# A FIXED POINT THEOREM IN BANACH SPACE 

## Nadim A. Assad


#### Abstract

A fixed point theorem is proved for continuous mappings from a nonempty compact subset $K$, of a Banach space $X$, into $X$, and which satisfies contractive condition (2) and property (a) below.


The following result was established in [2]: Let $X$ be a Banach space, $K$ a nonempty closed subset of $X$. Let $T: K \rightarrow X$ satisfy the following contractive condition on $K$ : There exists a constant $h, 0<h<1$ such that, for each $x, y \in K$,

$$
\begin{equation*}
d(T x, T y) \leq h \max \{d(x, y) / 2, d(x, T x), d(y, T y),[d(x, T y)+d(y, T x)] / q\} \tag{1}
\end{equation*}
$$

where $q$ is any real number satisfying $q \geq 1+2 h$. Suppose that $T$ has the additional property:

$$
\begin{equation*}
\text { for each } x \in \partial K \text {, the boundary of } K, T x \in K \tag{a}
\end{equation*}
$$

Then $T$ has a unique fixed point.
In this paper, we show that if we require $T$ to be continuous and $K$ compact, then we may replace condition (1) on $T$ by the following: For all $x, y \in K, x \neq y$,

$$
\begin{equation*}
d(T x, T y)<\max \{d(x, y) / 2, d(x, T x), d(y, T y),[d(x, T y)+d(y, T x)] / q\} \tag{2}
\end{equation*}
$$

where $q \geq 3$, and still conclude that $T$ has a unique fixed point. Actually, the condition (2) is obtained from (1) by putting $h=1$, and by replacing the inequality by a strict inequality.

In the proof of the following theorem we shall use the fact that, if $x \in K$ and $y \notin K$, then there exists a point $z \in \partial K$ such that $d(x, z)+d(z, y)=d(x, y)$.

Theorem. Let $X$ be a Banach space, $K$ a nonempty compact subset of $X$, $T: K \rightarrow X$ a continuous mapping satisfying (2) on $K$. If $T$ has property (a), then $T$ has a unique fixed point in $K$.

Proof. Let $x_{0} \in K$. We shall construct two sequences $\left\{x_{n}\right\},\left\{x_{n}^{1}\right\}$ as follows. Define $x_{1}^{1}=T x_{0}$. If $x_{1}^{1} \in K$, set $x_{1}=x_{1}^{1}$. If $x_{1}^{1} \notin K$, choose $x_{1} \in \partial K$ so that
$d\left(x_{0}, x_{1}\right)+d\left(x_{1}, x_{1}^{1}\right)=d\left(x_{0}, x_{1}^{1}\right)$. Let $x_{2}^{1}=T x_{1}$. If $x_{2}^{1} \in K$, set $x_{2}=x_{2}^{1}$. If not, choose $x_{2} \in \partial K$ so that $d\left(x_{1}, x_{2}\right)+d\left(x_{2}, x_{2}^{1}\right)=d\left(x_{1}, x_{2}^{1}\right)$. Continuing in this manner, we obtain $\left\{x_{n}\right\},\left\{x_{n}^{1}\right\}$ satisfying:
(i) $x_{n+1}^{1}=T x_{n}$,
(ii) $x_{n}=x_{n}^{1}$ if $x_{n}^{1} \in K$, and
(iii) $x_{n} \in \partial K$ and $d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n}^{1}\right)=d\left(x_{n-1}, x_{n}^{1}\right)$, if $x_{n}^{1} \notin K$.

Let $P=\left\{x_{i} \in\left\{x_{n}\right\}: x_{i}=x_{i}^{1}\right\}$ and $Q=\left\{x_{i} \in\left\{x_{n}\right\}: x_{i} \neq x_{i}^{1}\right\}$. Note that if $x_{n} \in Q$, then $x_{n-1}$ and $x_{n+1}$ belong to $P$ by condition (a).

Putting $G_{n}=d\left(x_{n}, x_{n+1}\right)$, we may assume that for $n=0,1,2, \ldots, G_{n}>0$; for otherwise, i.e. if $G_{n}=0$ for some $n$, it follows that $x_{n}=x_{n+1}$. Now if $x_{n} \in \partial K$, then $x_{n+1}^{1} \in K$ or $x_{n+1}=x_{n+1}^{1}=T x_{n}$, and thus $x_{n}=T x_{n}$, or $x_{n}$ is a fixed point of $T$. On the other hand, if $x_{n} \notin \partial K$, then $x_{n+1}^{1} \in K$ and we conclude again that $x_{n}$ is a fixed point of $T$, because in this case, if $x_{n+1}^{1} \notin K$, we get that $x_{n+1} \in \partial K$ while $x_{n} \notin \partial K$ and thus we cannot have $x_{n}=x_{n+1}$.

By using the same argument presented in the proof of the theorem of Rhoades [2], with a slight modification that consists of applying condition (2) on $T$ instead of (1), we reach an estimate for $G_{n}, n \geq 2$, in each of the following three cases:

Case I. $x_{n}, x_{n+1} \in P$ : we have $G_{n}<G_{n-1}$.
Case II. $x_{n} \in P, x_{n+1} \in Q$ : we have $G_{n}<G_{n-1}$.
Case III. $x_{n} \in Q, x_{n+1} \in P$ : since $x_{n} \in Q$ and is a convex linear combination of $x_{n-1}$ and $x_{n}^{1}$, it follows that

$$
\begin{align*}
& G_{n} \leq d\left(x_{n}^{1}, x_{n+1}\right), \quad \text { or }  \tag{3}\\
& G_{n} \leq d\left(x_{n-1}, x_{n+1}\right) . \tag{4}
\end{align*}
$$

If (3) occurs, we get:

$$
\begin{equation*}
G_{n}<d\left(x_{n-1}, x_{n}^{1}\right)<G_{n-2} . \tag{5}
\end{equation*}
$$

On the other hand, if (4) occurs, we get that $G_{n}<G_{n-2}$. Therefore in all cases we have:

$$
\begin{equation*}
G_{n}<G_{n-1} \quad \text { or } \quad G_{n}<G_{n-2} . \tag{6}
\end{equation*}
$$

Following the proof of Theorem 4.1 in [1], we may assume that $\left\{x_{n}\right\}$ has one of the following three properties:
$\left(P_{1}\right)\left\{x_{n}\right\}$ has a subsequence $\left\{x_{n(k)}\right\}$ such that for $k=1,2,3, \ldots, x_{n(k)+1}$ and $x_{n(k)+2} \in P$.

Otherwise, eventually $\left\{x_{n}\right\}$ cannot have two consecutive points in $P$, i.e., we may assume that for $n=1,2,3, \ldots, x_{2 n} \in Q$. It follows by Case III that

$$
\begin{equation*}
\left\{G_{2 n}\right\} \text { is a decreasing sequence of real numbers, } \tag{7}
\end{equation*}
$$

and in this case, we may assume that either $\left\{x_{2 n}\right\}$ has a subsequence $\left\{x_{n(k)}\right\}$ satisfying the following property:

$$
\begin{equation*}
G_{n(k)} \leq d\left(x_{n(k)}^{1}, x_{n(k)+1}\right), \quad \text { and thus } \tag{8}
\end{equation*}
$$

$\left(P_{2}\right)\left\{x_{n}\right\}$ has a subsequence $x_{n(k)} \subset Q$ satisfying (8), or
$\left(P_{3}\right)$ there exists a positive integer $N$ such that for every $n \geq N, x_{2 n} \in Q$ and $d\left(x_{2 n+2}, T x_{2 n+2}\right) \leq d\left(x_{2 n+1}, T x_{2 n+2}\right)$.

If $\left\{x_{n}\right\}$ has property $\left(P_{1}\right)$, then assuming $x_{n(k)} \rightarrow z$ it is easy to see by (6) and cases I and II that $G_{n(k+1)} \leq d\left(x_{n(k)+1}^{1}, x_{n(k)+2}^{1}\right)<G_{n(k)}$; as $k \rightarrow \infty$ and by continuity of $T$, we obtain that $d(z, T z)=d\left(T z, T^{2} z\right)$. Similarly, if $\left\{x_{n}\right\}$ has property $\left(P_{2}\right)$, by compactness of $K$, we assume that $x_{n(k)-2} \rightarrow z$, and by (5) we conclude that $G_{n(k)} \leq d\left(x_{n(k)-1}^{1}, x_{n(k)}^{1}\right)<G_{n(k)-2}$. Also here as $k \rightarrow \infty$, we apply (7) to get that $d(z, T z)=d\left(T z, T^{2} z\right)$. Finally, if $\left\{x_{n}\right\}$ has property $\left(P_{3}\right)$, by compactness of $K,\left\{x_{2 n}\right\}$ has a subsequence $\left\{x_{n(k)}\right\}$ such that $x_{n(k)} \rightarrow z$ and $x_{n(k)+2} \rightarrow u$. We claim that $u=z$. We first observe by (7) and by the continuity of $T$ that we have:

$$
\begin{equation*}
\lim G_{n(k)}=d(z, T z)=d(u, T u)=\lim G_{n(k)+2} . \tag{9}
\end{equation*}
$$

Moreover, $d\left(T x_{n(k)}, x_{n(k)+2}\right) \leq d\left(T x_{n(k)}, x_{n(k)+2}^{1}\right) \leq G_{n(k)}$ and, as $k \rightarrow \infty$, we get:

$$
\begin{equation*}
d(u, T z) \leq d(z, T z) \tag{10}
\end{equation*}
$$

On the other hand, by $\left(P_{3}\right)$ we have $G_{n(k)+2} \leq d\left(T x_{n(k)}, T x_{n(k)+2}\right)$ and as $k \rightarrow \infty$, we obtain:

$$
\begin{equation*}
d(u, T u) \leq d(T z, T u) \tag{11}
\end{equation*}
$$

If $u \neq z$, then by (9), (10) and (11), we observe that

$$
\begin{align*}
d(z, T z) & =d(u, T u) \leq d(T z, T u) \\
& <\max \{d(z, u) / 2, d(z, T z), d(u, T u),[d(z, T u)+d(u, T z)] / q\} \\
& \leq \max \{d(z, u) / 2, d(z, T z),[d(z, T u)+d(z, T z)] / 3\} . \tag{12}
\end{align*}
$$

Noting that $d(z, u) / 2 \leq[d(z, T z)+d(T z, u)] / 2 \leq d(z, T z)$ and that $[d(z, T u)+$ $d(u, T z)] / 3 \leq[d(z, T z)+d(T z, T u)+d(u, T z)] / 3 \leq d(T z, T u)$, we see that (12) leads into a contradiction. Therefore $u=z$. Finally, note that:

$$
\begin{equation*}
G_{n(k)}-d\left(x_{n(k)}, x_{n(k)+2}\right) \leq G_{n(k)+1} \leq d\left(x_{n(k)+1}^{1}, x_{n(k)+2}^{1}\right) \leq G_{n(k)} . \tag{13}
\end{equation*}
$$

Therefore $\lim d\left(x_{n(k)+1}^{1}, x_{n(k)+2}^{1}\right)=\lim G_{n(k)}$, i.e., $d\left(T z, T^{2} z\right)=d(z, T z)$. Now if $z \neq T z$, then

$$
\begin{aligned}
& d(z, T z)=d\left(T z, T^{2} z\right) \\
& <\max \left\{d(z, T z) / 2, d(z, T z), d\left(T z, T^{2} z\right), d\left(z, T^{2} z\right) / 3\right\}=d(z, T z)
\end{aligned}
$$

(because $d\left(z, T^{2} z\right) / 3 \leq\left[d(z, T z)+d\left(T z, T^{2} z\right)\right] / 3=(2 / 3) d(z, T z)$ ) which is inadmissible. Therefore $z$ is a fixed point of $T$. If $v$ is also a fixed point of $T$, then:

$$
\begin{gathered}
d(z, v)=d(T z, T v)<\max \{d(z, v) / 2,[d(z, T v)+d(v, T z)] / 3\}, \\
\text { i.e., } \quad d(z, v)<(2 / 3) d(z, v),
\end{gathered}
$$

contradiction. Thus the fixed point is unique and the proof is completed.
The theorem generalizes the following result.
Corollary 4.1 [1]. Let $X$ be a Banach space and $K$ a nonempty compact subset of $X$. Let $T: K \rightarrow X$ be a continuous mapping such that $T x \in K$ for every $x \in \partial K$. Suppose that for all distinct $x, y$ in $K$, the inequality

$$
\begin{equation*}
d(T x, T y)<\{d(x, T x)+d(y, T y)\} / 2 \tag{14}
\end{equation*}
$$

holds. Then $T$ has a unique fixed point.
Acknowledgement. The author takes this opportunity to express his sincere thanks to Professor B. E. Rhoades for providing him with the reprints of his papers.

## REFERENCES

[1] N. A. Assad, On some nonself mappings in Banach spaces, Math. Japonica 33 (1988), 501515.
[2] B. E. Rhoades, A fixed point theorem for some nonself mappings, Math. Japonica 23 (1978), 457-459.

Department of Mathematics

