < oo, then I’ =
{Xn,Yn,Qn} is a projection scheme for (X,Y).

Let DC X and T : D — Y. Recall [Pet]

Definition 21 A map T : D C X — Y is A-proper (resp., pseudo A-
proper) wrt. I'if @, T : DN X,, — Y, is continuous for each n and, whenever
{Zn,|2n, € DN X, } is bounded and Q,, Tz, — Qn, f — 0 as k — oo for some
f €Y, then some subsequence Tap, = F (resp., there is an € D) and Tz = f.

The pseudo A-properness of T'= A — N has been established under various
assumptions on A and N in {Mi-4-7] and more details with sorhe new examples
are given in [Mi-4,8]. Throughout the paper we shall assume that (X,]] - |lo) is a
Banach space continuously and densely embedded in a Hilbert space H.

Without the monotonicity assumption on N, we have

ProPOSITION 2.1 Let X be a reflexive Banach space compactly embedded in
a Hilbert space H, A: D(A) C H — H be a closed and densely defined linear map
and N : H — H be a nonlinear continuous map. Then A~N : D(AANX CX —-H
is pseudo A-proper w.r.t. T = {Hp, Hn, Pa} for (X, H) with P,Az = Az on H,.

Proof. Let {z,, € X,,} be bounded in X and yx = P, (A~ N)z,,, — f
in H. Then we may assume that z,, — z (weakly} in X, z;, — z in H, and
Nz,, — Nz. Hence, Az,, = yx + Py, Nz, — f + Nz. Since A is a closed map,
z€D(A)yand Az~ Nz=f. O

Let us first study Eq. (1.1) when there is no resonance at infinity. We have

THEOREM 2.1 (cf. [5,8]) Let A: D(A) C H — H be a linear selfadjoint map
and T'= {Hp, Hn, Pn} be a projection scheme for (X, H) with P,Az = Az on H,,.
Let N : X — H be a nonlinear map such that for some positive constanis a, b, ¢
and r and selfadjoint No, : H — H

(2.1) If(A-Ny)z =y fory€ H, then z € X and |jz|jo < ||¥|-
22 IN2 = Nooz|} < aljz]| +b for ||zllo = 7.
(2.3) 0<a<min{lp||p € (4 - Nx)}

Suppose that either one of the following conditions holds:

(2.4) A—-N:DAYNX CX — H is pseudo A-proper w.r.t. T,
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X is a reflexive space compactly embedded in H
and N is conlinuous in H

(2.5)

Then Eq. (1.1) is solvable for each f € H.

Proof . In view of Proposition 2.1, A~ N : D(A)NX C X — H is pseudo A-
proper w.r.t. T' if (2.5) holds. Therefore, it remains to prove the theorem assuming
(2.4).

Now, since A — Ny, is self-adjoint in H, we have that min{lu] | » €
0(A = Neo)} < JI(A = Noo) 7|71, Let f € H be fixed and H(t,z) = (4 — N )z —
t(N — Noo)z on [0, 1] x D(A) N X. Then there are ¥ > 0, R> r and n > ng such
that

(2.6) IPoH(t,z) = tPafl| >y for te[0,1], z € dBx(0,R), n > no.

If not, then there would exist ¢, € [0,1],t, — to, and z,, € Hp, such that
lznello — oo and P, H(tg,zn,) — tePn,f — 0 as k — oo. Then zx = yn, —
1t Pry (N = Noo (A~ Noo) ™ yn, =tk Pa, f — 0, where yn, = (A— Neo)2n,. By (2.1)
and (2.2) [lyn, || = llznillo/c — oo and

2.7 mull S SIN = Noo)(A = Noo) ™ 'yms [l + SILFIl + Hlzel
< 8all(A = Noo) ™ Hllynsll + 6(b + 11F1) + ll2x]]-

Dividing (2.7) by ||va.|| and taking the limit we get 1 < éal|[(A — Neo)™Y[| in
contradiction to (2.3). Hence, (2.6) holds and the Brouwer degree

deg(Pa(A — N, Bx (0, R) N Xy, Pof) = deg(Pa(A — Noo), Bx(0, R) N X,0) # 0

for each n > np. Hence, there exists an z, € Bx(0,R) N X,, such that
Po(A — N)z, = P,f for n > ng, and by the pseudo A-properness of 4 — N,
there is an # € D(A) such that Az — Nz = f. O

Remark 2.1 If there are real numbers a < § such that o(A4) N (a, B) consists
of at most a finite number of eigenvalues, and if Ay < Apy1 are some consecutive
eigenvalues in (o, ) and X = (Ag41 — Ax)/2, then (2.3) holds with N, = Al if
a =7 = (Aks1 — Ar)/2. Indeed, the spectral gap for A — AI induced by the gap
(A&, Ak41) is (—7,7) and therefore (A — AI)"! : H — H is a bounded selfadjoint
map whose spectrum lies in (—1/7,1/7). Hence, [[(4 = A7 || = 1/7.

Remark 2.2 If X = H and Ne = Al with A ¢ o(A), then (2.3) im-
plies (2.1) since min{|u|: |p € o(A = AD)} = ||(4 = AD)"!||"! and ||(A — AD)z|| >
[l(A=AI)y~Y{|=Yjz|| for all z € H. Moreover, if R(A) is the orthogonal complement
of ker A and X is compactly embedded in H, then it can be shown that (2.1) with
Noo = AT implies that dimker A is finite.

Regarding condition (2.1), we have the following result useful in applications.

LEMMA 2.1 Let A : D(A) C H — H be selfadjoint with the spectum o{A)
consisting only of eigenvalues {X; | ¢ € I} having no accumulation points and
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each )\; have a finite multiplicity j;. Suppose that the corresponding eigenvectors
{e‘, li € I,1 < j < ji} form a complete basis for X and H. Suppose that there
is a constant cg > 0 such that if Az = y for some y € ker A, then z € X and
llzllo < collyll- Then condition (2.1) holds.

Proof. For ¢ € D(A) we have

3;-223:,36,, and Am_Zr\ quew

i j=1 i

where z;; = (z,€;j). If A ¢ 0(A) and (A— M)z =y for y € H then

(A=A)z = Z(,\ -3 Zx,_,e,, = Z Zyv eij

i i=1

and therefore ‘
z=(A-Al)" Yij€ij -
( E (A _ /\) E:l ]

Since ker(A — AI) = {0}, there is a constant @ > 0 such that |A; — A] > « for all
i € I. If not, then a subsequence \;, — X in contradiction to the fact that {);}
has no accumulation points. Since z;; = y;; /(A — A), we have that

l2ij] < @™ Huij| and |z} < erlwll

for some ¢; > 0 independent of y. Moreover, z € X and ||zflo < colly + Az if
Az = y+ iz #0. Hy+ iz =0, then z = y/A € ker A and ||z]lo = [lyllo/A < cljyll/A
since dimker A < oo. Hence {|zjlo < e(M)jly]| with some ¢(X) > 0. O

If A is not selfadjoint, analyzing the proof of Theorem 2.1 we see that the
following more general version of it holds.

THEOREM 2.2 Let C : X — H be e linear map such that A-C : D(ANX — H
is a bijection and for some posilive constants a, b, ¢, 6 = max||P,|| end r with
acd < 1:

(2.8) (4~ C)yllo S cliyll for each y € H,
(2.9) [Nz —Cz|| < allzllo+b foreach |zllo>r.

Then the conclusions of Theorem 2.1 are valid.

2.2 Semilinear Equations with {B;, Bs}-quasilinear Perturbations.
We continue our study of Eq. (1.1) with the so-called asymptotically {B;, B2}-
quasilinear nonlinearities N. Such maps have been introduced by Perov [Per] and
Krasnoselskii-Zabreiko [Kr-Za] in their study of the existence of fixed points of
compact maps. Let By, B; : H — H be selfadjoint maps with B; < Bs, ie.
(Biz,z) < (Boz,z)forz € H.
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Definition 2.2 a) A nonlinear map K : H — H is {Bi, Bz}-quasilinear on a
set S C H if for each ¢ € S there exists a linear selfadjoint map B : H — H such
that By < B < By and Bz = Kz;

b) A map N : H — H is said to be asymptotically {B;, B2}-quasilinear if
there is a { B, B, }-quasilinear outside some ball map K such that

|N — K| =iimsupw

< 00
fzll—o0 =i}

We do not require that {B;, Bz} is a regular pair as in [Kr-Za, Per]. This class of
maps is rathf’:r large. For example, let K : H — H have a selfadjoint weak Gateaux
derivative N i.e. N (z) is a selfadjoint map on H for each z and

lim ™} (N(z +th) - N(2),3) = (N'(2)h, 1)

for all z,y,h € H. Assume that By < N '(;c) < By for each z and some selfadjoint
maps B; and B,. Then N is asymptotically { By, B2}-quasilinear with [N - K| = 0.
Indeed, for every z,y,z € H, the mean value theorem implies the existence of a
number ¢ € (0,1) such that

(N2~ Ny,2) = (N'(y + (e - )= - 1), 2) .
When y = 0, this gives
(Nz - N'(ta)z, z) = (N(0), z)

and therefore, if we set Kz = N'(tz)z, then
I[Nz — Kz|| = sup |(N(0),2)]| < [IN(O)]].
llzli<3

Hence, [N — K| = 0 and N is asymptotically { By, B2}-quasilinear. In the nondiffer-
entiable case, if Nz = B(z)z + Mz for some nonlinear map M with the quasinorm
[M| < oo and selfadjoint maps B(z) : H — H with By < B(z) < B3 for each
z € H, then N is asymptotically { B;, B;}-quasilinear.

We need the following preliminary result (cf. [Mi-8]).

Lemma 2.2 Let A : D(A) C H — H and B* € L(H) be selfadjoint with
B~ < Bt and H* be subspaces with H = H~ ® H* and such that for some v, > 0
and v, > 0

(2.10) ((A-B7)z,z) < —mlizl|® forell =€ H™ N D(A),
(2.11) ((A - B*)z,z) > |zl forall z€ H*nD(A).

Then there are € > 0 and ¢ > 0 such that for any selfadjoint maps By, B2, C € L(H)
with By < B~ and BY < B, and

(2.12) By —el<C<By+el
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we have that

(2.13) [lAz — Cz|| > cllz|| for z € D(A).

Proof. If (2.13) does not hold, then there would exist selfadjoint maps By,
By, and C, € L(H) and z,, € D(A) with [|z,]| = 1 such that By, < B™, Bt < By,
and

(2.14) Bin~I/n<Cp<Ba+I/n
and
Az — Caznl| < ||zall/n.
Set yn = A2y — Cry. Then, we have 2, = Z1n +Zon € H- & Ht and

(Az2n — Cuzan, 22n) — (AZin — CaZ1n, T1n) = (Yn, 20 — T1n)-
Since Bip < B~ and Bt < Bag, (2.14) and (2.12)~(2.13) imply that
(AZ1n — CnZ1n, 21n) < (AZ1n = BT 21n, 21n) + [J21nl?/n < (1/n — m)l|z1a]>.
Subtracting the first equation from the second one, we get

nlizwall® + v2llzanll® = (l21al® + lz24l%) /0
< (Azzn — Croy, x?n) - (Azln - Cp1n, -'L'ln)

= (Yn, Ton — T1n < ||Z2n — Z1nl}/n.

Hence, if ¥ = min{v1, 72}, by the parallelogram law we get

(v = 1/n) (lz2nll® + l|21n]1) < 2/n (l|z20ll? + [l21a]1%)
and therefore v < 1/n — 0 as n — oo, in contradiction to ¥ > 0. Hence, (2.13)
holds. O

Now we are ready to prove our basic solvability result for Eq. (1.1} involving
asymptotically {B;, B;}-quasilinear nonlinearities N without resonance at infinity.
It is based on the following continuation theorem.

THEOREM 2.3 [Mi-3] Let V be dense subspace of a Hilbert space H, D C H
be open and bounded subset and a homotopy H : [0,1] x (DNV) — H be such that

(i) H is an A-proper homotopy w.r.t. T' = {Hy,, Py} on [0,¢] x (3DNV) for
each € € (0,1) and H, is pseudo A-proper w.r.t. T,

(i) H(t,z) is continuous at 1 uniformly forz € DNV,
(ii) H(t,z) # f and H(0,z) # tf fort€[0,1], z € 8DNV.
(iv) deg(PnHo, DN Hy,0) # 0 for all large n.

Then the equation H(1,z) = f is solvable in DNV.

Now, we have (cf. [Mi-8])
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THEOREM 2.4 Let A : D(A) C H — H satisfy (2.10)~(2.11) and N : H —
H be bounded asymptotically { By, B2}-quasilinear with |N — K| sufficiently small.
Suppose that a selfadjoint map Co € L(H) satisfies (2.12) with sufficiently small
€ and that H(t,.) = A— (1 —t)Co — tN is A-proper w.r.t. I = {H,, Pp} with
P,Az = Az on Hy, for each t € [0,1) and H, is pseudo A-proper w.r.t. . Then
Eq. (1.1) is solvable for each f € H.

Proof. Since Nyz = Nz — f, f € H, has the same properties as N, it suffices
to solve the equation Az — Nz = 0. Let ¢g > 0 be such that [N — K|+ € < ¢,
where c is from Lemma 2.2. Then there is an r > 0 such that

[Nz — Kz|| < (IN = K|+ €o)||z||, for each |jz|| > r.
Moreover,
(2.15) H(t,z) = Az — (1-t)Cox —tNz #0 for z€ 8B, N D(A),t€(0,1).
If not, then H(t,z) = 0 for some ||z|| = r and t € [0,1]. Hence, subtracting tKz
from both sides, we get

[|Az — tKz — (1 — t)Coz|| = t||Nz — Kz|| < c||z]|.

Since K is {B;, B2}-quasilinear, there is a selfadjoint map C* € L(H) such that
Kz = C*z, B; < C* < B; and therefore
(2.16) [|[Az — tC*z — (1 — t)Cox|| < cllz|].
But, C = tC* + (1 - t)C is selfadjoint, satisfies (2.12) in Lemma 2.1 and therefore
(2.13) holds. This contradicts (2.16) and so (2.15) is valid.

Next, since Co and N are bounded maps, H (t,z) is an A-proper homotopy
on [0,¢] x (B, N D(A)) w.r.t. T for each € in (0, 1) and is continuous at 1 uniformly
for z € B, N D(A). Hence, the solvability of Az — Nz = 0 follows from Theorem
23. 0O

Let us now discuss some conditions on B* which imply (2.10)-(2.11). As-
sume, as in Amann [Am-2],
(2.17) a) A:D(A) C H — H is self adjoint
b) B* = Y7, A\ P* commute with A, where PE : H — ker(B* — );) are

orthogonal projections, /\li < ... < A% and /\?‘ are pairwise distinct.
¢) U, [A7,MF] € p(A)-the resolvent set of A.

I

Being selfadjoint, A possesses a spectral resolution
oo
A= / ME),
—o0

where {E | A € R} is a right continuous spectral family. Since B* commute with
A, it is known that P,.i commute with the resolution of the identity {Ex | A € R}.
Hence, the selfadjoint maps A — B* have the spectral resolution

m oo
(2.18) A-B*= Z/ (A= A¥)dEPE.
=t V—>®
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Define the orthogonal projections P* by

m m
P~ =) E(-00,\))P[ and P*=) E(J,00)P},
=1

i=1
where P
E(a,8) = / dE»
i 4

for all @, 8 € p(A) U {oo} with & < B. Define H* = P%(H) and note that by
(2.17)-c,

"m
Pt =3"E(\,00)P},
izl

and
m

v= dist(U[,\;,Ajf},a(A)) > 0.

Moreover, by (2.18), we have tha,t'-—1
((A=B™)z,z) < —9|jz}|* for z€ D(A)NH",
((A=B7)z,z) > vllzli* for z€ D(A)NH™.
Hence, we have
LEMMA 2.3 If (2.17) holds and P7 = PF for 1 < i < m, then there are

orthogonal subspaces HE such that H = H- @ H* and conditions (2.10)-(2.11)
hold with yy = y2 = v > 0.

Proof. Tt remains only to show that H* and H™ are orthogonal. Since P;” =
Ptfori=1,...,m, and E(—00,A]) = I — E(A\],00), we get that P* = — P~
and therefore, H* = (H~)t. O

When B are not of the form (2.17)-b, we need to assume more on the linear
part A.

{(2.19) Suppose A is selfadjoint possessing a countable spectrum o(A) consisting
of eigenvalues and whose eigenvectors form a complete orthonormal sys-
tem in H.

(2.20) There are selfadjoint maps Cy,C; € L(H) and two consecutive finite multi-
plicity eigenvalues Ay < Ag4y of A such that

Xellzll? < (Crz,2) < (Ca2,2) < Apya|lz|)> for z € H\ {0}

Let H~ (resp. H') be the subspaces of H spanned by the eigenvectors of A
corresponding to the eigenvalues A; < Ap (resp. A; > Apy1).

LEmMA 2.4 (cf. [Mi-8]) Let (2.19)~(2.20) hold. Then there are y; > 0 and
v2 > 0 such that for any selfadjoint maps BX € L(H) satisfying C; < B~ and
Bt < C; on H, we have that (2.10)~(2.11) hold.
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Proof. It is enough to show that (2.10) holds since the same arguments also
give (2.11). Since A < C; < B~, it is enough to show that there is a 11 > 0 such
that

(Az - Ciz,2) < —71||z||* forall z € D(A)NH".

If such a 4; > 0 did not exist, then there would exist {z,} C D(A) N H~ with
Jiznll = 1 and such that
—1/n < (Azp — Cizn,2n) < (AZn — AiZp,2n), n=12,....

Decompose H™ = A Q)_I? , where H is spanned by the eigenvaectors {ei} correspond-
ingto A; < A¢—y and H is the finite dimensional space spanned by the eigenvectors
corresponding to Ax. Then z, =%, +%, € H® H and

—1/n < (Azn — AeZn, 20) = (AZn — ApEn, Z0)
= Y Ai(@n,e)’ = MeliEall® < k-1 = Ae)l|Zal
i<k—1

Hence, , — 0 as n — oo and 2, — % € H with ||Z]| = 1 since [jzn[|? = 1~ ||Z,]|
and H is finite dimensional. Thus,
—1/n < (Akzn — CiZn, 2n) + (AZp — Ap2pn, Th)
< (A2 = C12n,2n) + (Ak-1 — /\k)”-'lifn”2

and passing to the limit as n — oo, we get
0< (M —C1)2,2),2#0
in contradiction to (2.20). Hence, (2.10) holds. [

Remark 2.3 If Ax (resp., Ag41) is of infinite multiplicty, then Lemma 2.3 is
still valid if we assume in (2.20)

Ak + 9llz])® < (Ciz,z) resp. (Caz,2) < (A1 —¢€l|z]|?) for O£z € H.

This is easy to check by analyzing the proof of this lemma.
Next, let us look at the case when H~ @ Ht # H, which is also useful in
applications.

Recall that a closed subspace X C H is said to reduce A if A commutes with
the orthogonal projection P of H onto X, i.e., if PA = AP. As before, let P* be
the orthogonal projections of H onto H*. Regarding A and H we require that the
following conditions hold for a scheme ' = {H,, P,} (cf. [Am-2]):

(221) (i) Hy C Hy C --- with each Hy, closed in H, dimH, = oo and |JH, is
dense in H;
(ii) each H, reduces A;
(iii) the orthogonal projections P, : H — H,, commute with P¥;
(iv) H, = H; @ HY, where HY¥ = H* N H,;
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(v) Q*(D(A) 0 H,) C D(A) for each n, where Q* : H- @ H* — H* are
orthogonal projections.

We have the following extension of Theorem 2.4.

THEOREM 2.5 [Mi-8] Let H* be closed subspaces of H such that H-NHY =
{0}, A: D(A) C H — H satisfy conditions (2.10)—(2.11) and (2.21) hold. Suppose
that N : H — H is bounded asymptotically {B;, Bs}-quasilinear with |N — K|
sufficiently small and A— N : D(A) C H — H is pseudo A-proper wrt. T =
{Hpn, P.}. Suppose that a selfadjoint map Cy € L(H) satisfies (2.12) and for each
large n the map Hy(t, ) = Po,(A— (1 -1)Co —tN): D(A)NH, — Hy, is A-proper
w.rt. Ty = {Hpn, Qi} for Hy, with QpAz = Az on Hy g, for each t € [0,1) and
Hn(1,") be pseudo A-proper w.r.t. I'. Then Eq. (1.1) is solvable for each f € H.

When P # PY for 1 <i<mand H# H- @ H*, regarding conditions
(2.10)—(2.11) we have (cf. [Am-2]).

LEMMA 2.5 Let (2.17) hold and there ezist a unitary map U € L(H) such that
A commutes with U and

PT=UPFU™Y, i=1,...,m
Suppose that A has e pure point spectrum in (AT,A}). Then there are closed

subspaces HY of H with H™ N H* = {0} such that conditions (2.10)~(2.11) hold
with vy = v2 =7 > 0, and a scheme I' = {H,, P,} satisfying (2.21).

2.3 Asymptotically linear equations and Morse theory. In this section
we shall study the existence of nontrivial solutions in a Hilbert space H of equations
of the form

(2.22) Az+ Nz =0

of potential type using a combination of the finite dimensional Morse theory and
the A-proper mappping approach. We note that Galerkin methods in conjunction
with Morse theory have been used earlier by many authors in the study of equations
of the form (2.22) with N compact.

The novelty in our approach is that we require that A + N is A-proper with
respect to a projectionally complete scheme, which is so in particular when N is
compact, or ball condensing or monotone (of Section 2 in [Mi-8] and Proposition
2.3).

Throughout the section, we assume that A : D{(A) € H — H is a linear
densely defined, selfadjoint map with dimker A < oo and N : H — H is a nonlinear
map such that A+ N : D(A) C H — H is potenial and A-proper with respect to
a projectinally complete scheme I' = {H,,, P,} with P,Az = Az for z € H,,.

Let f : H — Rbe such that f'(:c) = Az+Nz. Wesay that f is asymptotically
quadratic at infinity if there is a selfadjoint bounded linear map N, : H — H such
that

(2.23) |N = N | = limsup M < 00.
llz]|—c0 e
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Definition 2.3 A C? function f: H — R isl said to satisfy the Palais-Smale
condition (PS) if any sequence {z,} € H with f (z,) — 0 and {f(z,)} bounded
posesses a convergent subsequence.

Let f, be the restriction of f to H,.

Definition 2.4 f is said to satisfy the (PS), condition if any sequence
{2n]|zn € Hn} with ||f (24)]] — 0 and {f(z,)} bounded posesses a convergent
subsequence.

The next result provides conditions on the A-proper map f = A+ N which
guarantee condition (PS), for f.

PrRoPOSITION 2.2 Let f : H — R with f, € CY(H,, R), (2.23) hold with
[N — No| sufficiently small, A+ Ny, and A+ N be A-proper with respect to T =
{Hp, P,} and A+ Ny, be injective. Then

(1) fn is asymplotically quadratic and

limsup “f'(x) — (A + P, Noo )|
el ~co, z€ Ha [}

S IN""Nooi‘

(i1} fn satisfies condition (PS) for each large n.
(iti) f satisfies condition (PS),.
(iv) The equation Az + Nz = f is approrimation solvable for each f € H.

Proof. (i) Let € > 0 and R > 0 such that [Nz — Neoz|| < (|N — Noo|+¢)|jz||
for all ||z|| > R. Since f,(z) = Az 4+ P, Nz for each z € H,, we get that

(224)  [a(®) = (A+ PalNoo)al| = ||Pa(N = Noo)z|| < (IN = Noo| + €)l|z]|

for all z € Hy,, ||z]| > R which proves (i).

(i1) Since A + Ny, is injective and A-proper, arguing by contradiction we see
that there are ¢ > 0 and ng > 1 such that
(2.25) [|Pa(A+ Noo)z|| > cllz|| for all z € Hny, n > ny.

Let {z¢} C H, with ||f,(2z&)|| — 0 as k — 0o and {f.(zi)|k > 1} bounded. Then,
by (2.24) and (2.25),
cllzill < [|1Pa(A + Noo)zkll = [|Pa(A + N)zk — Pa(N — Noo)ai |

= [1fa(@k) = Pa(N = Noo)zxl| < 1 (26)ll + [1£(2k) = (A + PaNoo)a|
< e+ (IN = No|+ €)||zill, forall n>ny > no.

Taking ¢ > 0 such that [N — N |+ ¢ < ¢, this yields the boundedness of {z;}
in H,. Hence a subsequence {z;,} converges in H,.

(iii) Let {z,, € H,} satisfy ||f,,(:c,,)[| — 0. As above, by (2.24) and (2.25), the
sequence {z,} is bounded. Since f,(2,) = Az,+ Py Nz, — 0, by the A-propemess
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of A+ N a subsequence z,, — « and f (z) = Az + Nz = 0, i.e. z is a critical
point of f.
(iv) This is a special case of Theorem 2.1. O

Remark 2.4 The boundedness of {f,(z;) |k > 1} and {f(z,)} was not used
in the proofs of (ii) and (iii).
Next, we give special classes of A-proper maps appearring in Proposition 2.2.

ProposITION 2.3 Let A : D(A) C H — H be a densely defined Fredholm
map of index zero and N : H — H be a conlinuous nonlinear and bounded map.
Suppose that either one of the following conditions holds:

(i) N is k-ball contractive with k sufficiently small and [N — Ni| = 0 for
some continuous linear map Ny ;

(ii) The partial inverse A~ of A is compact.

Then A+ N : D(A) C H — H and A + Ny are A-proper with respect to
I'= {H,, P,} with P,Az = Az forz € H,.

Proof (i) Since the index i(A) = 0, we have that H = Ho & H;, where
Ho = kerA. Let {z,, € H,,} be bounded and yx = P, (A + N)z,, — f.
Then z,, = zon, + Zin, With z;,, € H;, i = 0,1, and we may assume that
Zon, — o € Hyp and

Zin, + A7 (I = P)Py Nz, = A7Y(I - P)ye —» A™Y(I - P)f,

where P : H — Hj is the orthogonal projection. Hence, the ball-measure of
noncompactness

x({z1n,}) = x({A™H(I = P)Pa,Nzn,}) < |47 [kx({2n,}) = kIIAT Ix({10,))-

Since k is sufficiently small, we get that x({z1n,}) = 0 and therefore z1,, — z; €
H,. Thus, z,, —» ¢ =z0+ z; and Az + Nz = f. Since it is well known that N,
is also k-ball contractive, the same arguments show that A + N, is also A-proper
with respect to I

(ii) Let {z,,} be as in i). Then zo,, — zo € Hy and P, ,Nz,, — u
by the boundedness of N. Hence, z1,, = A~ — P)(yx — Pa Nz,,) —
A™YI - P)(f — u) = z1 so that z,, — z = zo + z;. Since Nz,, — Nz, it
follows that Az,, = yx — Pa,Nzn, — f — Nz and so Az + Nz = f by the
clossedness of A. [

Remark 2.5 When dimker A = oo, various conditions on A and N that imply
the A-properness of A + N have been discussed in [Mi-4-8].

To obtain nontrivial solutions of Eq. (2.22), we need to impose some addi-
tional conditions on A and N. To that end we shall use some finite dimensional
results on the existence of nontrivial critical points. For a symmetric matrix S,
denote by m~(S), m°(S) and m*(S) the negative, zero and positive Morse index
of S. We have (cf. [A-Z, Ch, L-L])
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THEOREM 2.6 Let f : R® — R be a C'-function and Ay and Ay be symmetric
mairices such that

(2.26) M)ﬁ;;ﬁéw_”” —0 as |jz|]] -
and
(2.27) Mi%;‘”—’mﬂ —0 asjz|| = 0.

If mP(Ao) = m%(Aw) = 0 and m™(Ag) # m~(Aw), then f has at least one
nonirivial critical point. Moreover, if for some r > 0

(2.28) I (z) = Aozl < ll=ll/@NATM) for (2]l <.
then the nontrivial critical points of f lie outside the ball B(0,r).

Suppose that there is a selfadjoint map Ny : H — H such that
(2.29) I[Nz — Noz||/l|zl| =0 as [lz|| = 0.

For each n, define the numbers I~ (f,,0) = m™(Pr(A + Neo)Pn), I™(fn,0) =
m~(Po(A+ No)P,) and I°(f,,0) = m®(P.(A + No)P,).

The Morse indices of A + N, and A 4+ Ny may be infinite and the Morse
indices of the approximate operators I~ (f,, 00) and I~ (f,,0) converge to infinity as
n — 0o. We have the following extension of Theorem 2.6 to the infinite dimensional
case.

THEOREM 2.7 Let f : H — R with f, € CY(H,, R), (2.23) and (2.29) hold
with [N — Neo| = 0 and A+ Ny and A+ Ny be both injective A-proper maps with
respect to T = {H,,, P,}. Suppose that I=(f,,0} # I=(fq,00) for all large n. Then
f has at least one nonirivial critical point.

Proof. Since A + No, and A + Ny are injective A-proper maps, there are
¢ > 0 and ng > 1 such that for each n > ng

(2:30) (A + P No)zll > cljz]] and [[(A+ PuNo)z|| > cllz|| for all z € H,.
Let r > 0 be so small that
I (@) = (A+ NoJzl| < 5l for [lef] < r.
Then, for each n > ng and z € H, with ||z|| < r,
1£a(2) = (An + PaNoPa)zll < I (2) = (A + No)zl|
< £llell < 3l1(An + PaNoPa) | el

by (2.30), where A, is the restriction of A to H,. By Theorem (2.6), f, has a
nontrivial critical point z, € H, with ||z,}] > r for all n > ny. Since f satisfies
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the (PS)n condltlon by Proposition 2.2, a subsequence z,, — = and z is a critical
point of f since f = A + N is A-proper, with el >». O

Let us now show that under the conditions of Theorem 2.7, the conditions
I7(fn,0) # I7(fn,00) for all large n are implied by the condition m~(P,(A +
No)Pp) —m~(An) # m™ (Pa(A+ Noo)Pn) — m™(A,) for some sufficiently large n.

The following algebraic lemma is needed (see [L-L]).

LemMA 2.6 Let S and T be two symmelric n X n matrices. Then m~(S) =
m™(S + T) provided that for any d > 0 there is an r = r(d) > 0 such that either
one of the following conditions holds:

(i) S is invertible, IS~ < d and ||T|| < r;
(i) ST < d, IT]| < r and TP =0, where P : R* — ker(S) is the orthogonal

projection onto ker(S) and S; is the restriction of S to (I — P)R™. The condition
TP = 0 means that ker(S) C ker(S + T).

LemMA 2.7 Let A : D(A) C H — H be a Fredholm map of index zero and
B : H — H be a conlinuous linear map such that A+ B is A-proper with respect
toI'= {H,, P,} with P,Az = Az on H,,. If cither
(i) A+ B is one-to-one, or
(ii) PaPo = Py, where Py : H — ker(A + B) is the orthogonal projection onto
ker(A + B),
then m~(An + P.BP,) — m~(A,) is a constant for all large n.
Proof . (cf. also [L-L]) Let F = span{Hn, Hn},Q : H — F be the orthogonal
projection and @, : H — F, be the orthogonal projection onto Fy,, the complement
of Hy in F. Then ¢ = P, + @, and § and @Q,, commute with A since so do P,

and Pp,. Assume that F,, # {0} for each n. We represent the map A+ B in F by
the matrix W = S+ T+

W ( P,(A+B)P, Pu(A+B)Qn )
T \@n(A+B)P, Qn(A+B)Qn

S = (An + P,BP, 0 0 P.BQ,
B 0 Qn(A+ P)Qn /)’ QnBP, Qu(B—-P)Qn

where P : H — ker{A) is the orthogonal projection, and we used the fact that
@nA = AQ, and P,Q, = Q, P, = 0. We have that P is compact, commutes with
P, and Q,, and since A + P is invertible there are ¢; > 0 and np > 1 such that

(2.31) H@n(A+ P)Qu) Yl <e1 forall n> n.

Assume first that A + B is invertible. Since it is A-proper with respect to I', there
are ¢z and ng > 1 such that

HPna(A + B)Paz|| > c2l|Paz|| forall z€ i, n>ny
and therefore, in H,
(2.32) (Pa(A+ B)P,)"Y| < 1/ca forall n> n,.
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Since ||Qn Bl = |B@n|] — 0 and ||QnP]] — 0 as n — oo, we get by Lemma 2.6
that for each n large

(2.33) m=(W) = m=(S) = m™(An + PaBP,) + m™(Qn(A+ P)Qy).

Using Lemma 2.6-(ii), we can also prove that (2.33) holds when P, P, = Pp. In
particular, taking B = 0, (2.33) becomes

(2.34) m™(QAQ) = m™ (An) + m™(Qn(A + P)Qn).
Combining (2.33) and (2.34), we get

m™(An + PaBP,) — m~(An) = m™ (W) - m~(QAQ)
= m™(Am + PnBPn) —m™(Ap). O

Using Lemma 2.7, we have the following special case of Theorem 2.7.

COROLLARY 2.1 Let f : H — R with f, € CY(H,, R), A be Fredholm of indez
zero, (2.23) and (2.29) hold with [N — Noo| =0 and A+ No and A + Ny be both
injective and A-proper with respect to T = {H,, P,}. Then, m™(An + PaNoPy) —
m~(Ap) and m™ (A, + Pa N Pp) — m™(A,) are both constant for each large n. If
these two constants are different, then f has at least one nontrivial critical point.

Proof. By Lemma 2.7 both m™(A, + PaNoP,) — m™(H,) and m™(An +
PyNoo P,) — m™(A,) are constant for all large n. Moreover, if they are different
constants, then I~ (f,,0) # I~ (fa,00) for all large n, and the conclusion follows
from Theorem 2.7. [

Remark 2.6 When f € C'(H,R) with A and N compact and A = A*,
Lemma, 2.7 and Corollary 2.1 were proven by Li-Liu [L-L] using different type of
arguments.

Next, we shall treat the case when 0 is a degenerate critical point of f. We
need the following finite-dimensional result.

THeOREM 2.8 [L-L] Let f € CYH(R", R)NC?(B(0, d), R) and satisfy (2.26) and
(2.27). Suppose that m°(As) = 0 and m™(As) & [m~(Ao), m™(Ao) + m®(4o)].
Then f has at least one nonirivial critical point. Moreover, if

(2:35) 17 () = Aall < 314517 for el <,

where Agl is the inverse of Aq restricted to the range of Ag, then at least one
critical point of f lies outside the ball B(0,d/2).

We have the following extension to the infinite dimensional case.

THEOREM 2.9 Let f : H — R with f, € C*(H,, R)NC*(H, N B(0,d), R) and
satisfy (2.23) and (2.29) with [N — Ny | = 0. Suppose that A + No is tnjective
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and A-proper with respect to T' = {H,, P} with P,Az = Az on H,, and A+ Ny
ts A-proper with respect to T' with ker(A + Ny) C Hy, for all large n. If

(2.36) I (fn,00) & [I" (fn, 01, I (fa, 0) + I°(£4, 0)]

for all large n, then f has at least one nontrivial critical poini.

Proof. Since Hy = ker(A + No) C Hy, then H = Ho & H for some closed

subspace H~and H, = Hy® Hy, with Hy,, = Hy, N H. Since the restriction of
A+ Np to H is injective and A + Np is A-proper, it is easy to see that there are
¢ > 0 and ng > 1 such that

||Pa(A+ No)Ppz|| > c|jz|| for z € Hin,n > ng.

Hence, the inverses of the restrictions of P,(A + Np)P, to Hi, satisfy

H(Pa(A+ No)P) Ml < 1/c for n > no.
Let r < d/2 be sufficiently small so that

IF° (@) - (A+ No)ll < e/2 for ol < 2r,
and therefore,

1£a (2) = (An + PaNoPa)l| < I (2) = (A + No)|

(2.37) < /2 < |[(Pa(A+ No)Po)Y|/2 for ||z]| < 2r, n > ny.

Hence, from (2.36), (2.37) and Theorem 2.8, we get a nontrivial critical point
zn € Hy of f, with ljz,]| > r for each n > ny. Since f satisfies the (PS),
condition, a subsequence z,, — z with [|z|| > r and f () = 0 by the A-properness
of A+N. O

CoROLLARY 2.2 Let f : H — R with f, € C*(H,, RYNC*H,NB(0,d),R), A
be Fredholm of index zero and conditions (2.23) and (2.29) hold with |[N— N, | = 0.
Suppose that A + Ny, 1s injective and A-proper with respect to I’ and A+ Ny 1s
A-proper with respect to T with ker(A + No) C Hy, for all large n. Then, m~ (A, +
PaNoPp)—m™(A,) and m™(An + Py N Pn) — m™(A,) are both constant for each
large n. Moreover, if

(2.38) M~ (An + PaNeo Pn) — m™ (4An)
¢ [m™(An + PaNoPy) — m™(4n),
m~(An + PaNoP,) = m™ (A,) + m°(An 4+ PaNo Py))

with n large, then f has at least one nontrivial critical point.

Proof. By Lemma 2.7 (ii), m~ (A, + P.BP,) — m~(A,) is constant for all
large n with B = Ny and B = N,,. Moreover, (2.38) implies that

I™(f,00) & [I"(£,0), 17 (fn,0) + I°(fa,0)]
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for all large n, and the conclusion follows from Theorem 2.9. 0O

Finally, we shall consider the existence of nontrivial critical points of f when
0 is a degenerate critical point at which f has a local linking as defined below.
Again we begin with the finite dimensional case first.

Definition 2.5 Let f : X = R® — R be of class C'. We say that f has a
local linking at 0 if there are subspaces Y and Z of X with X =Y +Z and positive

constants a and r such that
fy) 2 a fory € 8(B, NY)

fy) >0 forye B, NY
f(z)<—a forzed(B,NZ)
f(2) <0 forz€ B,NZ.
TueoreM 2.10 ([L-L)) Let f € C(R", R) satisfy (2.26), (2.27), (2.39) and

m™(Ac) =0, m™ (Aco) # dim Z. Then f has at least one nontrivial critical point
z with ||z]| > 7 and |f(2)| > a.

(2.39)

The following result involves the local linking condition in the infinite dimen-
sional case.

THEOREM 2.11 Let f : H — R with f, € C*(Hn, R) and satisfy (2.23) and
(2.29) with |N — Noo| = 0. Suppose that A+ Ny is injective and A-proper with
respect to I' = {H,, P,} with P,Az = Az on H, and for each large n there is a
decomposition H, =Y, + Z, and positive constants a and r such that

fly)za fory € 8(Br NYy)
(240) f(y)ZO fOTyEBrﬂYn

f(z) <—a  forz€ 8(B,NZ,)

f(z) <0 for z€ B, N Z,.

If I=(fn,0) # dim Z, — m~(A,) for infinitely many n, then f has at least one
nontrivial critical point.

Proof. By Proposition 2.2 and (2.40), Theorem 2.10 yields critical points
zn, € H, of f, with ||z,|] > r and |fa(z,)| > a for each large n. Since f satisfies
condition (PS), and A + N is A-proper, a subsequence z,, — « with f'(z) =
Az + Nz=0andz#0. 0O

CoROLLARY 2.3 Let f : H — R with f, € C(H,, R) and satisfy (2.23) and
(2.29) with [N — Noo| = 0. Suppose that A + N is injective and A-proper with
respect to T = {H,,, P,} with P, Az = Az on H,, and that there is a decomposition
H =Y + 7 such that P,Y CY and P,Z C Z and for some positive constants a
and r such that

fw2e  foryedB.NY)
fly) 20 forye B NY
f(z) < —a forz€ (B, NZ)
f(z) <0 forze B,NZ.
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If I" (fn,00) # dimPpZ ~— m~(Ay) for infinitely many n, then f has at least one
nontrivial critical point.

Remark 2.7 When f € CY(H, R)NC?(B(0,r), R), respectively f € C*(H, R),
and 4 and N are compact maps with A = A*, Corollary 2.2, respectively Theo-
rem 2.11 and Corollary 2.3, were proven by Li-Liu [L-L] using different type of
arguments.

III. Periodic Solution of Semilinear Wave
Equations Without Resonance

Let @ C R" be a bounded domain with smooth boundary and set Q =
(0,T) x Q and let H = L2(Q, R™) with the inner product defined by

T
(u,t&):/(; ./Q(u(t,x),v(t,m))dxdi

where (u(t, z),v(t, z)), (¢, ) € Q, is the inner product in R™. Let L; be a linear
selfadjoint elliptic operator in space variables z € R" with coefficients independent
of ¢ such that the induced bilinear form a(u,v) on the Sobolev space W}(Q, R™)
is continuous and symmetric. Suppose that V is a closed subspace of W@, R™),
containing the test functions, such that a(u,v) is semi-coercive on V, i.e. there are
constants a; > 0 and as > 0 such that

af{u,v) > alﬁu}}%)l ~agljull}, forall ueV.
Define a linear map Lo : D(Lo) C L2(Q, R™) — Lo(Q, R™) by
(Lou,v) = a(u,v) foreach veV,
where
D(Lo) = {u € V | a(u, ) is continuous on V in the Ly-norm}.

It is well known that Lg is selfadjoint and has a compact resolvent, since W3 is
compactly embedded in Ly. Next, define a selfadjoint map with compact resolvent

L:D(L)C Hy = Ly(Q,R™) — H, by:
D(L) = [D(Lo)]™ and L = diag(Le,...,Lo).
Since L has a compact resolvent, there is an orthonormal basis {v; | € J} in H;
and a sequence of its eigenvalues {y; |j € T} such that |u;| — <.
Let F: Rx Q x R™ — R™ be a Caratheodory function and consider the
semilinear system of wave equations:
{un — Liu— F(t,z,u) = f(t, r)

1) ult, ) e V™

where f € L2(Q, R™) is a T-periodic function in t variable and 7 = 27 /T is rational.
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By a T'-periodic weak solution of the variational boundary value problem (3.1)
for the semilinear system of wave equations we mean a solution of the nonlinear
operator equation

(3.2) Au—Nu=flue D(A),fe H

where Au =37, uje(p; — T2k2)y; (2)e' ¥t for

" Jusa(s — D) < oo}
i.k

u € D(A) = {u = Zuj,kzj)j(x)e‘T"‘
ik
and Nu = F(t,z,u) for u € L(R, R™).
Regarding F' = Fy + F2, we assume

(3.3) F; is a Caratheodory function such that for some a; > 0, £ € (0,1) and
hy € La(Q, R) it satisfies

[Fi(t, 2z, 9)| < a1ly|® + ha(t,z) for ae. (t,z) €Q, ally € R™.

(3.4) F is a Caratheodory function and there are hy € L2(2, R) and some consec-
utive eigenvalues A; < Aj41 of A, and 0 < az < min{A — Aj, Aj4+1 — A} such
that

|Fa(t, z,y) — Ayl < aslyl + ha(t, z), for ae. (t,z) € Q, y € R™.

Our first nonresonance result for (3.1) is for monotone nonlinearities F and
is an application of Theorem 2.1 (cf. [Mi-8]).

THEOREM 3.1 Let @ = (0,7), p; > 0 for each j € J, and eack nonzero
eigenvalue of A is of finite multiplicity. Suppose that (3.3)—(3.4) hold and F is
increasing in y. Then there is a T-periodic weak solution u € Ly of (3.1) for each
f € Ly(2, R™).

Proof. Let {H,} be an increasing sequence of finite dimensional subspaces
spanned by the eigenfunctions {¢;(z)e'"*'} and P, : H — H, be the orthogo-
nal projections onto H,. Since the eigenfunctions are dense in Ly(2, R™), T =
{Hy, P,} is a projection scheme for L,. Moreover, since Nu = F(t,z,u): Ly — Ly
is monotone, the map A— N : D(A) C L2{Q, R™) — Ly(§2, R™) is pseudo A-proper
w.r.t. . In view of Theorem 2.1 and Remark 2.2, it remains to verify conditions
(2.2)-(2.3) with X = H = L.

First, note that the spectral gap of Ay = A—AI induced by the gap (i, Ai41)
is (As — A, Aig1 — A). Hence, A, has a bounded selfadjoint inverse in Lo with the
spectrum lying in [(A;~=A)~1, (Aip1—A)~ ] and so || 45|} € max{(A—X)"L, (hip1—
A)~'} < 1/a. Hence, 0 < a < ||A}!|] = min{|y| | € (4 —AI)}. Next, set N;u =
Fi(t,z,u) for u € Ly, i = 1,2. Then, by the Minkowski and Holder inequalities,
(3.3)-(3.4) imply that for some constants c; and cy

INvull < eallull* +[lAsfl and [|Now < ealull + [Ihall for u€ Lo.
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Since k < 1, there are positive a, b and r such that a < min{A — A;, A\j+1 — A} and
|INu—Aul| < allu||+ & for all ||ul} > r.
Hence, (2.2)-(2.3) hold and Theorem 2.1 is applicable by Remark (2.2). O

It is easy to see that condition (3.4) is implied by the following two conditions
with A= (A + Aip1)/2and e = (A1 — Ai)/2— €
(3.5) There are constants M > 0 and r > 0 and h € Ly(Q, R) such that for each
1<i<m
[Fo.(t,z,y)| < Mlyi|+ he(t,z) for ae. (t,2) €Q, y€ R™.
(3.6) Forae. (t,2) €Q, y=(y1,.--- ,Ym) € R™ with |y| > r
Ai + € S FZ,I(ty xay)/yl S ’\i+1 — €.

Hence, when m = 1, we have

CoROLLARY 3.1 Let F : Rx(0,7)x R — R be a 2w-periodic int Caratheodory
function satisfying conditions (3.5)-(3.6) and F(t,z,-) be increasing. Then, for
each f € Lo, there ts a 2m-periodic weak solution u € Ly of

U — Ugr — F (L, 2,u) = f(t, 2), teER, z€(0,7)
(3.7 u(t,0) = u(t,7) =0, teR
u(t + 27, z) = u(t, z), teR, z€(0,m).

Remark 3.1 Without the monotonicity of F, the solvability of (3.7) for a
dense set of f’s in Ly was proved by Hofer [Ho] under a global Lipschitz condition
on F (cf. also [W]) and by Tanaka [Ta-1] without this condition. When F is
monotone, Corollary 3.1 is due to Mawhin [Ma-2].

We continue our study of (3.1) when a nonlinear perturbation F satisfies
asymptotic nonuniform nonresonance conditions with respect to two consecutive
eigenvalues of the associated linear problem. These conditions are more general
than (3.4) and (3.5)—(3.6) and our method of study requires a different approach
based on Theorem 2.4. When m = n = 1, this problem has been studied by
Mawhin-Ward [Ma-Wa)] for the wave equation (3.7).

Let A be the abstract realization of the linear problem associated with (3.1)
and A; < Aj41 be two consecutive eigenvalues of A having finite multiplicities.

Let F: Q x R™ — R™ be a Caratheodory function such that for each r > 0
and 1 <1 < m there are functions a;, b € Loo(€2) and h, € L2(2) such that

(3.8) F(t,z,y)| < h.(t,z) forae. (t,2)€R, ly|<r,
(3.9) ai(t,z) < llinllianI(t,ac,y)y,'1 < llmll inf Fi(t,z,y)y; ' < Bit, z)
yif—co yil—co

uniformly a.e. in (t,z) € Q and (y1,...,Y-1,Yi+1,--- ,Ym) € R™~! and
(3.10) Ai<ai(t,z) < Bi(t,z) < Aiy1 ae.on Q
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with X; < ai(t, z) and Bi(t, ) < Ai41 on some sets of positive measure.

THEOREM 3.2 ([Mi-8]) Let (3.8)-(3.10) hold and
(a) sign\;F be monotone if n = 1, ie., signk (F(t,z,y) - F(t,z,2)) -
(y~2)>0 forace (t,z) € and ally,z € R™;

(b) If n > 1, then F = Fy + F, and for some positive constants ¢, k1, k2
with (k; + kg)HA—IH <1, ky<e;

(311) Sigﬂ Ai (Fl(trxxy) - Fl(t? z, Z),y‘"‘ 2) 2 ny—- 2&2
for a.e. (t,2) €Q, y,z € R™,
(312) IF;(t,z,y}—F;(t,x,z)lgk;iy-—z!

forae (t,2)€Q, yz€ R™ i=1,2

Then there is a T-periodic weak solution u € Lo{Q, R™)"of (3.1) for each f €
Ly(Q2, R™).

Proof. We have that either 0 < A; < Ajp1 or Ay < Aip1 < 0. We may assume
that A; > 0, for otherwise instead of the corresponding operator equation

(3.13) Au— Nu=f, u€ D(4), f € H=Ly(Q, R™)
where Nu = F(t,z,u), we can consider the equivalent equation
Aju—Niu=~f
with 4y = —A, Ny = ~N, o(A;) = {:-- <0< ~=Ajy1 < —A; < -+ }. Then, setting
ay =B, fu = —ay F = ~F,

we see that conditions (3.9), (3.10) and (3.12) hold with a;, 8, F, A and Ay
replaced respectively by ais, S, F,—=); and —Ai4+1 and the function sign(—)\;)ﬁ‘l =
sign A; Fy is monotone if n = 1, or satisfies (3.11}) if n > 1. Hence, we can assume
that A; > 0 and therefore N : H — H is monotone when n = 1 and N is c-strongly
monotone and N; are k;-contractive, j = 1,2, when n > 1.

Next, we shall show that N is a bounded asymptotically {B;, Bs }-quasilinear
map with By = Cy — ¢l and By = Cy + €l for some ¢ > 0, where €] and C»
are m x m diagonal matrices with the diagonal entries ai(t,z),--- ,am(t,z) and
Bi(t,z), -, Bn{t, ©) respectively. By (3.9), for ¢ > 0 there is an r > 0 such that
for each 1 <1< m, for a.e.(t,z) € Qand all y = (y1,...,¥,... ,¥m) € R™ with

lul >
(3.14) atz)— e < Filt e, )y < Bilty2) +e.
Hence, by (3.8),
|Fi(t, 2, )] < (Nig1 + )lw] + he(t,2) forae (t,z)€Q, y € R,
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and therefore N is continuous and bounded in H. For each 1 < I < m, define a
function G;: @ x B™ — R by (cf. [Ma-Wa))

v Rz, Y), if |y > 7
PRt 2y, Y-, T YL Ym ) (0 T)
Gz(i,x,y): +(1"’yl/r)at'(t’m)1 f0<yu<r
ARGy, Y, T Yk Y ) (3T
+ (1 +yi/r)ai(t, z), if —r <y <0.

Using (3.14), it is easy to check that for 1 <I{ < m
at,z)—e< Gi(t,z,y) < filt,z)+¢ forae {t,2)€Q, ye R™,

Moreover, Hi{t,z,y) = Fi(t,z,y) ~ Gi(t, z,y)y is a Caratheodory function on  x
R™ for 1 <1< m and

|Hi(t,z,y)] < 2h.(t,z) forae. (t,z) €N, y€ R™.
Let G(t,z,y) be the m x m diagonal matrix with the diagonal entries

Gi(t,2,9),...,Gm(t,z,y) for ({,z) €0, ye R™.

Similarly, let N{¢, z,y) be the mxm diagonal matrix with the diagonal entries
Hi(t,z,y),...,Halt,z,9).

Now, for each u € H, define B(u) : H — H by B{u)v = G(t,z,u)v and
Mu = H(t,z,u). Then, Nu = B{u)u + Mu on H, and it is easy to check that
B(u) is selfadjoint and By < B(u) < B for each u € H. Since ||Mu]] < 2||h,|| for
each u € H, it follows that N is asymptotically {Bj, B2}-quasilinear. Moreover,
by Lemma 2.4, conditions (2.10)-(2.11) hold for any selfadjoint maps B* with
C: < B~ and Bt < C,, where H* (resp., H™) is a subspace of H spanned by the
eigenfunctions of A corresponding to the eigenvalues Ay < A; (resp., Ay > Ai41).

Finally, define the selfadjoint map Cy : H — H by Cyu : a(t, 2)u, where a(t, x)
is the m x m diagonal matrix with the diagonal entries a1(t,2),... ,amn(t, z), for
(t,z) € Q. Since each g;(t,2) > X; > 0 a.e. on Q, it follows that Cy is continuous
and a;-strongly monotone. Hence, H(t,z) = A — (1 —=t)Cy — tN is A-proper w.r.t.
I' = {Hg, P} with PrAz = Az on Hy foreach t € [0,1) if n > 1, and H; is pseudo
A-proper if n = 1 and is A-proper if n > 1 by Propositions 2.3 and 2.6 in [Mi-8].
Choosing € > 0 as in Lemma 2.4, we see that the conclusion of the theorem follows
from Theorem 2.4. [

Remark 3.2 When n = m = 1, Theorem 3.2 with the Dirichlet boundary
conditions for the semilinear wave equation (3.7) was proved by Mawhin-Ward
[Ma-Wa] using rather different arguments based on the compactness of A~! and
the coincidence degree theory of Mawhin. Hence, their method is not applicable
when n > 1 since A~! is not compact due to the presence of nonzero eigenvalues
of infinite multiplicity.
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Remark 3.3 In view of Remark 2.3, Theorem 3.2 still remains valid if A; = 0
(resp., Aiy1 = 0) provided each a; (resp., ;) is a constant.

IV. Semilinear Equations at Resonance

In this section, we study Eq. (1.1) when dimker A = oo and the nonlinearity
interacts in some sense with the spectrum of A. Using a direct method, we first
prove an extension of a theorem of Brezis- Nirenberg [Br-Ni-1] to pseudo A-proper
maps A — N. Then, we use a perturbation method to study Eq. (1.1) assuming
A — N is a closed map. Moreover, when N is a gradient map, we also give a
necessary and sufficient condition for the solvability of Eq. (1.1).

4.1 Direct Method. Assume that A : D(A) C H — H satisfies:
(4.1) There are positive constants a+ and ag such that

(i) —ai'llAz|? < (Az,2) < al'||Az|)* for z € D(4),

(i) ||zl < aoljAz|| for z € H = ker A*.

Let Int(D) denote the interior of D and conv D be the convex hull of D. We
have [Mi-7]

THEOREM 4.1 Let a linear closed map A : D(A) C H — H satisfy (4.1) and
N : H — H be such that +tA+ N : D(A) ¢ H — H is pseudo A-proper w.r.t.
I' = {H,, P,} with P,Az = Az on H,. Suppose that

(4.2) There are ¥ < ax and 7 < ag*(y~' — a3') such that for every y € H and
every 6§ > 0 there exist ¢;(y), i = 1,2, and k(6) such that for each x € H
(Nz = Ny,z) 2 77 IN2])* = cx(@)INa| = 7llza]l — ezl (Blloll + (6)) -

Then Int (R(A) + conv R(N)) C R(xA + N). Moreover, if N is onto, so is
A+ N.

Proof. We shall consider only +A + N, since the case —A + N can be done
in a similar way. Let f € Int (R(A) + conv R(N)) be fixed and assume that
Azp + (1 = 1) PaPon +tn PaNzn = ta Pu f
for some z, € H,, t, € (0,1] and each n, where P : H — ker A is the orthogonal
projection. We shall show that ||z,|| < r for some r and all n.
For each h € H with sufficiently small norm, there are v € D(A), w; € H
and A; > 0 with Y°5_; A = 1 such that

k
f+h:Av+Z/\,~Nw.-.

i=1

Substituting this in the above equation, we get

k
(1 —ta)PaPzy + t, Py (Nx,, -3 A,-Nw,-) +tn Poh = t, PaAv — Az,

i=1
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Taking the scalar product with z,,, we find

k
(1= ta)llPenll® +tn Y Xi (N2n — Nwi, 20) + ta(h, ) = tn(Av, 2n) — (AZn, z0).

=1

Hence, by (4.2), for each 6§ > 0,

k
(L= ta)lIPzall + 20 D Xi(r IN2al[* = e2(wi)[[Nza]| — 7|2 1a]?
i=1
— c2(wi) (8|zonl| + £(6))) + ta(h, zn)
< tallAv|lllz1n]l + a3 | Azall?,

or, after dropping the first term,
(b, 2n) + 77 IN2Za||? < e(R)INzall + 7l|z1a]|* + [| Av]l 210l
+ (tnas) " | Azall® + c(h)(8|z0n|| + k(6))
for some constant ¢(h). But, since
Azy +ty(I — PYP,Nz, =t,(I — P)P,f
we get that
lAzall < ta (IIN2Zall +[Ifll)  and |20l < aotn (IN 2]l + 1I£]]) -

Hence,

(h,zn) < aZ' (IN@all + IF1)? — Y [N 2nl? + 7ad (| Nzal + (I £1)?
+ c||[Nzn|| + aol|Av|| (| Nzn|l + [| Fl) + e(R) (8]|zon|| + k(5))
= (a3 =77 + rad)INzal* + (c(h) + 203 (|1 fI] + 2rad]|fI|+

+ ao||Av||) | N znf| + c(h) (8]|zonl| + k(8)) + c1(R),

where c;(h) = (al' + rad)[|f||? + aol|Av]|||f||. Since rai < 47! — al', it follows
that, for each é > 0 and some ¢3(h) large enough,

(h,zn) < c(h) (8|zonl| + £(8)) + c2(h)
< ea(h) (8l|znll + k(6)) -
Suppose that [|z,|| — 00 as n — o0, and for r > 0, set w(r) = infs<o{ér +
k(8)} so that w(r)/r — 0 as r — oco. Since (h,z,) < w(||zn]))c2(h), the uniform
boundedness principle implies that ||z,]|/w(]|z.|]) < C, a contradiction. Hence,

||za|] < r for some r > 0 and all n. Consequently, H,(t,z) = Az + (1 ~ t)P, Pz +
tPaNz #tP,f on [0,1] x dB(0,7) N H, for each n, and the Brouwer degree

deg(A + P.N,B(0,7) N Hy, Pof) = deg(A + Po P, B(0,r) N Hyp, 0) # 0.

Thus, Az, + P, Nz, = P, f for some z € B(0,7)NH,, and each n, and consequently,
Az + Nz = f for some z € D(A) by the pseudo A-properness of A4+ N. [
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Now, condition (4.2) implies that limsupy,_c [|Nz||/l|lz]] < 7, ie. Nis a
quasibounded map with the quasinorm |N| < 4. As pointed out in [Br-Ni-1], if N
is potential and quasibounded, then a condition of type (4.2) holds. Moreover, if a
is the smallest positive constant such that (Az, z) > —a~!||Az]|? on D(A) and A is
selfadjoint, then Az = Az implies that A > —a and —a is an eigenvalue of A. Hence,
roughly speaking, the conditions 0 < v < @ and limsup);j. [|Nz||/||z]| < ¥ mean
that the nonlinearity N asymptotically stays away from the nonzero eigenvalues
of A.

Note that ay in (4.1) exist since, by the boundedness of A~1: R(A) C H —
H, §Az:}l > allz,|| for some ¢ > 0 and all z; € D(A4) N R(A), and therefore
(Az,x) = (Az,z1) > ~||Az||||le1]] > —a~!{|Az||? for all £ € D(A). Here we
used the fact that R(A) = N(4)*. If A is sefadjoint and @ < oo is the smallest
positive constant such that (Az,z) > —a~1{|Az]|? on D(A), we have shown above
that —a is the largest eigenvlaue of A less than 0. More generally, suppose that
A : D(A) C H — H is a normal linear map with closed range. If H. is the
complexification of the real Hilbert space H and A, : D(A,) C H. — H, is defined
by Ac(z +1y) = Az + idy on D(A.) = {z + iy | ¢,y € D(A)}, then Hetzer [He)
has shown that

a = a(A) = inf{{A|2/(-ReA) | X € o(A.), Re A < 0}.

In general a could be infinite, in which case A4 is a linear monotone map, and could
belong to ¢(A.) or be a regular value of 4..

Theorem 4.1 has been proved by Brezis-Nirenberg [Br-Ni-1] when N : H —
H is a monotone map and the partial inverse A™! is compact using the Leray-
Shauder and monotone operator theories. In view of the various examples of pseudo
A-proper maps A + N discussed in [Mi-4-8], this result holds also for many other
classes of maps A and N, even when A™! is not compact. For example, we have
the following corollary,

CoroLLARY 4.1 Let A and N satisfy conditions (4.1)-(4.2) and N = Ny +
Ny be such that Ny is c-strongly monotone, ky-ball contractive and Ny is ko ball
coniractive, with ky, ks sufficiently small, and continuous. Then A+ N is surjective.

Proof. The map A+ N : D(A) C H — H is A-proper by Proposition 2.6 in
[Mi-8] (cf. also [Mi-4]). Moreover, since N is c-strongly monotone, it is wel-known
to be subjective and the conclusion follows from Theorem 4.1. 3

For our second corollary, we need to recall the following result proven in
[Mi-7].

ProposiTioN 4.1 Let A : D(A) C H — H be selfadjoint, HX be closed
subspaces of H with H = H~ @ HY and H- N H* = {0} and T = {H,, P,} be
a scheme for H that satzsﬁes (2.21). Suppose that N : H — H has a symmelric
weak Galeauz derivative N'(z) on H and there are symmetric maps BY € L(H)
such that B~ < N'(z) < B* for each z € H and
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(4.3) ((A-B)z,z) <0  forz € D(A)NH™,;
(4.4) ((A-B%)z,2) >0 forze D(A)NHT.

Then A+ N : D(A) C H — H is pseudo A-proper w.r.t. T.
In view of Proposition 4.1, we have the following special case of Theorem 4.1.

CoroLLARY 4.2 Let A: D(AY C H — H end N : H — H be as in Proposition
4.1 and satisfy conditions (4.1)-(4.2). Then Int (R(A) + conv R(A)) C R(+A+N)
and +A + N is surjective if such is N.

Next, we shall discuss some conditions that imply (4.3)~(4.4). Let A : D(A) C
H — H be selfadjoint and suppose that
(4.5) BE = Y0 A PE commute with A, where PE : H — ker(B* — A1) are
orthogonal projections, A¥ < ... < A% and are pairwise disjoint;
(4.6) U, [A7, AF] € p(A), the closure of the resolvent set of A.

E I |

As we have seen in Section 2.2, A — B¥ have the spectral resolution
m o0
A-B*= Z/ (A — AE)dE)PE.
f=1 Vo0

Let § be small enough such that pf = A\¥ 5§ satisfy

m

(4.7) Ulei w1 C p(A).

iz}

Then the operators BY = B* 61 have u¥ as their.eigenvalues and ker( B w—pj:) =

ker(B* — )\¥). Since Bf commute with A, the spectral resolutions of A — B are
m e
(4.8) A-BE=Y / () = 1)dE PE.
E e
Define the orthogonal projections P* by
m m
Pt =3 "E(uf,c0)P} and P~ =Y E(~oo,py )P
=l izl
and let H* = P%(H). Note that by (4.7)
m
(4.9) Pt =" E(u;,00)PF

=1
dist(

and

s

Ty ’#f]vﬂ(“i)) > 6.

it
LA
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Moreover, it follows from (4.8) that ((A— B )x,z) < —6||z||* on D(A) N H~
and ((A - B; )z,z) > §||z||> on D(A) N H*. Hence, conditions (4.3)-(4.4) hold.
Moreover, if we assume that P~ = Pt for 1 < i < m, then by (4.9), P* =I1-P~,
ie, H¥ =(H™)t. O

By the discussion above, we have

COROLLARY 4.3 Let A : D(A) C H — H be selfadjoint, HE be closed
subspaces of H with H = H- @ HY and H- N HY = {0} and T = {Ha., Pa}
satisfy (2.21). Suppose that N : H — H has a symmetric weak Gateauz
derivative N'(z) on H and B~ < N'(z) < Bt for ¢ € H and some selfad-
joint maps BY € L(H). If conditions (4.1)-(4.2) and (4.5)-(4.6) hold, then
Int (R(A) + conv R(A)) C R(+A+ N) and £ A+ N is surjective if such is N.

A particular case of Corollary 4.3 is when B~ = Al and Bt = Ay I for
two consective eigenvalues Ay < Ag41 of A. If H~ (resp. H7) is the subspace of H
spanned by the eigenvectors of A corresponding to the eigenvalues A; < Ay (resp.
A > Apy1), then HY = (H™)* and H = H-@®H*. Let T = {H,,, P,} be a scheme
for H with P, Az = Az and P* : H — H% be the orthogonal projections onto H*.
Then T satisfies (2.21) with H,, = H; ® H; and H¥ = H, N H*.

Now, since B~ < Nl(a:) < B* on H, the mean value theorem implies that
1Nz — Nyl| < max{||B~||,||B*|]}{|z - y|| for z,y € H. In particular, taking
B~ = M1 and Bt = Mgy 1, we get

limsup || Nz||/||=]] < max {[Ac, [Ae4al},

ffzfj—oo
and, by (4.2) as noted above

limsup || Nz||/|lz]| < ¥ < a,

T 0

Hence, for N to interact with A; (or Ax41), it must be the zero eigenvalue.

4.2 A Perturbation Method. In this section we shall present another
way of studying Eq. (1.1) by looking at the perturbed equations

{4.10) Az + Nz +eGz=f, e>0

where G s a bounded map. This approach consists of three basic steps. The first
step is to establish the solvability of (4.10) for each € € (0, ¢g); the second step is
to obtain an a priori bound on the solutions, i.e. to show that the set {z. |z, is a
solution of (4.10)} is bounded in a suitable space as ¢ — 0, and the final step is to
show that a weak limit of { z } is a solution of Az + Nz = f.

The approach requires a closedness property of A+ N, which is defined next.

Definition 4.1 Let X be a Banach space embedded in H. We say that
A+ N : D(AYNX — H satisfies condition () if whenever {z, | Az.+ Nz +eGz, =
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= f, 0 < € < ¢} is bounded as ¢ — 0 (in X or H), then there is an z € D{A) such
that Az + Nz = f.

The following result gives various conditions on A and N which guarantee
that condition (%) holds.

ProPOSITION 4.2 Let A : D{ANX — H be a closed linear densely defined map
and N be a nonlinear map. Suppose that either A1 is compact and N monotone,
or the conditions of Corollary 4.1 and Proposition 4.1 hold. Then A + N salisfies
condition ().

Proof. (Sketch) Let {z. | Az, + N2 +¢Gz. = f, 0 < e < ¢} beboundedina
corresponding space. Then, using similar arguments as in the proofs of Propositions
5.1 in [Mi-4], Corollary 4.1 and Proposition 4.1, one can show that the weak limit
z of {z.} solves the equation Az + Nz = f. O

The problem of getting a priori estimates for {4.10), i.e. of showing the
boundedness of {z.}, is harder to handle. Our basic result is [Mi-6]:

TreoReM 4.2 Let A D{A) C H — H be a linear densely defined selfadjoint
map with R(A) = N(A)' and a > 0 be the largest number such that (Az,z) >
~a~!|Az||? on D(A). Suppose that N : H — H is nonlinear, condition (x) holds
and

(4.11) There is a decomposition f = f* + f** with f* € R(A) such that for some
¥ < a and @ constant ¢

(Nz— f*,2) >y YNzl —cforz € H,

(4.12) Eq. (4.10) with G = I is solvable for each 0 < € < €5 and either

(4.13) the set {2z | Azc+ Nzctexe = f, [|Az|| S C, ||Nz¢|| < C for all0 < € < ¢
and some C} is bounded in H, or

(4.14) ||N (2o + z1)]| — 00 as ||zof| — o0, 2o € N(A), uniformly for zy in bounded
subsets of R(A).

Then Eq. (1.1) is solvable.

Proof. Let € > 0 be small and Az, + Nz, + ¢, = f for some ¢, € D(4). We
need to show that {z} is bounded as ¢ — 0. Taking the inner product with z., we
find

f“‘”c”z +(Nze— f,ze) = —~(Aze,z.) < ‘1—1”14‘86“2>

and by (4.11),
ellzdl* + 7 INzl]® < —(4ze,2) + (f*,20) + Cl|Na ]| + C.
Since Av = f* for some v € D(A) and (A(ze — v),ze — v) > ~a"]A(ze — V)%,
we get
ellecll® + 77 INzdl® < a7 A(ze - V)|I* ~ (A(ze = v),v) + Cl|Ne |+ C
< a Y| Azl]® + Cll Azl + Cl|Nzf + C.
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For each v < B < a there is a C(8) such that
7 HINzd|f® - CliNz| 2 87 INzd|® — C(B).
Similarly, for each 8 < 6 < a there is a C(8) such that
dlzeli? + B INz|| < a~!||Aze|* + CllAzdl| + C(B) < 67| Az} + C(B, 6),

where C(8,8) = C(B) + C(6). Since Nz, = f — Az, — ez, the last inequality
implies that

(4.15) e [(1+eB™Dllzdl® = 287 IS ll=ll]
+ (871 = 671 = 2e(a8) ) [|Azdl® — 267 I f| [| A= ]| < C(B,6)-

This implies that for some sufficiently small constants C; > 0, ¢ = 1,2, independent
of ¢,
eCillzell + CallAzell” < Cs,

and therefore ||Az || < C for all small e. Moreover, ||Nz || < C by (4.15) and
consequently ||z]| < C for all small ¢ if A+ N satisfies (4.13). Thus, Az + Nz, =
f—ez— fase— 0and Az + Nz = f for some z € D(A) by condition (x).

Next, if instead of (4.13) we assume (4.14), then 2 = zoe + 21 and llz1e]] =
IA= Az || < Cl|A1|| for all small e. Moreover, [|zo|] < C for such € by (4.14),
and consequently {z} is bounded. Then, the conclusion follows as above. 0

When N is a gradient map, we have the following sufficient and necessary
conditions for the solvability of (1.1) (see [Mi-6]).

THEOREM 4.3 Let A : D(A) C H — H be a linear selfadjoint map and a > 0
be the largest number such that (Az,z) > —a~!||Az]|? on D(A). Assume that either
(4.13) or (4.14) holds, N = 8F for some convez function F : H — R and

(4.16) limsup ||Nz|l/|lz|| < a/2, as |jz|| — oco.

Suppose that either one of the following conditions holds

(4.17) A~ : R(A) C H — H is compact,

(4.18) 0 € o(A) and o(A) N (0,00) # B and consists of eigenvalues of finite mults-
plicities,

(4.19) There are closed subspaces H* of H with H=H- @ H* and H- N H* =
{0}, a scheme T' = {H,, P} satisfying (2.21) and N has a symmetric weak

Galeauz deriv/atz've N' on H such that for some symmetric maps B* € L(H)
with B~ < N (z) < BY on H we have

(i) ((A-B7)z,z)<0 forze D(A)NHT,;
(i) ((A=BY2,z)>0 forze DA)N Ht

Then, Eq. (1.1) is solvable if and only if f = f* + f** with f* € R(A) and
f** € R(N).
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Proof. If z is a solution of Az + Nz = f, then f* = Az and f** = Nz.
Conversely, let f = f* + f** with f* € R(A) and f** € R(N). Then (4.16) and
Proposition A.4 in [Br-Ni-1] imply that N and N, = N +el satisfy (4.2) and (4.11),
respectively, for each ¢ > 0 small. Moreover, N, is monotone and ||Ncz!|| — oo as
{lz|] — oo and therefore it is surjective.

Since A + N, is pseudo A-proper by Propositions 2.2 in [Mi-4] and 4.1, Eq.
(1.1) is solvable for each small ¢ > 0 by Theorem 4.1. Finally, since condition ()
holds by Proposition 4.2, Eq. (1.1) is solvable by Theorem 4.2. O

When H = Ly(Q,R™) we can relax condition (4.14) in Theorem 4.2 (cf.
[Mi-6]).

CoROLLARY 4.4 Let Q C R" be a bounded domain, H = L»(Q,R™) and
Nu = D F(z,u) with F: Q x R™ — R measurable in ¢ and convez and C* in u.
Then, condition (4.14) in Theorem 4.2 can be weakened to

/ F(z,uo(z))dz — 0o as ||ug||z, — o0, up € N(A).
Q

Remark 4.2 When n =1, a/2 in (4.16) can be replaced by a by Proposition
A.6 in [Br-Ni-1].

V. Periodic Solutions of Semilinear Wave
Equations at Resonance

In this section we shall apply some of the abstract results from the previ-
ous section to semilinear (systems) of wave equations (3.1) allowing some type of
interaction of the nonlinearity F' with the spectrum of the linear problem.

We begin with strongly monotone and contractive nonlinearities. Suppose
Q=(0,T) x Q and
(5.1) Let F; : Q@ x R™ — R™ be Caratheory functions, ¢ = 1,2, such that for some

positive constants k; and ¢, with kj, k2 sufficiently small,

(Fl(t,l',y) - Fl(t,Z’,Z)) : (y - Z) Z Cly - Zl2
and
\Fi(t,z,y) — Fi(t, 2, 2)| < kily — 2|

for a.e. (t,z) € Q and all y,2 € R™.

(5.2) There are a > 0 and h € L2(f2) such that for y; = 1, and v € (0,1)

|Fi(t,z,y)| < aly|” + h(t,z) forae. (t,z)e2, y€ R™.

Let L and V be as introduced in Section III. Then, we have shown there
that a linear map A : D(A) C Ly — L3, induced by (3.1), is selfadjoint and
R(A) = N(A)*. Moreover, condition (4.1) holds ter some a4 and aq.

We have
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THEOREM 5.1 Let (5.1)~(5.2) hold witha < a4 /2 and m > 1 and F = 3¢ for
some function P(t,z,y) : @ x R™ — R measurable in (1,z) and differentiable and
convez in y. Then there is a T-periodic weak solution u € Ly for each f € L.

Proof. Define Nyu = Fi(t,z,u) for u € Ly and let N = N;+N,. By (5.1), Ny
is e-strongly monotone and ks-ball contractive and N is ko-ball contractive. Hence,
A+ N is A-proper w.rt. I' = {H,, P,} for Ly with P,Au = Au for v € H, by
Proposition 2.6 in [Mi-8] (cf. also [Mi-4]). Moreover, || Noul||/||u|| — 0 as ||u|} = oo
and

(Nu,u) = (Nyu, u) = || Naul| ul| > elfull® = (|[N10]] + || Noul]) |lu]].
Thus, N is coercive, i.e. (Nu,u)/[Jul] — oo as |juf] =+ oo, and monotone and
therefore, it is surjective.

Next, by Proposition A.4 in [Br-Ni-1], there is a ¥ < a4 such that
(Nu— Nv,u) > v H|Nul|f> — ¢(v) forall u,ve€ Ly

and some constant ¢(v). Hence, by Theorem 4.1, the equation Au — Nu = f is
solvable for each f € Ly, i.e., there is a T-periodic weak solution u € Lj of (3.1)
foreach fe L,. I

As it will be seen below, conditions on F can be greatly relaxed when n = 1.
Next, we shall study the solvability of (3.1) for a given f.

THEOREM 5.2 Let G(t,z,u) : @ x R™ — R be T-periodic in t, measurable in
(t,z) and convez and C* in u and F(t,z,u) = D G(t,z,u) satisfy (5.2). Suppose
that

(5.3) /QG(t,a:, u)dtdz — oo as [Jugll, — oo, ug € N(A).

Moreover, if n > 1 assume that a < a4 /2, (4.6) holds and

(5.4) F € C'(R™, R™) and has a symmetric derivative Dy F(t,z,y) for a.e. (t,z) €
Q and all y € R™,

(5.5) there ezist two commuting m x m symmetric matrices b* such that b~ <
DyF(t,z,y) <6 forae. (t,2)€EQ, y€ R™

and, if n = 1, assume that a < ay..

Then (3.1) has a T-periodic weak solution u € Ly if and only if f = f* + f**
with f* € R(A) and f** € R(N), where Nu= F(t,z,u).

Proof. Let n =1 and a < a;. Then A™! : R(A) C Ly — L3 is compact and
N satisfies condition (4.2) by Proposition 4.1 in [Br-Ni-1]. fn > land a < a4 /2,
condition (4.2) holds by Proposition A.4 in [Br-Ni-1]. Let Xf < --- < AL be the
eigenvalues of b* and set BYu = b*u. Then B* = 3o | M P¥, where P* is the
orthogonal projection onto ker(B* — z\?: I). 1t is easy to show that, after a possible
renumeration of the eigenvalues of b*, we may assume that P* = P for each i.
Then, by our discussion in Section 4.1 the conclusion of the theorem follows from
Theorem 4.3 and Corollary 4.4. O
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CoROLLARY 5.1 Let n = 1 end F(t,z,u) = D,G(t, 2,u) satisfy (5.2) with
he Lo{(), a<ay, and
(5.6) G(t,z,u) > o0 as |u|— oo uniformly a.e. in Q.
Then there 1s 27 periodic weak solution u € Lo of

Ugt + Upezz + F (L, z,u) = ft, ), teER, z€(0,m),
u(t,0) = u(t,7) =0, teER

Uzz(t,0) = ug(t,7) =0

u(0,z) — u(2m,z) = us(0,2) = w(2m,2) =0, te R, z€(0,m)

if and only if f = f* + f** with f* € R(A) and f** € R(N).

(5.7)

Proof. Since h € Ly, and G is convex in u, as in [Ma-Wi] there is § > 0
such that

(5.8) G(t,z,u) > b6|u| - h(t,z)for ae. (t,z)€Q, ue R™.

Since the L; and Ly norms are equivalent on N(A4) (cf. [Ba-Sal), this implies
(5.3) and the conclusion follows from Theorem 5.2. O

When f = 0, we refer to [Ma-Wi] for related results obtained by a dual vari-
ational method. When n = 1, our results imply the following ones of Bahri-Brezis
[Ba-Br] and Bahri-Sanchez [Ba-Sa] for the wave equation and (5.7), respectively.

CoROLLARY 5.2 Let g : R — R be continuous nondecreasing and for some
a<3, bandé6>0

(5.9 ) lg(w)] < alul+b forall ueR,

(5.10) f = f* + f** € Loo(Q) with f* € R(A) and g(—o0) + 6 < f**(t,z) <
g(+00) — § a.e. in Q.

Then there is ¢ weak solution of (5.7) with F replaced by g, and of

Upr — Uzz + g(u) = f(t,:c), te R! zTE (Oa "T)y
(5.11) u(t,0) = u(t,r) =0, teR
u(t + 27, z2) = u(t, z), teR, € (0,m).
Proof. Consider first (5.7). We note that it is equivalent to
(5.12) Av+gu™ +v)— f* = Av+ D,G(t,z,v) =0
where u* € L (Q) is the solution of Au = f*, u = u* + v, and

G{t,z,v) = /0 [g(v* + s) = f**(t,2)]ds.

Since (5.9)—(5.10) imply
(9(u) = f7(t,2))u 2 8|ul/2—C for (t,2) € Q, uER,
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we have that (cf. [Mi-6]) (5.8) and therefore, (5.3) holds. Hence, the weak solv-
ability of (5.7) follows from Theorem 5.2 applied to (5.12).

Next, consider (5.11). Conditions (5.9)~(5.10) and the monotonicity of g
imply (4.11), (4.12) and (*) and by Theorem 4.1 and Proposition 4.2. As shown by
the proof in [Br], condition (4.13) also holds, and consequently the weak solvability
of (5.11) follows from Theorem 4.2. O

Another condition on f** is given in the following result (cf. [Mi-8]).

THEOREM 5.3 Let the conditions of Theorem 5.2 hold. Suppose that f =
4+ € La(Q) with f* € R(A) and

(513) (F(t&x:y) - f"(t,;t)) ‘Y2 C‘F(t>x>y) - f"(tx x)f lyi

Jorallly| > R, a.e. (t,2) € Q, some R, and a sufficiently small ¢ > 0. Then there
ts a T-periodic weak solution of (3.1).

Proof. We shall first show that (5.2) and (5.13) imply condition (4.11). We
have

(Nu— f**,u) = / (F(t,z,u(t,z)) — f**(t,2)) - u(t, z) didz

fu(t,2)i<R
+ / (F(t, 2z, u(t,z))— f**(t,z)) - u(t, z) dtde
ju(t=)|2R
=L+ 1.
By (5.2),

L) < / (alu(t, )|+ h(t, ) + | (t, 2)]) Ju(t, 2)| dtda
lu(t2)I<R
< aR?+ R(IAll+ 1£]]) = e1.
By (5.2) and (5.13), for |u(t,z)| > R
(F(t,z,u(t,z))— f*"(t,2)) - u(t, z)
2 1Ptz u(t,2) = £ (0 2)]- (P2, u(t,2)] - At 2))
= g’iF(tsxsu(t! x))iz - E!F(t:3>“(t>m))! : ({fﬂ(tx :lt)f - h(t> z))
- 2l o)k, ).
Hence,
I 2 ZlINul = (ZUF11+ 180 (1l = 7 A

Since C < €C? + c(e) for each € > 0, condition (4.11) follows easily from the
estimates on Iy and I.

Next, in view of Propositions A.1 and A.4 in [Br-Ni-1], condition (4.14)
holds and therefore the equation Az + Nz + ex = f is solvable for each ¢ > 0 as
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shown in the proof of Theorem 4.3. Hence by our discussion in Section 4.2, the
conclusion follows from Theorem 4.2. [

Remark 5.1 It is easy to see that condition (5.10) implies condition (5.13).
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