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REGULARLY VARYING DISTRIBUTIONS

Bogoljub Stankovié

Abstract. The notions of regularly varying function and distribution in a cone I’ C R"
are given. Also some properties of these two classes are proved, such as: Every regularly varying
function defines a regular distribution which is a regularly varying distribution; a regularly varying
distribution is a sum of derivatives of regularly varying functions. A regularly varying distribution
has a S-asymptotic and the whole theory of the S-asymptotic of distributions can be applied to
the class of regularly varying distributions including applications to partial differential equations
and to integral transformations.

’

1. Introduction. In the classical mathematics the notion of Karamata’s
regularly varying function has been of great help in analysing the asymptotical
behaviour of solutions of mathematical models of many real systems. Seneta’s
book [9] presents the first complete theory of the regularly varying functions in
one variable. Monograph [2] enlarges and supplements {9]. In the last years many
authors proposed definitions of regularly varying functions in multi dimensional
case ([4], [5], [7], [17] and [19]). We shall mention three characteristic definitions
given in [4], [17] and [19].

If solutions of our mathematical models are distributions {generalized func-
tions), then we have the same problem, to define asymptotical behaviour, now for
distributions. The actual development of the quantum physics has given a special
instigation for such studies (see {3}, [18]). In the last two decades many definitions
of asymptotic behaviour of distributions have been presented, elaborated and ap-
plied especially to the integral transformations of distributions. We shall mention
three of them: Equivalence at infinity [6], quasiasymptotic [17] and S-asymptotic
(shift asymptotic) [8].

In this paper we shall, first, give a definition of a regularly varying function
in a cone I' C R" and, second, a definition of a regularly varying distribution in
the cone I Then we shall continue with some properties of these two classes.
Let us remark that in [1] authors have introduced “regularly varying tempered
distributions”, but this is only a generalization of the quasiasymptotic. The class of

AMS Subject Classification {(1985): Primary 46 F 10, Secondary 26 A 12



120 Stankovié

g-strictly-admissible distributions generalizes directly Karamata’s class of regularly
varying functions to the space of tempered distributions. This class is a useful
tool in the quantum field theory and suits well for the Abelian and Tauberian type
theorems for integral transformations of distributions (see [17]).

The property that a function is regularly varying at infinity, in one-dimension,
is a local property. We wanted to preserve this characteristic in the definition of
a regularly varying distribution. Therefore we used the S-asymptotic and not the
quasiasymptotic. Quasiasymptotic is not a local property.

2. Regularly varying functions of several variables. T' will be a convex
acute cone with the vertex at zero and with the nonempty interior; B(0, r) the open
ball in R™ with the center at zero and with the radius r > 0. If z = (z1,... ,z,) €
R" and a = (ay,...,a,) € R", we denote by ||z||” = Yo, z? and by (a,z) =
Soiziai%i. A cone is acute if and only if Cl(chT) does not contain an integral
straight line. For a function f, f¥(z) = f(-z). For i = (i1,...,1,) € N,

Ill = z::l ik'
Definition 1. Let hy,hy € T. We say that hy > ho in T if hy € hy +T.

Definition 2. For a complex valued function G(h), h € T, limper, h—oo G(h) =
A if for every € > 0 there exists h(¢) € I' such that |G(h) — A| < &, when h > h(e)
in I.

From definition 2 it follows that if limper hmoo G(h) = A, then
limaer, h—~oo G(h + ho) = A for every hy € T, as well.

ProposiTION 1.  Suppose that B(a,r) C intT. We denote by T; =
UssoAB(a,r). If imper, hmoo G(h) = A, then limper hmoo G(z + h) = A, as
well, for every x € R".

Proof. By definition 2, for every € > 0 there exists h(¢) € T, such that
|G(h)—A| < &, h € h(e)+T. Now, z—h(e)+Poa € B(Boa, for)if Bo > ||z — h(e)||/r,
Bo depends on €. Hence, z — h(¢) + fpa € T'; C T. Since T is a convex cone,
z—h(e)+Ba+T1 CT'+T, CT and z + foa+ Ty C h(e) + . It follows that
|G(z + h) — A| < ¢ for h € foa +T;.

Remark. 1. If ' = int T', then I'; in Proposition 1 can be the whole I, because
a can be any element from I'.

2. If B(a,r) is such that for any coordinate-axis X;, i = 1, ..., n, the distance
between B(a,r) and X; is positive, d(B, X; ) > a>0,then |hj| —o00,i=1,...,n,
when h € I'y, h — 00; T is constructed as in Proposition 1.

Let us show that. If u € hg+ Ty for a hy € T'y, then u = Aga+ Aoz + Aa+ Ay,
where z,y € B(0,r); Ao, A > 0. Now, it is easy to see that |u;] > (A4+Xo)-(la;|—7) >
(A + Xo)a and for any M > 0 we can find hg with the property |u;| > M. Hence,
if h — 00, h €Ty, then |hi| - 0c0,i=1,...,n.
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Definition 3. A function P : R" — R is said to be regularly varying function
at infinity in T (r.v. function in T') if:

a) for every compact set K C R", P is measurable and locally integrable on
K+T;Plz+h)>0,z€ K,h>hyinT;

b) for every z € R"

(1) peti, Pz +h)/P(h) = exp(a - z)

for an a € R"”; a is called the index of variation.

If a) and b) are valid only for « belonging to a fixed compact set K, P is said
to be the locally r.v. functlion in T.

ProposITION 2. P is a r.v. function in T with indez a if and only if P(z) =
exp(a - z)R(z), where R is a r.v. function in T with indez ¢ = 0.

Proof. The proof follows from the fact that exp(a - z) is positive and contin-
uous function for every a € R".

Remark. If we substitute ¢ = (z1,...,25) by (Inys,...,Iny.), A =

(h1,... hn) by (Inty,...,Int,) and P{lntyys, ..., Intayn) by Qv .- ,tatn),
then for I' = R} Definition 3 gives the definition of Diamond [4]. He treated the
case n = 2.

ProposiTioN 3. If z belongs to a compact set K, limit (1) is uniform on K.

Proof. By Proposition 2 it is enough to prove Proposition 3 in the case a = 0.
The idea of the proof is just the same as for one variable (see [9]). However, we
shall give the proof completely to point out the modifications in the technique of
proving,.

We denote by f(z) = In R(z), then we have to prove that

2) lim [f(z +h)— F(R)] = 0

hel, h—oo

is uniform for z € K.

Suppose that limit (2) is not uniform for z € I}', I, = [~p,p}; K C I}}. Then,
there exist an ¢ > 0 and two sequences {y,} C I}/, {hm} C T, such that

(3) lf(xm-i-hm)—f(hm)lZE, m € N.

Let us construct two sequences of sets:

Ui={y € L, If(y+ hm) = f(hn)| < /2, m > i}

(4) o n :
Vi={ze Il |f(z+zm+hm) — f(&m + hm)| < /2, m > i},

where we take ¢ such that (1 +p/¢)" = 3/2.
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The function f is measurable on I;?M +T. Hence, U; and V; are measurable
sets. These two sequences of sets are, by construction, monotone nondecreasing.
We know that (2) is true for every € R", therefore it follows that

Jim p(Ui) = lim p(V) = p(I7) = (29)",

where p(A) is the measure of the set 4 C R™. Now, there exists n’ such that
w(Ua) > 3(29)%/4 and (Vi) > 3(2¢)"/4. The set W, = Vv + 2, has the
same measure as V.. Both, Unr and Vi liein I o p(Ipy,) = (29)" (L + p/@)" =
329" /2.

Suppose, now, that U, and W,. are disjoint, then we have 3(2¢)*/2 >
w(Unt) + p{(Wyor) > 3(2¢)"/2, but this is impossible. Therefore there exists
z € (Up N Whys), T — Tor € Vo Hence, by relation (4), for this z we have

[f(z+ hp) = f(ha) <€/2  and
|f(zn + 2 — 20 + hpt) — f(:l:nl + h"/)i < e/2.
Using these two relations, we have
[f(@ne + hpt) = flhn)l < €

contradicting relation (3).

3. Regularly varying distribution. Definition 4. A distribution T' € (D')
for which there exist @o € (D) and hg € T such that {T'(z + k), po(z)) # 0, when
h > hp in T, is said to be regularly varying distribution in I' (r.v. distribution in
T) if for every y € R and every ¢ € (D)

. ({T(z+y+h) ()
heIl,an-aoo {T(z + h}, po{x))

(5) = C(po){exp(a- (z + 1)), ¢(2)),
where C(ypp) is a constant depending on @g; C{gpo)exp{a - z) is called the limit
distribution.

ProposITION 4. Suppose T € (D'). If there exists a continuous function
e(h) >0, h > hg in T such that for every ¢ € (D)
(6) lim (T(z +h)/c(h), p(z)) = (U,¢), U#O.

hel', h—oo
then, T is a r.v. distribution in 'y, where T'y is from Proposition 1.

In fact, we supposed that T has the S-asymptotic in T related to ¢(h) with
the limit U (see [8] and [10}).

Proof. Suppose that T has the property given in relation (6). We proved
in [8] that U is of the form U(z) = Cexp(a - z) and for ¢y € (D) for which
{exp(a - z),po(z)) > 0, there exists hg € T such that (T'(z + h)/c(h), po(z)) > 0 for
h > hg in T. Hence, (T(2z + h),po{z)) >0, h > hgin T,
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We put G(h, ) = (T(& + h)/c(h), p(2)) = (T * *)(h)/<(h), then by Propo-
sition 1, for every ¢ € (D), we have
im (L ty+h) o) o cyth) Gluthe)
hely, h—o0  (T'(x + h),wo(z)) hely, h=oo  c(h)  G(h, o)
_ (exp(a-2), o(z))
{exp(a - z), po(z))

exp(a-y).

PropPosITION 5. Suppose T € (D). If T is a r.v. distribution in T' with the
limit C(po) exp(a - z), then T has S-asymptotic related to c(h) = (T * 3 )(h) with
the limit C(po)exp(a-2) in T, that is

peiim (T(z +h)/c(h), () = (Clpo) expla - 2), p(z)).

The proof is obvious.

Remark. 1. If T is an open cone, I' = int T, then the distribution T is a r.v.
distribution in I if and only if there exists a continuous function ¢(h) >0, h €T
such that 7" has S-asymptotic related to ¢{h) with the limit U # 0.

2. Proposition 5 makes possible to use the whole theory of the S-asymptotic
including applications to partial differential equations and integral transformations
of distributions (see [10]-[15]). Using different functions e(h) > 0 and the notion
of the S-asymptotic, we can precise the behaviour of a r.v. distributions at infinity
on a cone I'.

ProrosiTioN 6. If P is a r.v. function in T, it defines a regular distribution
which is ¢ r.v. distribution in Ty,

Proof. By Proposition 3.

. Pz +h) _ /
&Elj}gim /I'{" _ﬁ(ﬁ)—@(x) dz = - exp(a - z)p(z) de.
Therefore, there exist ¢o € (D) and ho € I' such that

/ P(z+h)po(x)dz >0, k> heinT,
Rn
To bring the proof to an end, we shall use Proposition 1

lim / ) Pz +y+h)p / / Pz + h)po(z) da

hel'y, h—oo

L P(y+h) Plz+y+h) P(z + h)
= e s P(R) Jur Py +h) p(z)de / f P(h)
= (exp(a - (y + 2)), p(2))/{exp(a - ), po(z)).

A locally integrable function f can define a r.v. distribution without being a
r.v. function. Such a function, in one-dimensional case, is the following: f = 1+,

————20(z) dz
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where 1 differs from zero only on intervals I, = (n —27",n+2""), n = 2,3,...,
where Y(z) =n, z € I,.

Proposition 6 shows that the notion of r.v. distribution generalizes the notion
of r.v. function in a natural way.

For the next proposition we need the following structural theorem [14].

STRUCTURAL THEOREM. If T € (D') has an S-asymplotic related to the con-
tinuous function c(h) > 0 with the limit U # 0, then for the ball B(0,r) there exist
numerical functions F;, |i| < m, continuous on B(0,r) + T, such that for every
li| < m, Fi(z + h)/c(h) converges uniformly for z € B(0,r) when h € T, h — oo,
and the restriction of the distribution T on B(0,r) + T can be given in the form
T= Elilsm D'F;, where D' are partial derivatives in the sense of distributions.

In the proof of that theorem we showed that all F; are of he form Fi(z) =
(T * i x¥;)(z), where p;,¥; € (DF), Q is a relatively compact open neighborhood
of zero in R™. Fi(z + h)/c(h) converges to (U * @; * ¢;) when h € T', h — oo, and
z belongs to B(0,r).

ProposiTION 7. If T € (D) is a r.v. distribution in T' with the limit
C(po)exp(a-z), C(po) # 0, then

a) for the ball B(0,r) there exist numerical functions F;, |i] < m, continuous
on B(0,r)+T, such that for every [i| < m and c(h) = (T * o3 )(h), Fi(z + h)/c(h)
converges uniformly for ¢ € B(0,r), when h € T, h — oo, and the restriction of
the distribution T on B(0,7) +T' can be given in the form T =3, <, D'F;;

b) F;, |i] < m, are locally r.v. functions in T.

Proof. By Proposition 5, T has S-asymptotic related to c(h) = (T * ¢y )(h)
and with the limit C(po) exp(a-z) in T'. The first part of the Proposition 7 follows
from the cited Structural theorem. Now we shall prove the second part.

By the remarks after the cited Structural theorem it follows that properties
a) in Definition 3 for the compact set Cl B(0,r) are valid. Only the property b) in
Definition 3 remains.

Fiz+h) _ . Flz+h) / Fh)
heT,h—oo  Fi(h)  hel,h=oo  c(h) c(h)

Proposition 7 characterizes the class of r.v. distributions.

=exp(a - z).

The next proposition shows that regular variation of a distribution is a local
property.

ProposITIiON 8. Suppose that distributions Ty and T3 are equal on hy + 'y,
r, = U,\>0 AB(a,r), hy € T1. If Ty is a r.v. distribution in 'y with the limit
C(po)exp(a - z), then Ty has the same property.

Proof. By our supposition, {Ti(z + h), po(z)) > 0, A > hg, in T'y. Let K,
K,, K3 and K be compact sets in R", such that suppye C Ky, suppy C K,
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K;, K3+ K3 C K. By the proof of Proposition 1, we can find fp such that e+ h €
hy+Ty when h € foa+T; and z € K. Hence, (Ti(z+h), ¢{z)) = (L{x+h), ¥(2))
forp = @ and ¢ = @o; h > foa+ kg inI'y and z € K. Now, the proof follows from
this equality.

At the end of this section we shall illustrate how r.v. distributions can be
used in Abelian type theorems for the Stieltjes transformation of distributions in
the one-dimensional case. First, we have to define such a transformation (see [15]).

Let 7, be the well known smooth function with the properties: 0 < n,{z) < 1,
z€R; nu(z) =1,z € (—w,w); nu(z) =0, lg| > 3w; |DPnu(z)| < Crw™*, 2 €R,
k> 0.

Definition 4. The Stieltjes transformation of a distribution T' (S,-transfor-
mation) is defined by the limit

@ Jim (T@) (@) +2)" ") = 5,(T)(s), s €(C\R)
if it exists for some p € R.

PROPOSITION 9. Suppose that T is e r.v. distribution, T = (a,00) and for
r>0 and sg € (C\R)
(i) The distribution T(z)/(so + )" belongs to (B');

(i1) e(h)/(so +z + h)", h € Ry, ¢ € K is a bounded set for any compact
set K.

Then T has S,-transform for all p > r, and
lim S,(T)(s = k)/(T(z + k), pu()) = (Co), (s + 2)77~") = 0
forp>r.

For the proof see [15].

4. Regularly varying tempered distribution. Since a tempered distri-
bution T' € (S*) is also in (D’), Definition 4 can be applied to it as well. But for the
application to partial differential equations and some other applications a stronger
definition regarding tempered distributions is more useful.

Definition 5. A distribution T € (5’}) is said to be regularly varying tempered
distribution in T’ (r.v. tempered distribution in ') if T satisfies all the suppositions
of Definition 4, but for a g € (S) and every ¢ € (S5).

The following proposition illustrates the advantage of the notion of a r.v.
tempered distribution. But we have first to introduce a differential operator.

Let P(i D;) be a linear differential operator, with real coefficients, of degree
m and in n dimensions

P(iDy)= ) aDi,  i=(i1,...,in), 2= (21,...,20)

lijgm
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Py is the principal part of P(i D;). If Po(y) # 0 for any real y # 0, then P(i D;}) is
called an elliptic operator. If the elliptic operator is also homogeneous, it coincides
with its principal part.

ProposiTiON 10. If P(i D;) is an elliptic and homogeneous linear differential
operator, then the equation

P(iD:)U(x) = f(z),  fe€(0)

has always a solution which is a r.v. tempered distribution in ' = {pw, p > 0} for
every w € R”, |lw]} = 1.

For the proof see {16].

4. Some comments. We can not say that there is’a satifactory definition
of regularly varying functions in multidimensional case. The same situation is with
Definition 3, as well. Enlarging the definition of the regularly varying function
of one variable to the case of several variables, one have to choose between two
extreme possibilities: to keep all the properties of r.v. functions of one variable,
but to narrow the class of r.v. functions of several variables down to a very limited
one; or to obtain wide class of r.v. functions of several variables, but lacking some
of the properties. Of course, all depends on usefulness of such notion in solving
mathematical models of real systems. Two mentioned definitions ([4] and [19] are
characteristic in this sense.

Definition A of P. Diamont. A function R(z,y) is said to be regularly varying
at infinity if it is real valued, positive and measurable on {z > A, y > B} for some
A, B > 0, and for each positive a, 8

(8) xéigxw R(az, By)/R(z,y) = o®F°

for some real numbers a and b.

This definition gives a very restrictive class of r.v. functions, but it keeps all
the properties of r.v. functions of one variable. For example, the function Rz, y) =
z+y is not ar.v. function by this definition. The limit lim; y.oo(az + By)/(z +y)
does not exist because for every A > 0 and y = Az, we have R(az, fy)/R(z,y) =
(a+ AB)/ (1 + A).

Definition B of A. L. Yakimiv. A function P is said to be regularly varying
at infinity on the cone I' C R" if for z, ||z|| > r > 0, it is positive, measurable and
for a fixed e € '\ {0} and every z € I'\ {0}

9) tlin;) P(tz)/ P(te) = w(z,e).
The class of r.v. functions defined by Yakimiv is, by all means, wider and

contains the class defined by Diamond. This is not only because Diamond used
just a special cone T = Rﬁ_, but also because Yakirhiv’s limit is weaker and the
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limit function w(z, e) is not specified. The limit function w(z,e) from Yakimiv’s
definition is measurable and homogeneous on . In order to have the continuity
of w(z,e) and some other properties of r.v. functions of one variable, he h~d to
suppose, in addition to the properties from Definition B, the following condition:
If {z;} C T\ {0} and 2y — z € '\ {0}, when ¢ — oo, then

(10) lim [P(te:) — P(t)}/ P(te) = 0.

t
It seems to me that the class of strictly admissible functions (see [17], p.
108) generalizes in the best way the Karamata’s class of r.v. functions to multi-
dimensional case. We gave our Definition 3 thinking on the possibility to enlarge
it to distributions and to keep the local property of this notion. That is the reason
why we chosed such a definition. Moreover, the S-asymptotic is also a notion which
has its origin in the quantum field theory (see [10]). Hence, r.v. distributions have
a real meaning.

Let us remark that in one-dimensional case, if a function f'is a r.v. function
by Karamata’s definition, namely if

tlim fitz)/ f(t) = =2, z>0, a€R
then f is r.v. function by Definition 3, with a = 0, as well. The function f is of the

form f(z) = z*L(z), where L is a slowly varying function. Now, for z € R

. fle+y) . (2+y)® Le4y) _ . Lnuvy)
s flyy e ye Lly) et L(lnv) —

because L(Inz) is a slowly varying function at infinity together with L.

On the other hand, if P is ar.v. functon by Definition 3 and in one-dimension,
it is of the form P(z) = exp(a - ¢)L(exp z), where L is a slowly varying function.
This follows from Proposition 2; the function R has to satisfy

R(z+y) _ R(lnuv)

lim e Y lim SRYY)
=5 R(y) % JI% R(inv)

The natural question arises: For what reason we chose just the function
exp(a - ) in Definition 3. The answer lies in

ProPOSITION 11. If the funciion P satisfies condition a) from Definition 3
for a cone T, intT # O, and

s Pz +R)/P(h) = Q(z) #0,

then Q(z) = exp(a-z), a € R".

Proof. Function P defines a regular distribution which has S-asymptotic with
the limit # 0. We know that @ has the form Q(z) = exp(a - &) (see Proposition 9
in [10]).



128

(1]
{2]
3]
(4]

(8]

[9]
(10]
(11]
(12]
(13]
{14]
(15]
(16]
(17]
(18]

(19]

Stankovié

REFERENCES

S. Berceanu and A. Gheorghe, On the asymptotic of disiributions with support in a cone, J.
Math. Phys. 26 (9), (1985), 2335-2341.

N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Cambridge University
Press, 1987,

N. N. Bogoljubov, V. S. Vladimirov and A. N. Tavkhelidze, Automodel asympiotic in the
quantum field theory, Theor. Math. Phys. 12 (1972}, 13-17 and 12 (1972), 305-330.

P. Diamond, Slowly varying functions of two variables and a Tauberian theorem for the
double Laplace transform, Appl. Anal. 23 (1987), 301-318.

L. de Haan and S. Resnik, On regular variation of probability densities, Stoch. Proc. Appl.
25 (1987), 83-93.

J. Lavoine and O. P. Misra, Théorémes Abéliens pour la transformation de Stielijes des
distributions, C. R. Acad. Sci. Paris, Ser. A 179 (1974), 99-102,

E. Omey, Multivariate Regular Variation end Applications in Probability Theory, Eclectica,
Brussel, 1989.

S. Pilipovi¢ and B. Stankovi¢, S-asymptotic of a distribution, Pliska 10 {1989), 147-156.
E. Seneta, Regularly Varying Functions, Springer-Verlag, Berlin, 1976.

B. Stankovié, S-asymptotic of disiributions, Proceedings of the International Conference of
Generalized Functions, Convergence Structures and Their Applications, Plenum Press, New
York and London, 1988.

B. Stankovi¢, Applications of the S-asympiotic, Univ. u Novom Sadu. Zb. Rad. Prir.-Mat.
Fak. Ser. Mat. 15 (1985), 1-9.

B. Stankovié, Characterization of some subspaces of D’ by S-asymptotic, Publ. Inst. Math.
(Beograd), (N.S.) 41 (55) (1987), 111-117.

B. Stankovié, S-asymplotic expansion of distributions, Inter. J. Math. Sci. 11 {1988), 449-
456,

B. Stankovié, Strucutral theorem for the distributions having S-asymptotic, Publ. Inst. Math.
(Beograd) (N.S.) 45 (59) (1989), 35-40.

B. Stankovié, Abelian theorems for the Stieltjes-Hilbert transform of distributions, Univ. u
Novom Sadu. Zb. Rad. Prir.-Mat. Fak. Ser. Mat. 18 (1988), 89-101.

B. Stankovié, S-asymptotic of solutions of the elliptic partial differential equation, Univ. u
Novom Sadu. Zb. Rad. Prir-Mat. Fak. Ser. Mat. 19 (1989}, 65-72.

V. S. Vladimirov, Yu. N. Dro#zinov and B. 1. Zavjalov, Multi-dimensional Tauberian Theo-
rems for Generalized Funciions, Nauka, Moscow, 1986 (in Russian).

V. S. Vladimirov and B. I. Zavjalov, Tauberian Theorems in the Quantum Field Theory,
Itogi Nauki i Tehniki, 15 (1980), 95-130.

A. L. Yakimiv, Multi-dimensional Tauvberian Theorems and their application to the ramifi-
cation proceas of Bellman and Harris, Mat. Sb. 115 (157) (1981}, 463477 (in Russian).

Institut za matematiku (Received 28 06 1989)
Prirodno-matematicki fakultet
21000 Novi Sad, Jugoslavija



	119.tif
	120.tif
	121.tif
	122.tif
	123.tif
	124.tif
	125.tif
	126.tif
	127.tif
	128.tif

