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SIDON TYPE INEQUALITIES

Ferenc Méricz

Abstract. We prove bounds for the L'-norm over [0, 7] of a linear combination of con-
secutive Dirichlet kernels, while generalizing the inequalities due to Sidon, Fomin, Bojani¢ and
Stanojevié, etc. In the case of the modified conjugate Dirichlet kernels, we give upper bounds for
the L*-norm over [x/{N + 1),7], where Dy(z) is the kernel with the largest subscript occuring
in the linear combination. Special cases were proved earlier by Teljakovskii, Bray and Stanojevié.
We extend all these inequalities to the two-dimensional setting.

1. Introduction. We consider the well-known Dirichlet kernel
k .
1 . sin(k +1/2)z
D = = e ——
£(2) 2 + Zcos_m 2sin{z/2)
j=1
and the conjugate expression

cos(k + 1/2)x
2sin(z/2)

The latter is connected with the conjugate Dirichlet kernel

Di(z) = — (k=0,1,...).

k
De(a) = Y sin je = 22 ;:F:§;)+ 1/2)z

i=1

by the identity _ ~ ) _
Dk(x) = D;;(;t) b Dg(x) (Do(.’z) = 0)

In the sequel, {ax : k£ = 0,1,...} denotes an arbitrary sequence of real
numbers. Sidon [5] proved (apart from the value of the constant) that for all
N=0,1,...

(1.1) Iy = fo )
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N
ZakD;;(x)

k=0

dz < 2N +1) max o]
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Later on, Teljakovskii [6] gave an elegant proof of (1.1).

Bojanié and Stanojevié [1] proved the following more general inequality: For
any p, 1 < p < 2, there exists a constant C, depending only on p such that for all
n=1,2,...

(1.2) /0

where ¢ is the conjugate exponent to p, i.e. 1/p+1/¢=1.

We note that inequality (1.2) is essentially contained in [3] by Fomin. In this
paper, Cp, will denote a positive constant, depending only on p, and usually not the
same at different occurrences. Likewise, C' will denote a positive absolute constant,
whose value is not necessarily the same at each occurrence.

2n—1

Z akD;,(:v)

k=n

2n—1 1/p
dz < C nll"(z |ak|") ,

=n

We also note that the more general inequalities

N 1/p
(1.3) In SCP(N+1)1/4(Z|akI"> (N=0,1,...)
k=0
and
n(N) 2" -1 1/p
(1.4) In < c,,{|a01 +3 2"/'1( > |a,¢|P) }
n=1 k=2n-1

can be deduced from (1.2) in standard ways, where the integer n(N) in (1.4) is
defined by

(1.5) n(0)=0, n(N)=1+[logzN] (N=12,...),
[u] being the greatest integer < u;i.e., 2*M~1 < N < 27N,

2. New inequalities. Our main goal is to generalize (1.1) and (1.2) as
follows.

THEOREM 1. There exists an absolute constant C such that for all 0 <
n<N,1<p<?2 andl/p+1/q:1 we have

(21:’/

S(p—_ci)‘l‘/;(N n+1)1/'l(1+1 N“ )(qup)w.

Clearly, inequalities (1.1) and (1.2) are particular cases of (2.1). Besides, for
n = N (2.1) gives back the well-known estimate of the Lebesgue constant:

L,,:/F|Dn(z)|dzgC(l+ln(n+1)) (n=0,1,...).
0
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Actually the proof of Theorem 1 yields a somewhat sharper estimate than
(2.1): Under the conditions of Theorem 1, we have
(2.2)

IN<C(1+1 N+1 )Elak|+ )UP(N n+1)1/q(z:|ak|r>)m.

k=n
This inequality is obvious by virtue of formulas (3.3)-(3.5) below.
The same sort of reasoning delivers the counterpart of Theorem 1.

THEOREM 2. Under the conditions of Theorem 1, we have
N -
E ar Dy(z)| dz

'
23) IV= /
/(N+1D L,

N+1 C(N = n+1)!/1 e
SCan—v———ﬁZI ag| + “—'""“—ﬁll—p— Z|ak|1’ .

We note that this right-hand side is also majorized by the right-hand side
in (2.1).

A special case of (2.3) says that
Z a5 D;,(x)

24) Iy= /
ﬂ’f(N+1} k=0

1/p
ST + D (Z W) =01,

(v
which is the counterpart of (1.3). The even more special case
INSC(N“‘I)OYS‘}:*SXNI“H (N=0,1,...)
was proved by Teljakovskii [6].
In certain cases, the following variants of (2.1) and (2.4) may be useful.

THEOREM 3. There ezists an absolute constant C such that for all0 <n < N,
0<y<m 1 <p<2 we have

n N i/p
(2.5) / Y akDe(z) R )W -uq(z |ak1p> ,
Y Vk=n
r N
and a stmilar inequality holds for/ Z ar Di(z)| dz, too.
Y lk=n

These inequalities are plain by the same argument that leads to (3.5) in the
proof of Theorem 1.
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We note that the special case v = /(N — n) with 0 < n < N was proved by
Bray and Stanojevié [2].
Finally, we mention a complex variant of (2.5). In this case, {a; : k =
.,—1,0,1,...} is an arbitrary sequence of complex numbers.

THEOREM 4. There ezists an absolute constant C such that for alln < N and
O<y<ml<p<2andl/p+1/qg=1 we have

N - N i/p
i ()
dz < alf) .
[fsms« fg (p—1)t77 g‘n‘

3. Proof of Theorem 1. We split the integral in (2.1) into three parts

3.1)
*(N+1) */(N=n+1) x
VAT I .
0 ®/(N+1) */(N=n+1)

=Ji+J2+ J3, say.

Some of these integrals may be trivial (i.e. when the upper and lower limits coin-
cide).
We will use the familiar estimates

(3.2) |De(z)| < min{k +1/2,7/(22)} for O0<z <.
and Holder’s inequality, respectively. Accordingly,

(3.3) J1 < 1 (k-i- )Iak|<7rZ|ak|

akeikx

1-ei

N

> akDi(z)

k=n

dr

k=n
N 1/p
<x(N-n+ 1)1“(2 msp) ,
k=n
(N~ ﬂ+1) 7]- N +1
(3.4) I < |a,,|/ de=" ™
Z n/(N+1) Z

N P
L Al T (Zr w’)“ .

Now we apply Holder’s inequality and the Hausdorff-Young inequality (see,
e.g. [8, Vol. 2, p. 101]) to the system {sin(k+1/2)z : k£ = 0,1,...}, which is clearly
orthogonal on [0, 7]. As a result, we get

(3.5)
x dz 1fp x
J3 < (/,r/(N_n_!_l) (2Sin(z/2))p) (//(N Ctl) Zak sin(k + 1/2)z

q i/q
d;c)
k=n
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x dx 1/p 12 N 1/p
— P
(//(N—n-H) -’c") T (Z o )
L k=n

1/p+1/2

x y N 1/p
[ — q9 14
52(,,_1)1/»(1" n+1) (;w) .

Combining (3.1), (3.3)—(3.5) gives (2.1) which was to be proved.

<

0ol 3

4. Extension to the two-dimensional case. Let {ajx : j,k = 0,1,...}
be a double sequence of real numbers. Teljakovskii [7] extended (1.1) as follows
> ajxDj(z)De(y)

L2
IMN—/ /
F=0k=0

< 4( M+1)(N+1)0<j<¥llaé)(<k<N|ajk| (M,N =0,1,...).

M N
de dy

We generalized this inequality (see [4]): There exists an absolute constant C such
that for all M,N =0,1,...,1<p<2and 1/p+1/qg=1 we have

C i/p
IMN < (——T(M"" l)llq(N-{'- 1)l/q (ZZ'(IJ];IP) .
7=0k=0

It is not hard to deduce from this inequality that

m(M) 2™ -1 1/p
Iun < 1)2/p {'“0(" + Z 2'"”( > laz‘0|”)
j=2m-1
n(N) 2" -1 1/p
+ Z 2n/q( Z |a0k|")
n=1 k=2n-1
m(M)n(N) 2m-1 2"-1 /p
+ Z Z 2(m+")/9( Z Z |a1k|p) },
m=1 n=1 j=2m—1 p=2n-1
where m(M) and n(N) are defined by: m(M) =1+ [log, M], n(N) = 1 + [log, N]
for M,N =1,2,... and m(0) = n(0) = 0 (cf. (1.5)).
Our claim is to prove the following more general inequalities.
THEOREM 5. There ezxists an absolute constant C such that for all 0 < m <
M,0<n<N,1<p<2 andl/p+1/q=1 we have

(4.1)  IMN dz dy

Z ajxD;(z) Di(y)

j=mk=n

M N

M+1 N+l

j=mk=n
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+ (7_—(’;)—1/;(1\4 —mt 1) (1 +in _1?1_) > (}: |a,,,|P)l/p

k=n “j=m

e (e Yo n e 35 (S lenr)

j=m

1/
G = P =g (3 S )

—1)2
(p 1) /P j=m k=n

THEOREM 6. Under the conditions of Theorem 5, we have

(4.2) IMN = / / Za,kD (z)Di(y) d:cdy
/(M+1) Jx/(N+1) | 2 gk =py
M N
M+1 N+1
<
_C’lnM_m+lln peone mkz;‘la,ﬂ

N M 1/p
c N+1
(p- 1)1/,,(M -m+1)"n 5 “nt1 E(Z I“f"|p)

c M+1 ey )
+(p_1)1/plnM_m+l(N—n+1) P OMLTY

j=m ‘k=n

+

C M N 1/p
+ W(M m+1 )l/q(N—n-{'-l 1“(2: aJk|P) .

j=mk=n

THEOREM 7. Under the conditions of Theorem 5, we have

(4 3)
Z Z a; D (z) De (v)

*/(N+1) j=mk=n

M+1 N+1
<
-c(1+lnM_m+1) LY e

j=mk=n

dz dy

c N+l - tr
+(p—_1—)—1/;(M m+1)1/'11 (Zlalklp)

k=n ‘j=m

C M+1 l/qM N 1 1p
+(p—1)1/P<1+lnM—m+1)(N n+1) Z Z|a,k|

j=m ‘k=n

C M N 1/p
+(—p—_—1)—2-/—p(M—m+l)1/¢(N—n+1)1/q<§:Zlajklp) .

j=mk=n
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The extensions of Theorems 3 and 4 are obvious.

We note that by applying Holder’s inequality to the right-hand sides of (4.1)-
(4.3), we obtain the more transparent inequalities

ITI:llan In]‘;!nN) IMN S ZTC;)—m(M —-m -+ 1)1/(](N__ n 4+ 1)1/‘1x

M+1 N+1 e
X (1+lnm> <1+ln )(Z Zla]k|p> .

j=mk=n

On closing, we emphasize that the extension of these results to d-dimensional
trigonometric sums is straightforward, where d > 3 is a fixed integer. The only
reason that we present here the case d = 2 is to keep the notation manageable.

5. Proof of Theorem 5. Since the proof follows in great lines the pattern
of the proof of Theorem 1, we only sketch it. We begin with splitting the double
integral in IMY into nine parts while integrating over the intervals

0 T ™ s T
M1l | Ms1U M<-m+1|” |M=m+1"

with respect to &, and over the intervals

0. T T T T i
"N+1)” |[IN+1U'N-n+1]" [N=n+T0
with respect to y, respectively. We denote by Ji1, J21, Ja1, Ji2, Ja2, Ja2, Jis, Jas,
Ja3 the corresponding integrals.

By (3.2),

/(M+1) pr/(N+1) M N 1
w0 R R i) () s

j=mk=n
< n? Z Z lajkl,

j=mk=n

r/(M—-m+1) n/(N+1) M N . 1
Jn < / / ajk|=— (k + —) dzd
21 x/(M+1) 0 J;nkX:;,I Jk|21; 2 y

2 M+1 L&
< In
SR e PP

j=mk=n
an analogous estimate for J;2, and

r/(M—m41) pr/(N-n4+1) M N
JzzS/ / ZZMchl—dzdy
T/ (M+1) TN+ T
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x? M+1 N+1 L X
= —In
iy n+1§§|“’kl

Applying again (3.2) and a similar argument that provides (3.5) gives

Z ajxDj(z)

dz dy

M

x x/(1~f+1)§: M

25 [k 2(3)
r/(M-m+1) JO 2 j=
Zajij(r)

<Z// 2

C N M 1/p
< W(M“"“rl)l”z:(z lajklp) :

k=n j=m

dz

(M-m+1)

and an analogous estimate for Jy3,

L x/(N-n41) N
Ja2 < / / Z =
x/(M=m+1) Jx/(N+1) 2y

k=n
N+1 T
—Z —n+1/,r

/(M- m+1)

M

Y a1 Dj()

j—m

Z a;rD;(z)|d

dr dy

N 1/p
C N+1
SpopmMom DT (E'“”"’) |

k=n ‘j=m

and an analogous estimate for Jos.

Finally, by virtue of Holder’s inequality and the Hausdorff-Young inequality
extended to two-dimensional Fourier series, we get

L w
J33=/ /
r/(M-m+1) Jxa/(N-n+1) j=mk=n
(oo i)™
w/(M=m+1) In/(N=n+1) (4Sin(z/2)5in(y/2))”
T 1 . 1
a;psin| j+ - )zs1n(k+-)y
(/1r/(M—m+1)-//(N n+1) Z Z ? ( 2

j=mk=n
7rz/l’+1

1/p
W(M—m+l)l/q( —n+11/q<22|a,,,|v) :

j=m k=n

sin(j + 1/2)z sin(k + 1/2)y
Z Z ik 2sin(z/2) 2sin(y/2) ‘ dz dy

IA

X

q 1/q
dz dy)

IA

Combining the inequalities obtained for Ji, Jo1, ..., Ja3 above completes
the proof of Theorem 5.

The proofs of Theorems 6 and 7 run along the same lines as that of Theorem
5. We do not enter into detail.



Sidon type inequalities 109

REFERENCES

1] R. Bojani¢ and C. V. Stanojevié, A class of L'-convergence, Trans. Amer. Math. Soc. 269
(1982), 677-683.

[2] W. O. Bray and C. V. Stanojevi¢, Teuberian L'-convergence classes of Fourier series. I,
Trans. Amer. Math. Soc, 275 (1983), 59-69.

[3] G. A. Fomin, On linear methods of summability of Fourier series, Math. Sb. (N.S) 65
(107)(1964), 144-152 (Russian).

[4] F. Méricz, On the integrability and L'-convergence of double trigonometric series, Studia
Math. 98 {1990) (to appear).

[58] S. Sidon, Hinreichende Bedingungen fir den Fourier-Charakier einer trigonometrischen
Reihke, J. London Math. Soc. (Ser. 2) 14 (1939), 158-160.

[8) S. A. Teljakovskii, On a sufficient condition of Sidon for integrability of trigonomeiric sertes,
Mat. Zametki 14 (1973), 317-328 {Russian).

[7] S. A. Teljakovskii, On the conditions of integrability of multiple trigonometric series, Trudy
Mat. Inst. Akad. Nauk SSSR 164 {1983), 180-188 (Russian).

8] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, Cambridge, 1959.

University of Szeged (Received 05 10 1989)
Bolyai Institute

Aradi Vértamik tere 1

6720 Szeged, Hungary



	101.tif
	102.tif
	103.tif
	104.tif
	105.tif
	106.tif
	107.tif
	108.tif
	109.tif

