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A FIXED POINT THEOREM IN BANACH SPACE

Nadim A. Assad

Abstract. A �xed point theorem is proved for continuous mappings from a nonempty
compact subset K, of a Banach space X, into X, and which satis�es contractive condition (2)
and property (a) below.

The following result was established in [2]: Let X be a Banach space, K a
nonempty closed subset of X . Let T : K ! X satisfy the following contractive
condition on K: There exists a constant h, 0 < h < 1 such that, for each x; y 2 K,

d(Tx; Ty) � hmaxfd(x; y)=2; d(x; Tx); d(y; Ty); [d(x; Ty) + d(y; Tx)]=qg; (1)

where q is any real number satisfying q � 1+2h. Suppose that T has the additional
property:

for each x 2 @K, the boundary of K, Tx 2 K. (a)

Then T has a unique �xed point.

In this paper, we show that if we require T to be continuous and K compact,
then we may replace condition (1) on T by the following: For all x; y 2 K, x 6= y,

d(Tx; Ty) < maxfd(x; y)=2; d(x; Tx); d(y; Ty); [d(x; Ty) + d(y; Tx)]=qg; (2)

where q � 3, and still conclude that T has a unique �xed point. Actually, the
condition (2) is obtained from (1) by putting h = 1, and by replacing the inequality
by a strict inequality.

In the proof of the following theorem we shall use the fact that, if x 2 K and
y =2 K, then there exists a point z 2 @K such that d(x; z) + d(z; y) = d(x; y).

THEOREM. Let X be a Banach space, K a nonempty compact subset of X,

T : K ! X a continuous mapping satisfying (2) on K. If T has property (a), then
T has a unique �xed point in K.

Proof . Let x0 2 K. We shall construct two sequences fxng, fx
1
ng as follows.

De�ne x11 = Tx0. If x11 2 K, set x1 = x11. If x11 =2 K, choose x1 2 @K so that

AMS Subject Classi�cation (1985): Primary 54H 25, Secondary 47H 10



138 Assad

d(x0; x1) + d(x1; x
1
1) = d(x0; x

1
1). Let x12 = Tx1. If x12 2 K, set x2 = x12. If

not, choose x2 2 @K so that d(x1; x2) + d(x2; x
1
2) = d(x1; x

1
2). Continuing in this

manner, we obtain fxng, fx
1
ng satisfying:

(i) x1n+1 = Txn,

(ii) xn = x1
n
if x1

n
2 K, and

(iii) xn 2 @K and d(xn�1; xn) + d(xn; x
1
n
) = d(xn�1; x

1
n
), if x1

n
=2 K.

Let P = fxi 2 fxng : xi = x1
i
g and Q = fxi 2 fxng : xi 6= x1

i
g. Note that if

xn 2 Q, then xn�1 and xn+1 belong to P by condition (a).

Putting Gn = d(xn; xn+1), we may assume that for n = 0; 1; 2; . . . , Gn > 0;
for otherwise, i.e. if Gn = 0 for some n, it follows that xn = xn+1. Now if xn 2 @K,
then x1

n+1 2 K or xn+1 = x1
n+1 = Txn, and thus xn = Txn, or xn is a �xed point

of T . On the other hand, if xn =2 @K, then x1
n+1 2 K and we conclude again that

xn is a �xed point of T , because in this case, if x1n+1 =2 K, we get that xn+1 2 @K
while xn =2 @K and thus we cannot have xn = xn+1.

By using the same argument presented in the proof of the theorem of Rhoades
[2], with a slight modi�cation that consists of applying condition (2) on T instead
of (1), we reach an estimate for Gn, n � 2, in each of the following three cases:

Case I. xn; xn+1 2 P : we have Gn < Gn�1.

Case II. xn 2 P , xn+1 2 Q: we have Gn < Gn�1.

Case III. xn 2 Q, xn+1 2 P : since xn 2 Q and is a convex linear combination
of xn�1 and x1n, it follows that

Gn � d(x1
n
; xn+1); or (3)

Gn � d(xn�1; xn+1): (4)

If (3) occurs, we get:

Gn < d(xn�1; x
1
n) < Gn�2: (5)

On the other hand, if (4) occurs, we get that Gn < Gn�2. Therefore in all
cases we have:

Gn < Gn�1 or Gn < Gn�2: (6)

Following the proof of Theorem 4.1 in [1], we may assume that fxng has one
of the following three properties:

(P1) fxng has a subsequence fxn(k)g such that for k = 1; 2; 3; . . . ; xn(k)+1
and xn(k)+2 2 P .

Otherwise, eventually fxng cannot have two consecutive points in P , i.e., we
may assume that for n = 1; 2; 3; . . . ; x2n 2 Q. It follows by Case III that

fG2ng is a decreasing sequence of real numbers, (7)

and in this case, we may assume that either fx2ng has a subsequence fxn(k)g
satisfying the following property:

Gn(k) � d(x1
n(k); xn(k)+1); and thus (8)
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(P2) fxng has a subsequence xn(k) � Q satisfying (8), or

(P3) there exists a positive integer N such that for every n � N , x2n 2 Q
and d(x2n+2; Tx2n+2) � d(x2n+1; Tx2n+2).

If fxng has property (P1), then assuming xn(k) ! z it is easy to see by (6)

and cases I and II that Gn(k+1) � d(x1
n(k)+1; x

1
n(k)+2) < Gn(k); as k ! 1 and

by continuity of T , we obtain that d(z; T z) = d(Tz; T 2z). Similarly, if fxng has
property (P2), by compactness of K, we assume that xn(k)�2 ! z, and by (5)

we conclude that Gn(k) � d(x1
n(k)�1; x

1
n(k)) < Gn(k)�2. Also here as k ! 1, we

apply (7) to get that d(z; T z) = d(Tz; T 2z). Finally, if fxng has property (P3),
by compactness of K; fx2ng has a subsequence fxn(k)g such that xn(k) ! z and
xn(k)+2 ! u. We claim that u = z. We �rst observe by (7) and by the continuity
of T that we have:

limGn(k) = d(z; T z) = d(u; Tu) = limGn(k)+2: (9)

Moreover, d(Txn(k); xn(k)+2) � d(Txn(k); x
1
n(k)+2) � Gn(k) and, as k !1, we get:

d(u; Tz) � d(z; T z): (10)

On the other hand, by (P3) we have Gn(k)+2 � d(Txn(k); Txn(k)+2) and as k !1,
we obtain:

d(u; Tu) � d(Tz; Tu): (11)

If u 6= z, then by (9), (10) and (11), we observe that

d(z; T z) = d(u; Tu) � d(Tz; Tu)

< maxfd(z; u)=2; d(z; T z); d(u; Tu); [d(z; Tu)+ d(u; Tz)]=qg

� maxfd(z; u)=2; d(z; T z); [d(z; Tu)+ d(z; T z)]=3g: (12)

Noting that d(z; u)=2 � [d(z; T z) + d(Tz; u)]=2 � d(z; T z) and that [d(z; Tu) +
d(u; Tz)]=3 � [d(z; T z) + d(Tz; Tu) + d(u; Tz)]=3 � d(Tz; Tu), we see that (12)
leads into a contradiction. Therefore u = z. Finally, note that:

Gn(k) � d(xn(k); xn(k)+2) � Gn(k)+1 � d(x1
n(k)+1; x

1
n(k)+2) � Gn(k): (13)

Therefore lim d(x1
n(k)+1; x

1
n(k)+2) = limGn(k), i.e., d(Tz; T

2z) = d(z; T z). Now if

z 6= Tz, then

d(z; T z) = d(Tz; T 2z)

< maxfd(z; T z)=2; d(z; T z); d(Tz; T 2z); d(z; T 2z)=3g = d(z; T z)

(because d(z; T 2z)=3 � [d(z; T z) + d(Tz; T 2z)]=3 = (2=3)d(z; T z)) which is inad-
missible. Therefore z is a �xed point of T . If v is also a �xed point of T , then:

d(z; v) = d(Tz; Tv) < maxfd(z; v)=2; [d(z; Tv) + d(v; T z)]=3g;

i.e., d(z; v) < (2=3)d(z; v);
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contradiction. Thus the �xed point is unique and the proof is completed.

The theorem generalizes the following result.

COROLLARY 4.1 [1]. Let X be a Banach space and K a nonempty compact

subset of X. Let T : K ! X be a continuous mapping such that Tx 2 K for every

x 2 @K. Suppose that for all distinct x; y in K, the inequality

d(Tx; Ty) < fd(x; Tx) + d(y; Ty)g=2 (14)

holds. Then T has a unique �xed point.
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