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CONCERNING SPLITTABILITY AND PERFECT MAPPINGS

A. V. Arhangel'ski�� and Lj. D. Ko�cinac

Abstract. We consider the following question: let a space X admits a perfect mapping
onto a space Y from some class P of topological spaces and let X be splittable over P. Does X
belong to P?

0. Introduction

The notions of splittability, P-splittability and (M;P)-splittability intro-
duced recently by A. V. Arhangel'ski�� have been the subject of several papers:
[4], [6], [11], [12]. The de�nitions are as follows:

LetM be a class of continuous mappings and P a class of topological spaces.
A space X is called (M;P)-splittable or M-splittable over P if for every A �
X there exist some Y 2 P and a mapping f 2 M from X onto Y such that
f�1f(A) = A. When M is the class of all continuous (perfect) mappings we use
the term splittable over P (perfectly splittable over P) instead of (M;P)-splittable
(see [4]).

Clearly, if there is a continuous bijection from a space X onto a space Y 2 P ,
then X is splittable over P and we can say that X is absolutely splittable over P
in this case. So splittability is a generalization of continuous bijections.

A number of theorems in general topology can be formulated in the following
form: Let P be a topological property. If a space X admits a perfect mapping
onto a space Y satisfying P and a one-to-one mapping onto a space Z satisfying P ,
then X satis�es P (see, for example, [5], [9]). This suggests the following natural
question which is the subject of this article: when splittability over P replaces one-
to-one mappings in such theorems; more precisely: let a space X admit a perfect
mapping onto a space from a class P and let X be splittable over a class Q. Does
X belong to P or Q?
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All spaces in this article are T2 (unless stated otherwise) and all mappings
are continuous and onto. Recall that a mapping f : X ! Y is perfect if f is closed
with f�1(y) compact for each y 2 Y . We use the usual notation and terminology
[5], [9] and give references (although not necessarily the original source) where the
de�nitions of unde�ned concepts can be found.

Let us begin with the following simple but useful result [11]:

LEMMA 0.1. Let M be the class of all closed mappings. If a space X is M-

splittable over the class of Hausdor� (regular, Tychono�, normal ) spaces then X

in Hausdor� (regular, Tychono�, normal ).

In the sequel we shall use the following well known result.

LEMMA 0.2. If f : X ! Y is a perfect mapping then for any subset B � Y

the restriction fB : f�1(B)! B is perfect.

We shall often use

LEMMA 0.3. Let P be a class of topological spaces which is hereditary and

�nitely multiplicative. Suppose that a space X is splittable over P and admits a

perfect mapping onto a space from P. Then

(i) X is perfectly splittable over P ;

(ii) every A � X admits a perfect mapping onto a space from P.

Proof . (i) Let f : X ! Y 2 P be perfect. For every A � X there are a space
Z 2 P and a mapping g : X ! Z such that g�1g(A) = A. Since f is a perfect
mapping the diagonal product ' = f�g : X ! Y �Z is also perfect | that is well
known. Moreover, '�1'(A) = A. This means that X is perfectly splittable over
the class P as Y � Z 2 P .

(ii) This follows from the fact that '(A) 2 P (because P is hereditary) to-
gether with Lemma 0.2.

1. Moore spaces and �-spaces

Let us recall some de�nitions. A network for a space X is a collection N of
subsets of X such that for every x 2 X and every open set U with x 2 U there is
an A 2 N such that x 2 A � U . The net weight nw(X) of a space X is the least
cardinality of a network for X . A cosmic space is a regular space with a countable
network. A space X is a �-space if it has a �-discrete network. The de�nition of
Moore spaces can be found in [10], for example.

THEOREM 1.1. If a space X is splittable over the class P of spaces of weight

(net weight ) � � and admits a perfect mapping onto a space of weight (net weight )
� � , then X has weight (net weight ) � � .

Proof . Let us note that the class P is hereditary and �nitely multiplicative
so that we can apply Lemma 0.3. Hence every subspace A � X can be mapped
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by a perfect mapping onto a space of weight (net weight) � � . Then the theorem
follows from the following result of Arhangel'ski��-Pytkeev (see [3] and [14]): if X is
a Hausdor� space and every subspace of X admits a perfect mapping onto a space
of weight (net weight) � � , then X itself has weight (net weight) � � .

COROLLARY 1.2. If a Lindel�of p-space X [5] is splittable over the class of

spaces of countable weight, then X has a countable base.

A similar result can be formulated for perfectly Lindel�of spaces (= spaces
which admit a perfect mapping onto a space with a countable network).

From Lemma 0.1 and Theorem 1.1 we get the following

COROLLARY 1.3. If a space X is splittable over the class of cosmic spaces and

admits a perfect mapping onto a cosmic space, then X is cosmic.

Remark 1.4. Following [4] (see also [11]) denote by wps(X), X is a space,
minf� : X is perfectly splittable over the class of all spaces Y with w(Y ) � �g.
Then Theorem 1.1 gives us a method to prove: w(X) = wps(X); this was proved
in [11] by a di�erent manner. Similarly we have nw(X) = nwps(X) for every space
X (see also [12]).

THEOREM 1.5. If a space X is splittable over the class P of �-spaces and

admits a perfect mapping onto a �-space, then X is a �-space.

Proof . Let f : X ! Y 2 P be a perfect mapping and let Y be an arbitrary
subset of X . Then there exist a space Z 2 P and a mapping g : X ! Z such that
g�1g(A) = A. Put ' = f�g. As in Lemma 0.3 ' is perfect and '�1'(A) = A. The
set '(A) is a �-space because it is a subspace of Y � Z which is a �-space. Thus
'(A) is a strong �-space (see [10])) and consequently A is also a strong �-space
as this property is an inverse invariant under perfect mappings. Therefore X is a
hereditarily strong �-space. On the other hand, X is a perfect space. Indeed, if
A is closed in X then '(A) is closed in (a perfect) space Y � Z so that '(A) is
a GÆ-set. But then A = '�1'(A) is a GÆ-set in X . Now we have to apply the
following result of Z. Balogh [8]: a perfect space X is a �-space if and only if it is
a hereditarily strong �-space. The theorem is proved.

Now we are going to prove that a similar result is true for the class of Moore
spaces (this class is a subclass of the class of �-spaces).

THEOREM 1.6. If a Tychono� space X admits a perfect mapping f onto a

Moore space Y and is splittable over the class of Moore spaces, then X is also a

Moore space.

Proof . Using notation from Lemma 0.3 and Theorem 1.5 we have that '(A)
is a Moore space. It is known that the perfect inverse image (with completely
regular domain) of a Moore space is a subparacompact [5], [10] p-space [5], [10].
So, every A � X is a p-space, i.e. X is hereditarily p-space. Also, every A � X
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is �-re�nable [10], because every subparacompact space is �-re�nable. The space
X is perfect | that can be shown as in Theorem 1.5. In [14] Pytkeev has proved
that hereditarily p-spaces are developable if and only if they are perfect. Hence X
is a developable space and as X is (completely) regular, X is a Moore space. The
theorem is proved.

It should be noted that in [6] it was proved (using a result of Balogh-Pytkeev
[8], [14]) that every paracompact p-space splittable over the class of metrizable
spaces is also metrizable.

2. Convergence properties

All unde�ned concepts can be found in [1], [[2], [13].

THEOREM 2.1. If a space X admits a perfect mapping f onto a h 3-FU i-space
Y and is splittable over the class of countably compact FU-spaces, then X is a

Fr�echet-Urysohn space.

Proof . Note that X is a k-space and prove �rst that t(X) � @0. According
to a result of Ran�cin [15] for this it is enough to prove that for every compact
B � X one has t(B) � @0. We have that B is splittable over the class of spaces of
countable tightness. As B is compact the tightness of B is also countable as was
proved by Arhangel'ski�� in [4].

Now, let T be any countable subset of X . Fix a continuous mapping g : X !
Z onto some countably compact FU space Z such that g�1g(T ) = T . Consider
' = f�g. The space Y �Z is an FU-space (see [2]) so that '(T ) is also an FU-space
and thus it is a k-space. As the property being a k-space is an inverse invariant
under perfect mappings we have that T is a k-space (according to Lemma 0.2).
Since every subspace of T is countable we have: every subspace of T is a k-space,
so that T is an FU-space by the well known result of Arhangel'ski��. Hence we get:
t(X) � @0 and every countable subset of X is an FU-space. From this it follows
that X is a Fr�echet-Urysohn space (see [2], [13]). The theorem is proved.

THEOREM 2.2. If a space X admits a perfect mapping f onto a bisequential

space Y and is splittable over the class of all bisequential spaces, then X is an

@0-bisequential space.

Proof . The proof is similar to the proof of Theorem 2.1. We use the same
notation as in that theorem. The space Y � Z is bisequential, so that '(A) is
bisequential. Thus '(A) is a bi-k-space. The property being a bi-k-space is an
inverse invariant under perfect mappings so that A is bi-k in X . Hence every
subspace of X is a bi-k-space. From a result of Arhangel'ski�� [1] it follows that X
is an @0-bisequential space.

Remark 2.3. In a similar way it can be proved: if a space X admits a perfect
mapping onto an @0-bisequential space and is splittable over the class of strongly
FU-spaces, then X is FU.
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