ON THE DISTRIBUTION OF WAITING TIME UNTIL k-TH REPETITION OF ANY EVENT

Dragan Banjević

Abstract

The random placing of balls continues until we find that one of boxes has been occupied k times, $k \geq 2$ ("birthday surprise"). The case of unlimited number of alternatives with unequal probabilities is discussed. Some exact and asymptotic formulas for the distribution of waiting time are given.

1. Introduction

In this paper we consider a classical model for waiting times which is also known as "birthday surprise". The random placing of balls continues until we find that one of boxes has been occupied k times, $k \geq 2$. The problem with equally likely alternatives is primarily discussed by Feller (1968), and considered by new methods by Newman (1960), Klamkin and Newman (1967) and Dwass (1969), where interesting results about expected waiting time are given. For the case $k=2$, interesting asymptotic results are given by Arnold (1972). An overview on the problem is given by Johnson and Kotz (1977). Slightly different approach of the "birthday surprise" problem is considered by Saperstein $(1972,1975)$ and Naus (1974), with restrictions on the number of balls. Cerasoli $(1983,1984)$ and Buoncristiani and Cerasoli (1984) use the method given by Dwass (1969) (so called Poisson randomizaton method) and obtained some general results about occupancy problems with applications to "birthday" problem. Here we discuss the case of alternatives without assumption on equal probabilities. In this situation, the case $k=2$ is considered by Banjevic (1974).

Let p_{i} be the probability of placing one ball in the box number $i, p_{i}>0$, $i=1,2, \ldots, \sum p_{i}=1$. Let $N_{i}(n)$ be the number of balls in the box number i after n independent placings, and $N=\min \left\{n\right.$: for some $\left.i, N_{i}(n)=k\right\}$.

Noting that $Q_{k}(n)=P(N>n)=P\left(\bigcap_{i}\left\{N_{i}(n)<k\right\}\right)$, and using Poisson randomization method introduced in Dwass (1969), we see that

$$
g_{k}(t)=\sum_{n=0}^{\infty} Q_{k}(n) \frac{t^{n}}{n!}=\prod_{i=1}^{\infty} \sum_{j=0}^{k-1} \frac{\left(t p_{i}\right)^{j}}{j!}
$$

but this formula is not so convenient for analysis, except in the equiprobable case. In this paper we give some explicit formulas for $Q_{k}(n)$, and also simple asymptotic formulas in the case $\max _{i} p_{i} \rightarrow 0$.

2. First formula for $Q_{k}(n)$

We see that

$$
\begin{equation*}
Q_{k}(n)=\sum_{j=1}^{\infty} \sum_{\substack{n_{1}+\cdots+n_{j}=n \\ 1 \leq n_{i}<k}} \frac{n!}{n_{1}!\ldots n_{j}!} \sum_{1 \leq i_{1}<\cdots<i_{j}} p_{i_{1}}^{n_{1}} \cdot \ldots \cdot p_{i_{j}}^{n_{j}} \tag{1}
\end{equation*}
$$

We need (1) in some finite form. In order to obtain this, let

$$
\begin{equation*}
p\left(n_{1}, \ldots, n_{j}\right)=\sum_{i_{1}, \ldots, i_{j}} p_{i_{1}}^{n_{1}} \cdot \ldots \cdot p_{i_{j}}^{n_{j}}, \quad 1 \leq n_{1} \leq \ldots \leq n_{j} \tag{2}
\end{equation*}
$$

where the sum is running over different integers i_{1}, \ldots, i_{j}. Let $p^{(i)}=\sum_{j} p_{j}^{i}$, $i=1,2, \ldots$ Let $I \subset\{1,2, \ldots, j\}$, and for given $\left(n_{1}, n_{2}, \ldots, n_{j}\right)$, let $d(I)=$ $\sum_{i \in I} n_{i}$, and $p^{[I]}=p^{(d(I))}$. Then we can express $p\left(n_{1}, n_{2}, \ldots, n_{j}\right)$ as the function of $p^{(1)}, p^{(2)}, \ldots$.

Lemma 1. We have

$$
p\left(n_{1}, \ldots, n_{j}\right)=\sum_{m=1}^{j}(-1)^{j-m} \sum_{(A)}\left(j_{1}-1\right)!\ldots\left(j_{m}-1\right)!\sum_{(B)} p^{\left[I_{1}\right]} \ldots p^{\left[I_{m}\right]}
$$

where $\operatorname{sum}(A)$ is over $1 \leq j_{1} \leq \ldots \leq j_{m} \leq j, j_{1}+\cdots+j_{m}=j$, and sum (B) is over $\left\{I_{1}, \ldots, I_{m}\right\}, I_{1}+\cdots+I_{m}=\{1,2, \ldots, j\},\left|I_{i}\right|=j_{i}(|I|=\operatorname{card}(I))$.

Proof. For $I=\left\{i_{1}, \ldots, i_{s}\right\}$ let us denote $p(I)=p\left(n_{i_{1}}, \ldots, n_{i_{s}}\right)$. From (2) we have

$$
\begin{align*}
& p\left(n_{1}, \ldots, n_{j}, n_{j+1}\right)=\sum_{i_{1}, \ldots, i_{j}} p_{i_{1}}^{n_{1}} \cdot \ldots \cdot p_{i_{j}}^{n_{j}} \sum \sum_{i_{j+1}} p_{i_{j+1}}^{n_{j+1}} \\
& =\sum p_{i_{1}}^{n_{1}} \cdot \ldots \cdot p_{i_{j}}^{n_{j}}\left(p^{\left(n_{j+1}\right)}-p_{i_{1}}^{n_{j+1}}-\cdots-p_{i_{j}}^{n_{j+1}}\right) \tag{4}\\
& =p^{\left(n_{j+1}\right)} p\left(n_{1}, \ldots, n_{j}\right)-p\left(n_{2}, n_{3}, \ldots, n_{j}, n_{1}+n_{j+1}\right) \\
& \quad-p\left(n_{1}, n_{3}, \ldots, n_{j}, n_{2}+n_{j+1}\right)-\cdots-p\left(n_{1}, n_{2}, \ldots, n_{j-1}, n_{j}+n_{j+1}\right)
\end{align*}
$$

We proceed to derive the formula

$$
\begin{equation*}
p\left(n_{1}, \ldots, n_{j+1}\right)=\sum_{I \subset\{1, \ldots, j\}}(-1)^{\left|I^{\prime}\right|-1}\left(\left|I^{\prime}\right|-1\right)!p^{\left[I^{\prime}\right]} p(I) \tag{5}
\end{equation*}
$$

$I+I^{\prime}=\{1,2, \ldots, j+1\}$.
From (4) it is evident that

$$
p\left(n_{1}, \ldots, n_{j+1}\right)=\sum_{I \subset\{1, \ldots, j\}} a_{j}(I) p^{\left[I^{\prime}\right]} p(I)
$$

for some coefficients $a_{j}(I)$. From (4) we have $a_{j}(\{1, \ldots, j\})=1$, and

$$
\sum_{I \subset\{1, \ldots, j\}} a_{j}(I) p^{\left[I^{\prime}\right]} p(I)=p^{\left(n_{j+1}\right)} p\left(n_{1}, \ldots, n_{j}\right)-\sum_{i=1}^{j} \sum_{I \subset\{1, \ldots, j\} \backslash\{i\}} a_{j-1}(I) p^{\left[I^{\prime}\right]} p(I)
$$

Consider some fixed $I,|I|=r<j$. On the right-hand side, I is absent in exactly r sums and present in exactly $j-r=\left|I^{\prime}\right|-1$ sums, where $I+I^{\prime}=$ $\{1,2, \ldots, j+1\}$, so that $a_{j}(I)=(-1)(j-r) a_{j-1}(I)=(-1)^{j-r}(j-r)!$, which gives (5). From (5) it is easy to obtain (3).

Example 1. $p\left(n_{1}\right)=p^{\left(n_{1}\right)}, p\left(n_{1}, n_{2}\right)=p^{\left(n_{1}\right)} p^{\left(n_{2}\right)}-p^{\left(n_{1}+n_{2}\right)}, p\left(n_{1}, n_{2}, n_{3}\right)=$ $2 p^{\left(n_{1}+n_{2}+n_{3}\right)}-p^{\left(n_{1}\right)} p^{\left(n_{2}+n_{3}\right)}-p^{\left(n_{2}\right)} p^{\left(n_{1}+n_{3}\right)}-p^{\left(n_{3}\right)} p^{\left(n_{1}+n_{2}\right)}+p^{\left(n_{1}\right)} p^{\left(n_{2}\right)} p^{\left(n_{3}\right)}$.

From (1) and Lemma 1, we obtain
Theorem 1. We have

$$
\begin{equation*}
Q_{k}(n)=\sum_{j=1}^{n} \sum_{(C)} \frac{n!}{n_{1}!\ldots n_{j}!} b\left(n_{1}, \ldots, n_{j}\right) p\left(n_{1}, \ldots, n_{j}\right) \tag{6}
\end{equation*}
$$

where the sum (C) is over n_{1}, \ldots, n_{j} such that $1 \leq n_{1} \leq \cdots \leq n_{j}<k, n_{1}+\cdots+$ $n_{j}=n . b\left(n_{1}, \ldots, n_{j}\right)=\left(a_{1}!\ldots a_{s}!\right)^{-1}$ if n_{1}, \ldots, n_{j} consists of s different groups with a_{i} members in i-th group, $i=1,2, \ldots, s, a_{1}+a_{2}+\cdots+a_{s}=j$.

From (6) we see that $Q_{k}(n)$ is a function of $p^{(i)}, i=1,2, \ldots, n$.
Example 2. Let us denote $p\left(n_{1}, \ldots, n_{j}\right)=q(j)$ if $n_{1}=\ldots=n_{j}=1$. Then, from (6) we set

$$
Q_{2}(n+1)=q(n+1)=\sum_{j=1}^{n}(-1)^{n-j} \frac{n!}{j!} p^{(n+1-j)} Q_{2}(j)
$$

This formula was obtained by Banjević (1974).

3. Second formula for $Q_{k}(n)$

The formula in Theorem 1 is not convenient neither for large n, nor for approximations. Let

$$
\binom{n}{j_{1}, \ldots, j_{t}}=\frac{n!}{j_{1}!\ldots j_{t}!\left(n-\sum j_{i}\right)!}
$$

and

$$
\begin{equation*}
p_{n}\left(j_{1}, \ldots, j_{t}\right)=\sum_{i_{1}, \ldots, i_{t}} p_{i_{1}}^{j_{1}} \cdot \ldots \cdot p_{i_{t}}^{j_{t}}\left(1-p_{i_{1}}-\cdots-p_{i_{t}}\right)^{n-\Sigma j_{i}} \tag{7}
\end{equation*}
$$

where i_{1}, \ldots, i_{t} are different integers. It is easy to see that

$$
\begin{equation*}
p_{n}\left(j_{1}, \ldots, j_{t}\right)=\sum_{k_{1}, \ldots, k_{t}}(-1)^{k_{1}+\cdots+k_{t}}\binom{n-\Sigma j_{i}}{k_{1}, \ldots, k_{t}} p\left(j_{1}+k_{1}, \ldots, j_{t}+k_{t}\right) \tag{8}
\end{equation*}
$$

and $p_{n}\left(j_{1}, \ldots, j_{t}\right)=p\left(j_{1}, \ldots, j_{t}\right)$, if $n=\sum j_{i}$.
From the inclusion-exclusion principle, we set

$$
\begin{equation*}
R_{k}(n)=P(N \leq n)=1-Q_{k}(n)=\sum_{1 \leq t \leq n / k}(-1)^{t} P_{t} \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{t}=\sum_{(D)}\binom{n}{j_{1}, \ldots, j_{t}} b\left(j_{1}, \ldots, j_{t}\right) p_{n}\left(j_{1}, \ldots, j_{t}\right) \tag{10}
\end{equation*}
$$

and the sum (D) is over j_{1}, \ldots, j_{t}, such that $k \leq j_{1} \leq \cdots \leq j_{t}, j_{1}+\cdots+j_{t} \leq n$.
Example 3. For $t=1, t=2$ from Example 1 and (8) and (9) we obtain

$$
\begin{aligned}
p_{n}(j)= & \sum_{i=0}^{n-j}(-1)^{i}\binom{n-j}{i} p^{(j+i)}, \text { and } \\
P_{1}= & \sum_{j=k}^{n}\binom{n}{j} p_{n}(j)=\sum_{i=k}^{n}(-1)^{i-k}\binom{i-1}{k-1}\binom{n}{i} p^{(i)} \\
= & \binom{n}{k} p^{(k)}-k\binom{n}{k+1} p^{(k+1)}+\binom{k+1}{2}\binom{n}{k+2} p^{(k+2)}-\cdots \\
P_{2}= & \frac{1}{2}\binom{n}{k, k} p^{(k)} p^{(k)}-k\binom{n}{k, k+1} p^{(k)} p^{(k+1)}+\cdots \\
& -\frac{1}{2}\binom{n}{k, k} p^{(2 k)}+k\binom{n}{k, k+1} p^{(2 k+1)}+\cdots
\end{aligned}
$$

If $k \leq n<2 k, R_{k}(n)=P_{1}$, if $2 k \leq n<3 k, R_{k}(n)=P_{1}-P_{2}$. In general, by Bonferoni's inequality, $P_{1}-P_{2} \leq R_{k}(n) \leq P_{1}$.

Remark 1. The formula for P_{t} contains only terms of the form $p^{\left(i_{1}\right)} p^{\left(i_{2}\right)} \ldots$. $p^{\left(i_{s}\right)}, s \leq t, i_{1}+\cdots+i_{s} \geq k t$. Then the coefficient related to $p^{(r)}, k \leq r<2 k$, in $R_{k}(n)$, is the same as the corresponding one in P_{1}, as well as one for $p^{(r)}$, $2 k \leq r<3 k$ in $P_{1}-P_{2}$, and one for $p^{(r)} p^{(i)}, r, i \geq k, 2 k \leq r+i<3 k$ in $-P_{2}$.

Example 4. Let us consider directly the equiprobable case, i.e. $p_{i}=i / M$, $i=1,2, \ldots, M$. Let for given $k, M Q_{k}(M, n)=P(N>n)$. Let $f(M, n, m)$ be the number of permutations of M objects, of the length n, such that any object may appear at most m times, $m \geq 1, M \geq 1, n \geq 1$ (n - permutations with
limited repetition, see Frucht (1966) and Mendelson (1981)). It is easy to see that $f(M, n, m)=M^{n}$ for $n \leq m$, and $f(M, n, m)=0$ for $n>M m$, and that

$$
\begin{equation*}
f(M, n, m)=\sum_{i=0}^{m}\binom{n}{i} f(M-1, n-i, m) \tag{11}
\end{equation*}
$$

From $Q_{k}(M, n)=f(M, n, k-1) / M^{n}$ and (11) we have the formula

$$
\begin{equation*}
Q_{k}(M, n)=\sum_{i=0}^{k-1}\binom{n}{i}\left(\frac{1}{M}\right)^{i}\left(1-\frac{1}{M}\right)^{n-i} Q_{k}(M-1, n-i) \tag{12}
\end{equation*}
$$

where $Q_{k}(M, n)=1, n \leq k-1, Q_{k}(M, n)=0, n \geq(k-1) M$.
Mendelson (1981) gives another recursive formula for $f(M, n, m)$ which gives
$Q_{k}(M, n+1)=Q_{k}(M, n)-\binom{n}{k-1}\left(\frac{1}{M}\right)^{k-1}\left(1-\frac{1}{M}\right)^{n-k+1} Q_{k}(M-1, n-k+1)$.

Let $m(k)=\min \left\{n: Q_{k}(M, n) \leq 0,5\right\}$ be median of the distribution. Using (13), calculation gives values for $m(k)$, expectation $E_{k}(N)$ and standard deviation $s_{k}(N)$ in Table 1. In the case $k=2$, good approximations for $E(N)$ are given in McCabe (1970).

4. Asymptotic formulas for $Q_{k}(n)$

Let p_{i} be ordered by magnitude, i.e. $1>p_{1} \geq p_{2} \geq \cdots$. Then we have
Theorem 2. Let $p_{1} \rightarrow 0$. Then

$$
\begin{equation*}
R_{k}(n)=1-Q_{k}(n) \sim \sum_{i=k}^{m}(-1)^{i-k}\binom{i-1}{k-1}\binom{n}{i} p^{(i)} \tag{14}
\end{equation*}
$$

$m=\min \{n, 2 k-2\}, k \geq 2$.
Proof. We see that $p^{(r)}<p^{(j)}$ for $r>j$, and $p^{\left(j_{1}\right)} \ldots \ldots p^{\left(j_{t}\right)} \leq\left(p^{(k)}\right)^{t} \leq\left(p^{(k)}\right)^{2}$ for $j_{1}, \ldots, j_{t} \geq k, t \geq 2$. Also $p^{(k)} \leq p_{1} p^{(k-1)} \leq p_{1}^{k-1} \rightarrow 0$, and $p^{(s)} / p^{(j)} \leq p_{1}^{s-j} \rightarrow$ $0, s>j$, if $p_{1} \rightarrow 0$. We shall prove that $p^{(2 k)} \leq\left(p^{(k)}\right)^{2} \leq p^{(2 k-1)}$. The first inequality is obtained from $p(k, k)=p^{(k)} p^{(k)}-p^{(2 k)} \geq 0$ (Example 1). In order to obtain the second, let the random variable X be such that $P(X=i)=p_{i}$, and $f(i)=p_{i}^{k-1}$. Then $p^{(2 k-1)}=E(f(X))^{2} \geq(E f(X))^{2}=\left(p^{(k)}\right)^{2}$. We have $\left(p^{(k)}\right)^{2} / p^{(2 k-2)} \leq p^{(2 k-1)} / p^{(2 k-2)} \leq p_{1} \rightarrow 0$, so that $p^{(s)}=o\left(p^{(2 k-2)}\right), s>2 k-2$, and $p^{\left(j_{1}\right)} \cdot \ldots \cdot p^{\left(j_{t}\right)}=o\left(p^{(2 k-2)}\right), j_{1}, \ldots, j_{t} \geq k, t \geq 2$. By Example 3 and Remark 1 , we obtain the theorem. Notice that for $p_{i}=1 / M, i=1,2, \ldots, M, p^{(2 k-1)}=$ $\left(p^{(k)}\right)^{2}$, so that formula (14) in the general case is the best formula which contains only"linear" terms $p^{(j)}, j \geq k$.

Theorem 3. $Q_{k}(n)=\lim _{j \rightarrow \infty} H(j, n)$, where $H(j, n)$ satisfy the recursive equation

$$
\begin{equation*}
H(j, n)=\sum_{i=0}^{k-1} p_{j}^{i}\binom{n}{i} H(j-1, n-i) \tag{15}
\end{equation*}
$$

with $H(j, 0)=1, H(1, n)=p_{1}^{n}, n<k, H(1, n)=0, n \geq k, p_{1} \geq p_{2} \geq \ldots$.

$$
\text { Proof. Let } H(j, n)=\sum_{\substack{n_{1}+\cdots+n_{j}=n \\ 0 \leq n_{i}<k}} \frac{n!}{n_{1}!\cdot \ldots \cdot n_{j}!} p_{1}^{n_{1}} \cdot \ldots \cdot p_{j}^{n_{j}} \text {. Then it is easy to }
$$ obtain (15). So

$$
\begin{aligned}
Q_{k}(n) & =\lim _{j \rightarrow \infty} P\left(\bigcap_{i=1}^{j}\left\{N_{i}(n)<k\right\}\right) \\
& =\lim _{j \rightarrow \infty} \sum_{m=0}^{n} \sum_{\substack{n_{1}+\cdots+n_{j}=m \\
0 \leq n_{i}<k}}^{n}\binom{n}{n_{1}, \ldots, n_{j}} p_{1}^{n_{1}} \cdot \ldots \cdot p_{j}^{n_{j}}\left(1-p_{1}-\cdots-p_{j}\right)^{n-m} \\
& =\lim _{j \rightarrow \infty} \sum_{m=0}^{n}\left(1-p_{1}-\cdots-p_{j}\right)^{n-m}\binom{n}{m} H(j, m)=\lim _{j \rightarrow \infty} H(j, n)
\end{aligned}
$$

from $0 \leq H(j, m) \leq 1$ and $\left(1-p_{1}-\cdots-p_{j}\right)^{n-m} \rightarrow 0, j \rightarrow \infty$, for $0 \leq m<n$.
We note that, in certain way, Theorem 3 is a generalization of (12).
The method used in Theorem 3 gives the possibility for the generalization of the model for waiting time. Let the box number i be fully occupied if it contains k_{i} balls, $k_{i} \geq 1, i=1,2, \ldots$ and let placing of balls continue until one of boxes has been occupied. Then we obtain

$$
\begin{gathered}
Q\left(n \mid k_{1}, k_{2}, \ldots\right)=\lim _{j \rightarrow \infty} P\left(\bigcap_{i=1}^{j}\left\{N_{i}(n)<k_{i}\right\}\right)=\lim _{j \rightarrow \infty} H(j, n), \\
H(j, n)=\sum_{i=0}^{k_{j}-1} p_{j}^{i}\binom{n}{i} H(j-1, n-i), \\
H(j, 0)=1, \quad H(1, n)=p_{1}^{n}, \quad n<k_{1}, \quad H(1, n)=0, \quad n \geq k_{1} .
\end{gathered}
$$

Table 1. Median $m(k)$, expected waiting time $E_{k}(N)$ and standard deviation $s_{k}(N)$ for waiting of k repetitions for $M=365$ birthdays.

k	2	3	4	5	6	7	8	9	10
$m(k)$	23	88	187	313	460	623	798	985	1181
$E_{k}(N)$	24,6	88,7	187,1	311,5	456,0	616,6	790,3	975,0	1168,7
$s_{k}(N)$	12,2	32,8	56,1	79,7	102,7	124,9	146,3	167,3	186,7

REFERENCES

[1] D. Banjević, Generalization of waiting times model, Mat. Vesnik 11 (26), (1974) 3-9.
[2] M. Cerasoli, Poisson randomization in occupancy problems, J. Math. Anal. Appl. 94 (1983), 150-165.
[3] M. Cerasoli, Studio di leggi d'occupazione mediante misture poissoniane, Boll. Un. Mat. Ital. A (6) 3 (1984), 289-295.
[4] J. H. Buoncristiani and M. Cerasoli, Multidimensional occupancy problems with Poisson randomization, J. Math. Anal. Appl. 104 (1984), 526-536.
[5] M. Dwass, More birthday surprises, J. Combin. Theory 7, (1969), 258-261.
[6] W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, Wiley, New York, 1968.
[7] R. Frucht, Permutations with limited repetitions, J. Combin. Theory 1 (1966), 195-201.
[8] N. L. Johnson and S. Kotz, Urn Models and Their Applications, Wiley, New York, 1977.
[9] M. S. Klamkin and D. J. Newman, Extension of the birthday surprise, J. Combin. Theory 3 (1967), 279-282.
[10] B. McCabe, Elementary problem E 2263, Amer. Math. Monthly 77 (1970), 1008.
[11] H. Mendelson, On permutations with limited repetition, J. Combin. Theory, Ser. A 30 (1981), 351-353.
[12] J. Naus, Probabilities for a generalized birthday problem, J. Amer. Statist. Assoc. 69 (1974), 810-815.
[13] D. J. Newman, The double dixie cup problem, Amer. Math. Monthly 67 (1960), 58-61.
[14] B. Saperstein, The generalized birthday problem, J. Amer. Statist. Assoc. 67 (1972), 425-428.
[15] B. Saperstein, Note on a clustering problem, J. Appl. Probab. 12 (1975), 629-632.
[16] B. C. Arnold, The waiting time until first duplication, J. Appl. Prob. 9 (1972), 841-846.

