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RANDOM SUM LIMIT THEOREMS

FOR NONIDENTICALLY DISTRIBUTED RANDOM VARIABLES

Slobodanka Jankovi�c

Abstract. Two limit theorems for sums with random indices are proved, one related to
triangular arrays, the other to normed sums. No conditions concerning moments are imposed.

Starting from the classical work of Robbins [1] and Anscombe [2], many
versions of the random index limit theorem for sums of random variables were
proved. However, not many of them treated the case when random variables are
not necessarily identically distributed. Among those that did, are theorems from
[3], [4], [5], [6], [7]. Here we shall be specially concerned with the results from [3]
and [4]. We shall try to weaken conditions imposed in the limit theorems from [3]
and [4], in particular | conditions concerning moments of random variables.

Suppose that
X11; . . . ;X1k; . . .
: : : : : : : : : : : : : : : :
Xn1;. . . ;Xnk;. . .
: : : : : : : : : : : : : : :

(1)

are in�nite sequences or row-wise independent and not necessarily identically dis-
tributed random variables, PfXnk � xg = Fnk(x), n � 1, k � 1, kn is a positive
integer-valued sequence such that kn !1 as n!1; �n is a sequence of positive
integer-valued random variables, independent of Xnk, k � 1.

Kruglov [3] proved the following theorem:

THEOREM. Suppose that the following conditions hold :

(A) EXnk = 0, DXnk = �2n < +1 for n � 1, k � 1; lim
n!1

�2n = 0;

(B) lim
n!1

Pf�n=kn � xg = A(x), kn = [��2n ]
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where A is a proper probability distribution and (here and in the sequel ) [x] denotes
the integer part of x;

(C) lim
n!1

P

� (l+1)knX
j=lkn+1

Xnj � x

�
= �(x).

for every l = 0; 1; 2; . . . , where � is N (0; 1) probability distribution.

Then we have

lim
n!1

P

� �nX
k=1

Xnk � x

�
= G(x);

and the characteristic function  of G satis�es :

 (t) =

Z 1

0

exp(�yt2=2) dA(y):

Here we want to prove a limit theorem for sums of in�nitely increasing num-
ber of random variables (1), but without the assumptions about the convergence
to Normal distribution (conditions A and C from Kruglov's theorem). We remain
in the setting of the classical summation theory because we assume that random
variables (1) satisfy the following u.a.n. (uniformly asymptotically negligible) con-
dition: for l = 0; 1; 2; . . .

lim
n!1

max
lkn+1�k�(l+1)kn

PfjXnkj � "g = 0: (2)

THEOREM 1. Suppose the following conditions are ful�lled :

(A0) For each l = 0; 1; 2; . . . and every sequence of sets Jn � flkn+1; . . . ; (l+
2)kng, cardJn = kn,

lim
n!1

P

� X
j2Jn

Xnj � x

�
= F (x)

holds at every continuity point of a proper probability distribution F ;

(B) lim
n!1

Pf�n=kn � xg = A(x), A(0) = 0,

where A is a proper probability distribution.

Then we have

lim
n!1

P

� �nX
k=1

Xnk � x

�
= G(x);

where

 (t) =

Z 1

0

('(t))y dA(y)

and  and ' are characteristic functions of G and F , respectively.

Obviously, the probability distribution F from the condition A0 could be any
in�nitely divisible probability distribution.
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We shall show that Kruglov's theorem is a special case of the Theorem 1. In
order to prove this, it is suÆcient to prove that Kruglov's conditions A and C imply
the condition A0 of the Theorem 1. So, let us suppose that the conditions A and C
are ful�lled and let us recall the following theorem [8, p. 314], giving necessary and
suÆcient conditions for the convergence of sums of in�nitely increasing number of
independent random variables to the Normal law.

THEOREM. Let Xnk be a sequence of row-wise independent random variables

such that the sequence of sums
knX
k=1

Xnk

converges weakly to some nondegenerate random variable. Then the limit law is

Normal, and the u.a.n. condition is satis�ed if and only if

lim
n!1

knX
k=1

PfjXnkj � "g = 0

for every �xed " > 0.

The uniform asymptotic negligibility of the random variables satisfying con-
dition A could be easily obtained using Chebyshev's inequality. Together with the
condition C, this implies the validity of conditions of the above theorem and there-
fore, for every �xed l, l = 0; 1; 2; . . . and Jn � flkn+1; . . . ; (l+2)kng, cardJn = kn,
we have X

j2Jn

PfjXnj j � "g �

(l+2)knX
k=lkn+1

PfjXnkj � "g ! 0

so that
P

j2Jn
Xnj is the sum tending to N (0; 1) law as n!1, which means that

the condition A0 from the Theorem 1 is ful�lled too, with the distribution F being
Normal.

The second transfer theorem that we shall prove is related to the class L of
distributions. Namelly let Xn, n = 1; 2; . . . be a sequence of independent random
variables for which the following u.a.n. condition holds:

lim
n!1

max
1�k�n

PfjXkj � bn"g = 0;

where bn is a sequence of positive real numbers. Set Sn =
Pn

k=1Xk for n � 1. L
is the class of distributions which are the weak limits of distributions of the sums

b�1n (Sn � an); n � 1; (3)

where bn � 0 and an are suitably chosen constants (in terms of characteristic
functions (3) becomes

exp(�isanb
�1
n )

nY
j=1

fj(sb
�1
n ); n � 1;
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where fj is the characteristic function of Xj).

THEOREM 2. Suppose the following conditions hold :

A) There exists a proper probability distribution F such that

lim
n!1

Pfb�1n (Sn � an) � xg = F (x)

at all continuity points of F ;

B) For each 0 < t � 1, the following limit exists :

lim
n!1

Pfb�1n (S[nt] � an) � xg = Gt(x);

C) �n, n = 1; 2; . . . , is a sequence of positive, integer-valued random variables,

independent of Xk, k = 1; 2; . . . , such that

lim
n!1

Pf�n=n � xg = Q(x)

weakly to a proper probability distribution Q.

Then we have

lim
n!1

Pfb�1n (S�n � an) � xg = H(x);

where the characteristic function h of the probability distribution H sa�s�es

h(s) =

Z 1

0

exp
�
isA(y)

�
f
�
B(y)s

�
dQ(y): (4)

Here f is the characteristic function of F and functions A and B are given by

A(y) = C(1� y�); B(y) = y�; y > 0; � > 0; C = const.

In the article [4] Mogyor�odi proved a transfer theorem for the normed sums
but, instead of the condition B, he supposed that EXn = 0, D2Xn exists for
n = 1; 2; . . . , and that the sequence bn from (3) is regularly varying, i.e. that for
some positive �, bn = n�L(n), where L(n) is a slowly varying sequence (namely
the sequence satisfying L([nt])=L(n) ! 1, as n ! 1, for any t > 0; for de�nition
and properties of regularly varying sequences, see [9]. Since for distributions having
�nite expectations the natural centering is with expectations, Mogyor�odi's condition
EXn = 0 implied that centering constants an (from the formula (3)) were zero, and
consequently the function A (from (4)) did not exist.

Let us compare Mogyor�odi's conditions with our condition B. We shall see
that if EXn = 0, then the condition B is equivalent to the regular variation of the
sequence bn (from (3)). If EXn = 0 and B is valid, we have:

lim
n!1

Pfb�1n S[nt] � xg = Gt(x); 0 < t � 1:
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Since then an = 0 we have

lim
n!1

Pfb�1n Sn � xg = F (x);

and, using the convergence of types theorem ([8], [9]) it follows that there exists a
non-negative function B such that (5) is valid:

lim
n!1

b[nt]

bn
= B(t); for 0 < t � 1. (5)

When t > 1 then it follows from (5) (since bn+1=bn ! 1, as n!1 and [nt] � nt <
[nt] + 1) that

lim
n!1

b[nt]
bn

= lim
n!1

b[nt]
b[[nt]=t]

= B�1
�
1

t

�
:

But that means exactly that the sequence bn is regularly varying, so we have that
B(t) = t�, t > 0. Since bn ! 1 as n ! 1, then � > 0. On the other hand, if
Mogyor�odi's conditions are satis�ed, then for 0 < t � 1:

Gt(x) = lim
n!1

Pfb�1n S[nt] � xg

= lim
n!1

Pfb�1[nt]S[nt] � bnb
�1
[nt]xg = F (t��x):

which means that B is valid.

Proof of Theorem 1. Put pnj = Pf�n = jg, An(x) =
P

j�x Pnj . Since �n are
independent of Xnk, k � 1, one has

P

� �nX
k=1

Xnk � x

�
=

1X
j=1

P

� jX
k=1

Xnk � x

�
pnj :

In terms of characteristic functions (where fnk is the characteristic function of Xnk)
the right hand side of the preceding equality becomes

Z 1

0

[x]Y
k=1

fnk(t) dAn(x):

Put x = ykn, y > 0; then the above integral becomes

Z 1

0

[ykn]Y
k=1

fnk(t) dAn(ykn): (6)

Put vn(t) =
Q[ykn]

k=1 fnk(t), y > 0. We are interested whether the sequence of
characteristic functions vn tends to a limiting characteristic function as n ! 1
and, if the answer is aÆrmative, to determine that limiting function.

From the condition A0 it follows, specially that if y is a positive integer, then

lim
n!1

[ykn]Y
k=1

fnk(t) = lim
n!1

yknY
k=1

fnk(t) = ('(t))y ; y 2 N:
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Put ln = [ykn]. Since kn !1 as n!1, obviously then

lim
n!1

ln=kn = y: (7)

Let us suppose �rst that 0 < y < 1.

Denote by Vn the probability distribution corresponding to the characteristic
function vn. According to Helly's theorem we can select a convergent subsequence
Vnj converging to a nondecreasing and right continuous function V (in the sequel
we shall put everywhere n instead of nj in order to simplify the notation). In
order that V be the probability distribution, it is necessary and suÆcient that the

sequence
Pln

k=1Xnk be stochastically bounded , i.e. that for every " > 0 there exists
b such that for big enough n

P

� ����
lnX
k=1

Xnk

���� > b

�
< ":

Let us denote by Znk random variables obtained from the variables Xnk by
symmetrization. The condition A0 implies the convergence of

knX
k=1

Znk (8)

as n!1, which implies the stochastic boundedness of the sequence (8). From the
symmetrization inequalities it follows that

P

� ����
knX
k=1

Znk

���� > "

�
�

1

2
P

� ����
lnX
k=1

Znk

���� > "

�
�

1

4
P

� ����
lnX
k=1

Xnk �mn

���� > "

�
: (9)

" > 0, where mn is a median of the random variables

lnX
k=1

Xnk:

The inequalities (9) imply that the sequence of random variables

lnX
k=1

Xnk �mn (10)

is stochastically bounded.

From the continuity theorem for characteristic functions it follows that

exp(�itmn)

lnY
k=1

fnk(t)

converges, as n!1, to a characteristic function, which we shall denote by v. The
characteristic function v is in�nitely divisible, as limiting for the sums (10).
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Put un(t) =
Q2kn

k=kn+ln+1
fnk(t). According to the condition A0, we have that

'(t) = lim
n!1

vn(t)un(t) = lim
n!1

vn(t) exp(�itmn) exp(itmn)un(t): (11)

Since
lim
n!1

vn(t) exp(�itmn) = v(t); (12)

it turns out that, as ' and v (being in�nitely divisible) have no zeros,

lim
n!1

exp(itmn)un(t) = u(t) (13)

is uniquely determined and continuous at t = 0.

Let us consider the following kn products (to the power 1=kn), each of them
being obtained by multiplication of ln the successive characteristic functions from
the sequence fn1; . . . ; fnkn and multiplied by exp(�itmn) (cyclic, fn1 follows after
fnkn):

�
exp(�itmn)

lnY
k=1

fnk(t) exp(�itmn)

ln+1Y
k=2

fnk(t)

� . . . � exp(�itmn)fnkn(t)

ln�1Y
k=1

fnk(t)

�1=kn
: (14)

Owing to the conditions A0, (12) and (13), each of the kn products tends
to the characteristic function v, so that the whole expression (14) tends to v, as
n ! 1. On the other hand, each function fnk, 1 � k � kn, appears exactly ln
times in (14). Accordingly, (14) can be written as

exp(�itmn)

� knY
k=1

fnk(t)

�ln=kn

(15)

and we have that

lim
n!1

exp(�itmn)

� knY
k=1

fnk(t)

�ln=kn

= v(t):

By A0 and (7) we have

lim
n!1

� knY
k=1

fnk(t)

�ln=kn

= ('(t))y :

Since v and ' are in�nitely divisible characteristic functions, limn!1 exp(�itmn)

exists and consequently limn!1mn is constant, which implies that
Pln

k=1Xnk is
stochastically bounded, and therefore, without loss of generality, that constant
could be taken to be zero. Therefore we have

v(t) = ('(t))y :



148 Jankovi�c

Up to now, everything holds just for the subsequence nj of the sequence n. If
we suppose that Vn contains another subsequence Vn0

j
, which converges to a limit

di�erent from the one for the sequence nj , then proceeding as above we get that
every weakly convergent subsequence of Vn has the same limit.

So far it has been assumed that 0 < y < 1. When y > 1 we have

[ykn]Y
k=1

fnk(t) =

[y]knY
k=1

fnk(t)

[ykn]Y
k=[y]kn+1

fnk(t): (16)

From A0 it follows that
Q[y]kn

k=1 fnk(t) tends to '
[y]. From the case when 0 < y < 1,

analogously we have that

lim
n!1

[ykn]Y
k=[y]kn+1

fnk(t) = ('(t))y�[y];

and, using (16), we get

����
Z 1

0

[ykn]Y
k=1

fnk(t) dAn(ykn)�

Z 1

0

('(t))y dA(y)

����

�

����
Z 1

0

[ykn]Y
k=1

fnk(t) dAn(ykn)�

Z 1

0

('(t))y dAn(ykn)

����
+

����
Z 1

0

('(t))y dAn(ykn)�

Z 1

0

('(t))y dA(y)

����:
Denote by I1 and I2 the �rst and the second expression, respectively. Then I2 tends
to zero by extended Helly-Bray theorem, and for I1 the following inequalities are
valid:

I1 �

Z b

0

����
[ykn]Y
k=1

fnk(t)� ('(t))y
���� dAn(ykn)

+

Z 1

b

����
[ykn]Y
k=1

fnk(t)� ('(t))y
���� dAn(ykn)

� sup
0�y�b

����
[ykn]Y
k=1

fnk(t)� ('(t))y
����+ 2(1�An(b)):

Now, for each �xed " > 0, we can select b such that 2(1�A(b)) < "=2 is valid.
Since the convergence of the characteristic functions is uniform on �nite intervals,
there exists n1 such that the �rst item is smaller then "=2 for n > n1. From the
condition B it follows that n2 exists such that 2(1� An(b)) < "=2 for n > n2. So,
we have that I1 < " for n > maxfn1; n2g, and the proof is completed.
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Proof of Theorem 2. Set pnk = Pf�n = kg and

Qn(x) = Pf�n � xg =
X
k�x

pnk:

Since �n are independent of Xk, n � 1, k � 1, we have

P

�
b�1n

� �nX
j=1

Xj � an

�
� x

�
=

1X
k=1

P

�
b�1n

� kX
j=1

Xj � an

�
� x

�
pnk:

Denote by hn the characteristic function of b�1n (S�n�an) and by fj the char-
acteristic function of Xj . Then, in terms of characteristic functions, the preceding
equality becomes:

hn(s) =

1X
k=1

exp(�isanb
�1
n )

kY
j=1

fj(sb
�1
n )pnk

=

Z 1

0

exp(�isanb
�1
n )

[x]Y
j=1

fj(sb
�1
n ) dQn(x):

Put x = ny; then

hn(s) =

Z 1

0

exp(�isanb
�1
n )

[ny]Y
j=1

fj(sb
�1
n ) dQn(ny)

=

Z 1

0

�
exp
�
is
�
(a[ny] � an)b

�1
n � a[ny]b

�1
n b[ny]b

�1
[ny]

��
�

�

[ny]Y
j=1

fj(b[ny]b
�1
n sb�1[ny])

�
dQn(ny):

By A and by (5) we have that

lim
n!1

exp(�isb[ny]b
�1
n a[ny]b

�1
[ny])

[ny]Y
j=1

fj(b[ny]b
�1
n sb�1[ny]) = f(B(y)s):

Now let us consider (a[ny] � an)b
�1
n . From the convergence of types theorem

and from B we have that there exists a real function A such that:

lim
n!1

(a[ny] � an)b
�1
n = A(y); for 0 < y � 1. (17)

If y > 1, then (since for normed sums (an+1 � an)b
�1
n ! 0, as n!1):

lim
n!1

(a[ny] � an)b
�1
n = lim

n!1
�(a[[ny]=y] � a[ny])b

�1
[ny]b[ny]b

�1
n

= �A(1=y)B(y):
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From (17) we have that

(a[nyz] � an)b
�1
n = (a[nyz] � a[ny])b[ny]b

�1
[ny]b

�1
n + (a[ny] � an)b

�1
n

and therefore

A(yz) = A(z)B(y) +A(y) = A(y)B(z) +A(z):

so that (z 6= 1; y 6= 1)

A(z)(1�B(z))�1 = A(y)(1�B(y))�1:

i.e. the function A( � )(1�B( � ))�1 is equal to a constant which we shall denote by
C. Therefore, for y 6= 1,

A(y) = A(z)(1�B(z))�1(1�B(y)) = C(1� y�) (18)

is valid. Finally we obtain, using (18) and an argument similar to that from the
last part of the proof of Theorem 1, that

lim
n!1

hn(s) =

Z 1

0

exp(isA(y))f(B(y)s) dQ(y)

=

Z 1

0

exp
�
isC(1� y�)

�
f(sy�) dQ(y):
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