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ON THE DISTRIBUTION OF WAITING TIME

UNTIL k-TH REPETITION OF ANY EVENT

Dragan Banjevi�c

Abstract. The random placing of balls continues until we �nd that one of boxes has been
occupied k times, k � 2 (\birthday surprise"). The case of unlimited number of alternatives with
unequal probabilities is discussed. Some exact and asymptotic formulas for the distribution of
waiting time are given.

1. Introduction

In this paper we consider a classical model for waiting times which is also
known as \birthday surprise". The random placing of balls continues until we
�nd that one of boxes has been occupied k times, k � 2. The problem with
equally likely alternatives is primarily discussed by Feller (1968), and considered
by new methods by Newman (1960), Klamkin and Newman (1967) and Dwass
(1969), where interesting results about expected waiting time are given. For the
case k = 2, interesting asymptotic results are given by Arnold (1972). An overview
on the problem is given by Johnson and Kotz (1977). Slightly di�erent approach
of the \birthday surprise" problem is considered by Saperstein (1972, 1975) and
Naus (1974), with restrictions on the number of balls. Cerasoli (1983, 1984) and
Buoncristiani and Cerasoli (1984) use the method given by Dwass (1969) (so called
Poisson randomizaton method) and obtained some general results about occupancy
problems with applications to \birthday" problem. Here we discuss the case of
alternatives without assumption on equal probabilities. In this situation, the case
k = 2 is considered by Banjevi�c (1974).

Let pi be the probability of placing one ball in the box number i, pi > 0,
i = 1; 2; . . . ,

P
pi = 1. Let Ni(n) be the number of balls in the box number i after

n independent placings, and N = minfn : for some i, Ni(n) = kg.
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Noting that Qk(n) = P (N > n) = P
�T

ifNi(n) < kg
�
, and using Poisson

randomization method introduced in Dwass (1969), we see that

gk(t) =
1X
n=0

Qk(n)
tn

n!
=

1Y
i=1

k�1X
j=0

(tpi)
j

j!
;

but this formula is not so convenient for analysis, except in the equiprobable case.
In this paper we give some explicit formulas for Qk(n), and also simple asymptotic
formulas in the case maxi pi ! 0.

2. First formula for Qk(n)

We see that

Qk(n) =

1X
j=1

X
n1+���+nj=n

1�ni<k

n!

n1! . . .nj !

X
1�i1<���<ij

pn1i1 � . . . � p
nj
ij
: (1)

We need (1) in some �nite form. In order to obtain this, let

p(n1; . . . ; nj) =
X

i1;... ;ij

pn1i1 � . . . � p
nj
ij
; 1 � n1 � . . . � nj ; (2)

where the sum is running over di�erent integers i1; . . . ; ij . Let p(i) =
P

j p
i
j ,

i = 1; 2; . . . . Let I � f1; 2; . . . ; jg, and for given (n1; n2; . . . ; nj), let d(I) =P
i2I ni, and p[I] = p(d(I)). Then we can express p(n1; n2; . . . ; nj) as the function

of p(1); p(2); . . . .

LEMMA 1. We have

p(n1; . . . ; nj) =

jX
m=1

(�1)j�m
X
(A)

(j1 � 1)! . . . (jm � 1)!
X
(B)

p[I1] . . . p[Im];

where sum (A) is over 1 � j1 � . . . � jm � j, j1 + � � � + jm = j, and sum (B) is
over fI1; . . . ; Img, I1 + � � �+ Im = f1; 2; . . . ; jg, jIij = ji (jI j = card(I)).

Proof . For I = fi1; . . . ; isg let us denote p(I) = p(ni1 ; . . . ; nis). From (2) we
have

p(n1; . . . ; nj ; nj+1) =
X

i1;... ;ij

pn1i1 � . . . � p
nj
ij

X
ij+1

p
nj+1
ij+1

=
X

pn1i1 � . . . � p
nj
ij

�
p(nj+1) � p

nj+1
i1

� � � � � p
nj+1
ij

�
= p(nj+1)p(n1; . . . ; nj)� p(n2; n3; . . . ; nj ; n1 + nj+1)

� p(n1; n3; . . . ; nj ; n2 + nj+1)� � � � � p(n1; n2; . . . ; nj�1; nj + nj+1):

(4)

We proceed to derive the formula

p(n1; . . . ; nj+1) =
X

I�f1;... ;jg

(�1)jI
0j�1(jI 0j � 1)!p[I

0]p(I); (5)
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I + I 0 = f1; 2; . . . ; j + 1g.

From (4) it is evident that

p(n1; . . . ; nj+1) =
X

I�f1;... ;jg

aj(I)p
[I0]p(I);

for some coeÆcients aj(I). From (4) we have aj(f1; . . . ; jg) = 1, and

X
I�f1;... ;jg

aj(I)p
[I0]p(I) = p(nj+1)p(n1; . . . ; nj)�

jX
i=1

X
I�f1;... ;jgnfig

aj�1(I)p
[I0]p(I):

Consider some �xed I , jI j = r < j. On the right-hand side, I is absent
in exactly r sums and present in exactly j � r = jI 0j � 1 sums, where I + I 0 =
f1; 2; . . . ; j+1g, so that aj(I) = (�1)(j� r)aj�1(I) = (�1)j�r(j� r)!, which gives
(5). From (5) it is easy to obtain (3). �

Example 1. p(n1) = p(n1), p(n1; n2) = p(n1)p(n2) � p(n1+n2), p(n1; n2; n3) =
2p(n1+n2+n3) � p(n1)p(n2+n3) � p(n2)p(n1+n3) � p(n3)p(n1+n2) + p(n1)p(n2)p(n3). �

From (1) and Lemma 1, we obtain

THEOREM 1. We have

Qk(n) =

nX
j=1

X
(C)

n!

n1! . . .nj !
b(n1; . . . ; nj)p(n1; . . . ; nj); (6)

where the sum (C) is over n1; . . . ; nj such that 1 � n1 � � � � � nj < k, n1 + � � �+
nj = n. b(n1; . . . ; nj) = (a1! . . .as!)

�1 if n1; . . . ; nj consists of s di�erent groups
with ai members in i-th group, i = 1; 2; . . . ; s, a1 + a2 + � � �+ as = j. �

From (6) we see that Qk(n) is a function of p(i), i = 1; 2; . . . ; n.

Example 2. Let us denote p(n1; . . . ; nj) = q(j) if n1 = . . . = nj = 1. Then,
from (6) we set

Q2(n+ 1) = q(n+ 1) =

nX
j=1

(�1)n�j
n!

j!
p(n+1�j)Q2(j):

This formula was obtained by Banjevi�c (1974). �

3. Second formula for Qk(n)

The formula in Theorem 1 is not convenient neither for large n, nor for ap-
proximations. Let

�
n

j1; . . . ; jt

�
=

n!

j1! . . . jt!
�
n�

P
ji
�
!
;
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and
pn(j1; . . . ; jt) =

X
i1;... ;it

pj1i1 � . . . � p
jt
it
(1� pi1 � � � � � pit)

n��ji ; (7)

where i1; . . . ; it are di�erent integers. It is easy to see that

pn(j1; . . . ; jt) =
X

k1;... ;kt

(�1)k1+���+kt
�

n��ji
k1; . . . ; kt

�
p(j1 + k1; . . . ; jt + kt); (8)

and pn(j1; . . . ; jt) = p(j1; . . . ; jt), if n =
P

ji.

From the inclusion-exclusion principle, we set

Rk(n) = P (N � n) = 1�Qk(n) =
X

1�t�n=k

(�1)tPt; (9)

where

Pt =
X
(D)

�
n

j1; . . . ; jt

�
b(j1; . . . ; jt)pn(j1; . . . ; jt) (10)

and the sum (D) is over j1; . . . ; jt, such that k � j1 � � � � � jt, j1 + � � �+ jt � n.

Example 3. For t = 1, t = 2 from Example 1 and (8) and (9) we obtain

pn(j) =

n�jX
i=0

(�1)i
�
n� j

i

�
p(j+i), and

P1 =

nX
j=k

�
n

j

�
pn(j) =

nX
i=k

(�1)i�k
�
i� 1

k � 1

��
n

i

�
p(i)

=

�
n

k

�
p(k) � k

�
n

k + 1

�
p(k+1) +

�
k + 1

2

��
n

k + 2

�
p(k+2) � � � � ;

P2 =
1

2

�
n

k; k

�
p(k)p(k) � k

�
n

k; k + 1

�
p(k)p(k+1) + � � �

�
1

2

�
n

k; k

�
p(2k) + k

�
n

k; k + 1

�
p(2k+1) + � � � :

If k � n < 2k, Rk(n) = P1, if 2k � n < 3k, Rk(n) = P1 � P2. In general, by
Bonferoni's inequality, P1 � P2 � Rk(n) � P1. �

Remark 1. The formula for Pt contains only terms of the form p(i1)p(i2) � . . . �
p(is), s � t, i1 + � � � + is � kt. Then the coeÆcient related to p(r), k � r < 2k,
in Rk(n), is the same as the corresponding one in P1, as well as one for p(r),
2k � r < 3k in P1 � P2, and one for p(r)p(i), r; i � k, 2k � r + i < 3k in �P2. �

Example 4. Let us consider directly the equiprobable case, i.e. pi = i=M ,
i = 1; 2; :::;M . Let for given k;M Qk(M;n) = P (N > n). Let f(M;n;m) be
the number of permutations of M objects, of the length n, such that any object
may appear at most m times, m � 1, M � 1, n � 1 (n | permutations with
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limited repetition, see Frucht (1966) and Mendelson (1981)). It is easy to see that
f(M;n;m) =Mn for n � m, and f(M;n;m) = 0 for n > Mm, and that

f(M;n;m) =

mX
i=0

�
n

i

�
f(M � 1; n� i;m): (11)

From Qk(M;n) = f(M;n; k � 1)=Mn and (11) we have the formula

Qk(M;n) =

k�1X
i=0

�
n

i

��
1

M

�i�
1�

1

M

�n�i
Qk(M � 1; n� i); (12)

where Qk(M;n) = 1, n � k � 1, Qk(M;n) = 0, n � (k � 1)M .

Mendelson (1981) gives another recursive formula for f(M;n;m) which gives

Qk(M;n+1) = Qk(M;n)�

�
n

k � 1

��
1

M

�k�1�
1�

1

M

�n�k+1
Qk(M�1; n�k+1):

(13)

Let m(k) = minfn : Qk(M;n) � 0;5g be median of the distribution. Using
(13), calculation gives values for m(k), expectation Ek(N) and standard deviation
sk(N) in Table 1. In the case k = 2, good approximations for E(N) are given in
McCabe (1970). �

4. Asymptotic formulas for Qk(n)

Let pi be ordered by magnitude, i.e. 1 > p1 � p2 � � � � . Then we have

THEOREM 2. Let p1 ! 0. Then

Rk(n) = 1�Qk(n) �

mX
i=k

(�1)i�k
�
i� 1

k � 1

��
n

i

�
p(i); (14)

m = minfn; 2k � 2g, k � 2.

Proof . We see that p(r) < p(j) for r > j, and p(j1) � . . .�p(jt) � (p(k))t � (p(k))2

for j1; . . . ; jt � k, t � 2. Also p(k) � p1p
(k�1) � pk�11 ! 0, and p(s)=p(j) � ps�j1 !

0, s > j, if p1 ! 0. We shall prove that p(2k) � (p(k))2 � p(2k�1). The �rst

inequality is obtained from p(k; k) = p(k)p(k) � p(2k) � 0 (Example 1). In order
to obtain the second, let the random variable X be such that P (X = i) = pi,

and f(i) = pk�1i . Then p(2k�1) = E(f(X))2 � (Ef(X))2 = (p(k))2. We have

(p(k))2=p(2k�2) � p(2k�1)=p(2k�2) � p1 ! 0, so that p(s) = o(p(2k�2)), s > 2k � 2,
and p(j1) � . . . � p(jt) = o(p(2k�2)), j1; . . . ; jt � k, t � 2. By Example 3 and Remark

1, we obtain the theorem. Notice that for pi = 1=M , i = 1; 2; . . . ;M , p(2k�1) =
(p(k))2, so that formula (14) in the general case is the best formula which contains

only \linear" terms p(j), j � k. �
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THEOREM 3. Qk(n) = limj!1H(j; n), where H(j; n) satisfy the recursive
equation

H(j; n) =

k�1X
i=0

pij

�
n

i

�
H(j � 1; n� i); (15)

with H(j; 0) = 1, H(1; n) = pn1 , n < k, H(1; n) = 0, n � k, p1 � p2 � . . . .

Proof . Let H(j; n) =
X

n1+���+nj=n
0�ni<k

n!

n1! � . . . � nj !
pn11 � . . . � p

nj
j . Then it is easy to

obtain (15). So

Qk(n) = lim
j!1

P

� j\
i=1

fNi(n) < kg

�

= lim
j!1

nX
m=0

X
n1+���+nj=m

0�ni<k

�
n

n1; . . . ; nj

�
pn11 � . . . � p

nj
j (1� p1 � � � � � pj)

n�m

= lim
j!1

nX
m=0

(1� p1 � � � � � pj)
n�m

�
n

m

�
H(j;m) = lim

j!1
H(j; n);

from 0 � H(j;m) � 1 and (1� p1 � � � � � pj)
n�m ! 0, j !1, for 0 � m < n. �

We note that, in certain way, Theorem 3 is a generalization of (12).

The method used in Theorem 3 gives the possibility for the generalization of
the model for waiting time. Let the box number i be fully occupied if it contains
ki balls, ki � 1, i = 1; 2; . . . and let placing of balls continue until one of boxes has
been occupied. Then we obtain

Q(n j k1; k2; . . . ) = lim
j!1

P

� j\
i=1

fNi(n) < kig

�
= lim

j!1
H(j; n);

H(j; n) =

kj�1X
i=0

pij

�
n

i

�
H(j � 1; n� i);

H(j; 0) = 1; H(1; n) = pn1 ; n < k1; H(1; n) = 0; n � k1:

Table 1. Median m(k), expected waiting time Ek(N) and standard
deviation sk(N) for waiting of k repetitions for M = 365 birthdays.

k 2 3 4 5 6 7 8 9 10

m(k) 23 88 187 313 460 623 798 985 1181
Ek(N) 24,6 88,7 187,1 311,5 456,0 616,6 790,3 975,0 1168,7
sk(N) 12,2 32,8 56,1 79,7 102,7 124,9 146,3 167,3 186,7
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