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ON A DENSE Gs-DIAGONAL

A. V. Arhangel’skii and Lj. D. Koc¢inac

Abstract. We study topological spaces the diagonal of which contains a dense set which
is a Gg-set in X x X.

We use the usual notation and terminology as in [6], [7], [2]. All spaces are
at least T5.

Let us say that X is a space with a dense Gs-diagonal if there exists a G-
subset U of the space X x X such that U C Ax and U = Ax. Here Ax = {(z,z) :
x € X} is the diagonal in X x X.

This notion was introduced in [11] under the name “weak Gs-diagonal” (see
also [12] about related subjects). In the same paper it was proved that if the space
exp X of all closed subsets of X with the Vietoris topology is weakly perfect, then
X has a dense Gs-diagonal. A space X is called weakly perfect [11], [13] if every
closed subset of X contains a dense set which is a Gs-set in X. Note that there are
spaces which are weakly perfect but not perfect [9].

ProposiTION 1. X is a space with a dense Gs-diagonal if and only if there
erists a subspace Y C X such that Y = X, Y is a Gs-set in X and Y has a
Gs-diagonal.

Proof. (=) Let {U, : n € N} be a family of open subsets in X x X such
that ({U, :n € NT} C Ax and ({U,, :n € N"} is dense in Ax. Put V,, = {z €
X : (z,z) € U,}. Clearly, each V,, is open in X and Y = (\{V,, : n € N} is the
subspace we are looking for.

(<=) Let Y be a Gs-subset of X. Then Y xY is a Gs-subset of X x X. Indeed,
let Y = {Vy : n € N} where each V}, is open in X. We can choose V}, to satisfy
the condition: V,,41 C V,, forallm € NT. Then Y x Y = ({V, x V, :n € NT}.
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If YV is dense in X then Ay is dense in Ax. If the diagonal Ay is a Gs-subset of
Y xY then Ay is a Gs-subset of X x X as Y x Y is a GGs-subset of X x X.

THEOREM 1. Let X be a Cech-complete space. Then X has a dense G-
diagonal if and only if it contains a dense subspace metrizable by a complete metric.

Proof. (<) If Y is dense in X and the space Y is metrizable by a complete
metric then Y has a Gs-diagonal and Y is a Gs-subset of Y (see [6], [7]). Then by
Proposition 1, X is a space with a dense Gs-diagonal. (We didn’t use in this part
of the argument Cech-completeness of X).

(=) Assume that X has a dense G5-diagonal. By Proposition 1 there exists
a Gs-subset Y of X which is dense in X and is a space with a Gs-diagonal. As X is
Cech-complete and Y is a G in X the space Y is also Cech-complete. By a result of
Sapirovskif (see [15]), there exists a paracompact Cech-complete subspace Z of Y
which is dense in Y. Then Z is also dense in X. The space Z also has a Gs-diagonal
(this property is obviously inherited by arbitrary subspaces). But it is well known
that every paracompact Cech-complete space with Gs-diagonal is metrizable (see
[7]). Moreover if a metrizable space is Cech-complete then it is metrizable by a
complete metric [6], [7]. It follows that Z is metrizable by a complete metric. The
theorem is proved.

Remark 1. From the proof of the first part of Theorem 1 and the fact that
countable product of complete metric spaces is complete we have: if a space X
contains a dense subspace metrizable by a complete metric, then the spaces X",
n € Nt and X¥ have a dense G4-diagonal.

Question 1. Can a space X“ be weakly perfect?

COROLLARY 1. Let X be a Cech-complete space with a dense Gs-diagonal
such that the Souslin number of X is countable. Then X has a countable mw-base.
Hence X is separable and every dense subspace of X is separable.

Recall that a m-base of a space X is a family )V of non-empty open subsets of
X such that every open subset U of X contains some V € V (see [2], [6], [10]).

Proof of Corollary 1. By Theorem 1 there exists a dense metrizable subspace
Y of the space X. AsY = X, the Souslin number of ¥ does not exceed the Souslin
number of X (see [2], [10]). Hence ¢(Y) < w. As Y is metrizable it follows that
Y has a countable base B. For each U € B fix an open subset U of X such that
UNY = U. Then the countable family {17 : U € B} of open subsets of X is a
m-base of X — this is shown easily using the fact that Y is dense in X.

COROLLARY 2. Let X be a Cech-complete space such that the space X x X
is weakly perfect. Then in every closed subspace of X there exists a dense subspace
metrizable by a complete metric.

Proof. Let X; be a closed subspace of X. Then X; is Cech-complete and
weakly perfect — both properties are inherited by closed subspaces. Obviously if
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the space X; x X is weakly perfect, then X; has a dense Gs-diagonal. Hence X;
satisfies the assumptions in Theorem 1 and thus there exists a dense subspace in
X1 metrizable by a complete metric.

Recall that spread s(X) of a space X is the supremum of cardinalities of
discrete subspaces of X.

THEOREM 2. Let X be a Cech-complete space such that the space X x X
is weakly perfect. Then spread of X is equal to hereditary density of X: s(X) =
hd(X). In particular, if all discrete subspaces of X are countable, then X is hered-
itarily separable.

Proof . For metrizable spaces spread is equal to density. We also have s(Y) <
s(X) for every subspace Y C X. From Corollary 2 it follows now that density of
every closed subspace of X does not exceed spread of X. As X is Cech-complete it
is a k-space and for k-spaces the following inequality (of Arhangel’skii-Sapirovskii)
holds: tightness is not greater than spread (see [2]). Thus #(X) < s(X). Put
s(X) = 7 and let Y be any subspace of X. Then t(Y) < 7 and d(Y) < 7 as Y is
closed in X. Fix a subset A C Y such that A =Y and |4]| < 7. For each a € A
we can fix a subset B, C Y such that |B,| < 7 and a € B,. Then for the set
M =J{B,:a € A}y wehave: [M|<7-7=7,MCY and M =Y DY. Thus
diY) <1 =5(X), ie. hd(X) < s(X). It is always true that s(X) < hd(X). Hence
hd(X) = s(X).

Remark 2. Our results on weakly perfect X x X remain true under weaker
assumption that every closed subspace F' of Ax contains a subset A which is a
Gs-set in F' and is dense in F'.

From Corollary 2 we derive

CoroLLARY 3. Let X be a compact non-separable space, the Souslin number
of which is countable. Then X does not have a dense Gs-diagonal. Hence X x X
is not weakly perfect.

From Theorem 1 we get

COROLLARY 4. If X is a Cech-complete space with a dense Gs-diagonal, then
X satisfies the first axiom of countability at a dense Gs-set of points.

Proof . There exists a dense subspace Y of X metrizable by a complete metric.
Then Y is a Gs-subset of X and X is first countable at every point of ¥ (as X is
regular and Y is dense in X — see [10]).

Every dyadic compactum which is first countable at a dense set of points is
metrizable — this is the well known result of Efimov (see [7]). Now Corollary 4
implies the following assertion:

COROLLARY 5. If a dyadic compactum X has a dense Gs-diagonal then X is
metrizable.
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Let us recall that a space X is called Rp-monolithic if closure of every count-
able subset A C X is a space with a countable network [1] (see also [4], [5]). Every
compact space with a countable network is metrizable [6], [7]. Applying Corollary
1 we get

CoRrOLLARY 6. If X is an Ng-monolithic compact space the Souslin number
of which is countable and X has a dense Gs-diagonal, then X is metrizable.

Of course the last assertion is also true for Cech-complete spaces.

In connection with Corollary 4 we have the following assertion which can be
proved in a similar way as one proves the fact that every space with a Gs-diagonal
has countable pseudo-character.

ProposiTION 2. If a space X has a dense Gg-diagonal, then the set of points
of countable pseudocharacter is dense in X.

From this proposition and the fact that for every topological group G one has

Y(G) = A(G) [3] we derive

COROLLARY 7. If G is a topological group with a dense Gs-diagonal, then G
has a Gs-diagonal.

There is an interesting necessarry and sufficient condition for a space X to
have a dense G-diagonal.

ProrosiTiON 3. A space (X,T) has a dense Gs-diagonal if and only if there
exist a subset Y C X dense in (X,T) and a topology Ty on X such that T C Ty,
the space (X, T1) has a Gs-diagonal and T is a base of (X, T1) at all pointsy € Y.

Proof . (<=) There exist open sets U,,,n € N, in the product space (X, 71) x
(X,T1) such that N{U, : n € Nt} = Ax. For each y € Y and each n € N* we
can fix a V(y,n) € T such that y € V(y,n) and V(y,n) x V(y,n) C U,. Put
Gn =U{V(y,n)?:y € Y} for every n € NT. Obviously Ay C G,, C U, and G,, is
open in (X, 7T) x (X, T). Hence Ay C N{G,:n € Nt} C Ax. As Ay is dense in
Ax, the set {G, : n € N} is the one we were looking for. Thus X has a dense
Gs-diagonal.

(=) Let B be a dense subset of Ax which is a Gs-subset in the space
(X,T) x (X,T). Fix open sets U, in (X,T) x (X,T) forn € NT such that {U, :
neNT}=B. PutY={z€X:(z,z) €EBtand By =T U{{z}:2€ X \Y}.
Then B; is a base of a topology T; on X. It is clear that 7 C 7; and that 7 is a
base of the space (X, 7T;) at all points of the set Y. It remains to check that the
space (X, T1) has a Gs-diagonal.

Let W,, = U,, UAx. Then W, is open in the product space (X, T;) x (X, T1)
by the definition of 7. Clearly, ({{W, : n € N*} = Ax. Hence (X,7;) has a
Gs-diagonal. The proposition is proved.

As every metrizable space has a Gs-diagonal the following assertion is a direct
corollary of Proposition 3.



On a dense Gg-diagonal 125

THEOREM 3. A space (X, T) has a dense Gs-diagonal if there exists a metriz-
able topology T1 on X such that T C 71 and the set of all points at which T is a
base of the topology Ty is dense in the space (X, T).

The conditions in Theorem 3 are satisfied by every Eberlein compactum (see
T.4.3 in [4]). Thus we have

CoROLLARY 8. Every Eberlein compactum has a dense Gs-diagonal.

One could derive Corollary 8 from Theorem 1 on the following fact — Namio-
ka’s theorem (see [2]): in every Eberlein compactum there exists a dense subspace
metrizable by a complete metric.

Every Gul’ko compact space [5] also has a dense subspace metrizable by a
complete metric (Leiderman-Gruenhage; see [14], [8] or [5]. Thus applying Theo-
rem 1 we get.

CorOLLARY 9. Fvery Gul’ko compact space has a dense Gs-diagonal.

Remark 3. S. Todorcevi¢ has shown that not in each Corson compactum [5]
there exists a dense metrizable subspace. It follows from Theorem 1 that not every
Corson compactum has a dense G5-diagonal.

Remark 4. If the set of all isolated points of a space X is dense in X, then
X has a dense Gs-diagonal. This is evident. Thus if X is a scattered space then
every subspace of X has a dense Gs-diagonal while X itself need not have a G-
diagonal (take a compact non-metrizable scattered space — for example, the space
T(w1 +1)).

We conclude the paper with several questions on weakly perfect spaces and
spaces with a dense Gs-diagonal.

Question 2 [11]. What can we say on density of weakly perfect compact
spaces? Is it true that density of each such space is < N;?

Question 3 [11]. Is it true that for every weakly perfect countably compact
space X spread of X is countable?

Question 4. Is it true that every symmetrizable space X has a dense G-
diagonal? is weakly perfect?

In connection with this question it should be noted that there are symmetriz-
able spaces without a Gs-diagonal and non-perfect.

Question 5. Let X be a weakly perfect compact space. Is it true then that
X contains a dense metrizable subspace?

Question 6. Is every weakly perfect compact space of countable Souslin num-
ber separable?

Question 7. Let X be a compact space such that X x X is weakly perfect.
What about X7 Is X perfect?
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(This question is suggested by Example in [11]).

Question 8. When there exists a countable family ¢/ of open sets in X x X

such that (U N Ax is dense in Ax and for each open neighborhood V' of Ax in
X x X one can find U € U such that U C V? Such U will be called a dense A-base
of X.

Let us note that if X has a dense discrete subspace then X has a countable

dense A-base.

Question 9. Let X be a compact space with a countable dense A-base. Does

there exist a dense open metrizable subspace Y C X7 dense separable metrizable
subspace Z C X7?

(1]
(2]

(3]

(15]
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