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THE FOURIER CHARACTER OF SERIES WITH
SLOWLY VARYING CONVERGENCE MODULI

Caslav V. Stanojevié

Abstract. Let {c(n)} be an asymptotically even complex null sequence such that for
some p € (1,2]
b
Im Y |kP"Ack)® < oo,  A>1
» |k|=n41
int

Then (i) the series 3=, c(n)e'™* convergese a.e. and (ii) it is the Fourier series of its sum

function if for every £ > 0 there exist §(¢) > 0, independent of n, such that

/mss

for all n, where Ejx(t) = Z;=o e'it,

Ac(k)Ex (t)
fk|2nt1

dt < e,

Riemann’s [1] representation theory influenced early attempts to identify the
Fourier series among trigonometric series, and the ideas of Cantor [2] and Lebesque
(3] dominated further efforts. The framework of subsequent studies in the Fourier
character of the series (1) has been set by the de la Vallee Poussin [4] theorem: If
the pointwise sum function f of the series

(1) Y )™

In|<oo

exists everywhere in T = R/27Z save perhaps on a denumerable subset of T, and
if f is integrable then the series (1) is the Fourier series of its sum function.

Nearly all results (see for instance [5-10]) based on de la Vallee Poussin’s
theorem display the following pattern: (i) the existence of f is guaranteed by certain
regularity and/or speed conditions on {c(n)}; (ii) the integrability of f is implied
by the same conditions applied to manipulated forms of (1). Consequently results
based on de la Vallee Poussin’s theorem are of quite restrictive nature, in particular
regarding to the pointwise convergence of the series (1) to its sum function.
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A new approach to the Fourier character problem is motivated by recent
studies in L}-convergence of Fourier series [11, 12], where a wide class of coefficients
is defined through the convergence modulo K3(c) = 3" jxi<n |kP~|Ac(k)P, p > 1,

of the series (1).
E([An]) .

R(n)
. . . . e 1. — R([An])
finite for A > 1. In particular {R(n)} is *-regularly varying if ,\Eﬂo Ilzn R(n)

e R([An]) _ . .
1, and if ll’P’l R(m) 1, {R(n)} is slowly varying.

Let {¢(n)} be a null sequence of complex numbers. If for some p € (1,2] and
some O-regularly varying sequence {R(n)}

2 K% (c) = lg R(n),

we say that the series (1) has slowly varying convergence modulo. (Notice that
{R(n)} is necessarily nondecreasing).

Here we shall show that the series {1) with slowly varying convergence modulo,
is the Fourier series of its sum function f if and only if integrals of tails of the
regularized sums are uniformly equicontinuous.

The control of the sine coefficients {c¢(n) — c(—n)} of the series (1), can be
done in two, essentially equivalent ways: (i) by splitting (1) into cosine and sine
series, and assuming certain additional conditions for the sine coefficients; (ii) by
working with the complex form of (1} and assuming some kind of mild evenness
conditions for {c(n)}, i.e.:

A sequence {R(n)} of positive numbers is O-regularly varying if Iim
£

(3) %Z le(k) = e(—=k)|lgk = o(1), n — oo,
k=1
!
(4) JJim Tim > 1A(e(k) = e(=k)|1gk = 0.
k=n+1

We shall adopt the second way and call null sequences satisfying (3) and (4) asymp-
totically even.

In the next theorem we need the following denotations. The Fejer sums are
denoted by on(c) = oa(c,t) = (n+ 1)1 Y 4 _, Sk(c), where {Si(c)} are partial
sums of (1). The regularized partial sum are denoted by

9n(e) = ga(e,t) = D Ac(k)Ei(t) = Sa(e,t) = [e(n)En(t) + c(—n) E_n(t)],

lkj<n~1

where Ep = Ei(t) = E;zoeij‘. For p € (1,2] and 1/p+ 1/q = 1 we define the
interval

(A — 1)—4/(q+1) m(A — 1)-4/(q+1))
n L )

n

T,(A) = (
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A > 1. The L}(T)-norm is denoted by || - ||. .

THEOREM. Let (1) be a series with slowly varying convergence modulo. Then
(i) the poiniwise sum function f of the series (1) exists a.e. in T;
(i1) for asymptotically even coefficients the following statements are equivalent:
(ii.1) for every € > 0 there exisis §(¢) > 0, independent of n, and such that

Culc,6) = /6

> Ac(k)Ex(t) l dt<e

fe]|>n+1

for all n,
(i.2) e= f; and
(iii) for c = f, 1Sa(f) = fll = o(1), n — oo, is equivalent to f(n)lg|n| = of1),

in] — o0.

Proof. To prove (i) consider the nontrivial case KP(c) — oo, as n — co.
Then (2) implies

1<mw<l+hm 1 1KER([’\"D

=~ n lgR(n) — n lg R(n) R(n) ’
i.e. {K2(c)} is a slowly varying sequence. Hence the series 2 in|<oo [Ac(n)[P con-
verges. For t # 0, via Riesz’ [13] and Carleson’s [14] theorem, the series (1)
converges a.e. in T to its sum function f.

The equivalence between (ii.1) and (ii.2) is a consequence of following esti-
mations:

1 [An] 5
[/\n]—nk;;lsk(c)“g" mz A>1
where
1 [An]

<ai- 1)”“*“(@ —(—Rg R)D)W,

by a uniform estimation of Ej;, Jensen-Petrov# inequality and the condition (3);

(An} k-1
1
In < i 3 / Y Ac(j)D-(t);dt
{An} -n Exzn+l T=Ta(X) {il=n !

< Cz(/\ _ 1)1/(q+1) <1g R}({[::;]))”P’
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by Holder’s inequality followed by Hausdorff-Young inequality and the condition

(3);

[An]

Isn(A) < Cs 3 1A(c(k) - e(=k))|Igk,
k=n

straightforwardly;

[An)

1/p
o) $ &gt 3 ®P)
k=n+1

by Holder’s and Hausdorff-Young’s inequalities; and plainly

[An]

Isnd) S Z le(k) — c(—k)|1gk.

(All five constants are absolute). From the above estimations and (2), (3) and (4)
we have

[An]
1
LR e DI O
and by a standard argument if follows that limy_.140limy, ||7n(c, A) — f|] = 0 is

equivalent to ||gn(c) — f|| = 0(1), n — co. From

1/p
)3 IAc(k)I") ,

Ca(e,8) < [1f — gn(e)ll < Cnlc,6) + ce(
|k|>2n+1

where Cs is an absolute constant and the series ), o, [Ac(k)[P converges, it
follows that (ii.1) is equivalent to ||ga(c) — fI| = o(1), n — oo. Hence (11.1) is
equivalent to limy_ 140 limy, ||m(¢) — f|| = 0, and since the later is equivalent to
¢ = f, it follows that (ii.1) is equivalent to (ii.2).

The proof of (iii) goes as in [12].

When instead of LP methods we use straightforward estimations we get the
following result.

PRrOPOSITION. Let {c(n)} be a complez null sequence and for some *-regularly
varying sequence {R(n)} let the series

S~ 18" [R(n)/R(n - 1)]
; g (n+1)

converge for some p € (1,00). If 3 4< 1Ac(k)|1g|k| = lg R(n) then the conclu-
sions of Theorem hold.
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