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LINEAR OPTIMAL CONTROL PROBLEM IN PLANE

Vladimir Jankovié

Abstract. The linear optimal time control problem in two-dimensional phase space is
investigated. The control set is convex compact subset of the phase space, and the class of
admissible controls is the class of all controls with at most countably many discontinuities, all of
them being of the first kind. Necessary and sufficient conditions, a uniqueness theorem and the
existence theorem are proved.

1. Introduction

We shall investigate the following optimal control problem:

The control set U is an arbitrary convex compact set in R*. The admissible
control u(-) is a function which maps an interval of the real line into the control
set U, with at most countably many discontinuities, all of them being of the first
kind.

The phase space X is a two-dimensional Euclidean space R?.

Let A be a bounded linear operator mapping the phase space X into itself.
Continuous function z( ) : [to, t1] — X is said to be a trajectory which corresponds
to the admissible control u(-) : [to,t1] — U if it is differentiable at each point
t € [to,t1] at which the control u(-) is continuous and

z(t) = Az(t) + u(t).
It is easy to show that at every discontinuity point of the admissible control u(-)
the corresponding phase trajectory has left and right derivatives.

Classical theory concerning the existence of solutions of linear differential
equations transfers to the previous equation, although its right hand side is not
continuous. This is because the right hand side is Riemann integrable and so the
equation is equivalent to the integral equation.

z(t) = z(7) +/ [Az(s) + u(s)] ds.
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Classical theory is obtained studying this integral equation. So, if T € [to,t1] and
¢ € X, then the unique trajectory z(-) : [to,t1] — X satisfying the condition
z(1) = £ exists. It can be represented in the form

z(t) = R(t,7) [5 + /Tt R(r, s)u(s) ds] ,

where R(t,7) is the resolvent of the homogeneous linear differential equation & =
Az.

Denote by zy and z; two points of the phase space X. The admissible control
u(+) : [to,t1] = U accomplishes the passage of the phase point from the position
xo to the position z if the corresponding trajectory has the beginning at the point
xo and the end at z;. The difference ¢; — tq is called the passage time.

We shall study the problem of minimization of pasage time. The admissible
control @(-) and the corresponding trajectory Z( - ) are optimal if they accomplish
the pasage of the phase point from the position zy into the position z; in the
shortest time.

It is easy to see that, without loss of generality, we can suppose that z; = 0.

In [1], [2], [3], [4], [6] and [6] several versions of the linear time control
problem are investigated, with the class of admissible controls being either the
class of piecewise continuous controls, or the class of measurable controls. The
linear time control problem with variable end points is studied in [7] where the
class of admissible controls is given axiomatically in the similar way as the class
of admissible controls for the general optimal control problem is given in [2]. In
this article we show that, in the case when the dimension of the phase space is two
and the control set is an arbitrary convex compact set, it is most natural to choose
for the class of admissible controls the class of all controls with countably many
discontinuities of the first kind only.

In Section 2 a maximum principle is proved to be a necessary condition for
optimality for the linear control problem in plane. The idea of the proof is the
same as in [1], and that theorem could be derived from some earlier theorems, for
example from [7]. The proof is given here for the sake of completeness.

In Section 3 the condition of strict stability is introduced. It is shown that the
maximum principle becomes a sufficient condition for optimality if the condition
of strict stability is satisfied. This statement is a generalization of the similar
statements from [1], [2] and [3]. In [4], a similar statement is proved under the
condition of strong stability. The condition of strong stability is such that checking
its validity by definition requires the knowledge of the solution of linear time control
problem that we investigate. In [4], a proposition giving a sufficient condition for
strong stability is proved. The assumptions of that proposition are stronger then
the condition of strict stability.

In Section 4 a generalization of the theorem about the finite number of switch-
ings (in two-dimensional case) is proved and a uniqueness theorem for optimal con-
trol is derived from it. A similar theorem corresponding to the case when the phase
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space has arbitrary dimension is proved in [7]. In the two-dimensional case the
conclusion we obtain is more precise.

In Section 5 the existence theorem for optimal control is proved. This theorem
could be derived from the existence theorems proved in [5] and [7]. However, a new
proof is given here, obtained by the application of an idea similar to that in [3].
Contrary to the proofs in [5] and [7] this proof is relatively elementary and gives
the possibility to develop a numerical method, similar to that in [3].

In Section 6 it is shown that, under certain restrictions, the whole concept
developed in the previous sections can be aplied to the linear time control problem
in the space of dimension grater than two.

2. A necessary condition for optimality

Lemma 2.1. If u(-) : [to,t1] — U is an admissible control with the corre-
sponding trajectory x(-) : [to,t1] = X and p(-) : [to,t1] = X* is a solution of the
differential equation p = —pA, then

/ p(tu(t) di = p(ta)(ty) — plto)z(to).

to

Proof. The assertion of the lemma follows from

%p(t)u(t) = p(t)z(t) + p(t)i(t)
= —p(t)Az(t) + p(t) Az (t) + p(t)u(t)
= p(t)u(t). O

The admissible control u(-) : [to, 1] = U is extremal if a non-trivial solution
p(+) : [to,t1] = X of the differential equation p = —pA, such that the condition

maxp(t)u = p(t)u(t)

(the maximum condition) is satisfied for each point ¢ in which the control u(-) is
continuous.

TueoreEM 2.1. (Maximum principle). If the admissible control u(-)
[to,t1] — U is optimal, then it is extremal.

Proof. The sphere of accessibility S(T"), T' > 0, is the set of points of the
phase space X which could be transferred to the position 0 in time 7' by some
admissible control. Let us prove that every sphere of accessibility is a convex set.
Let T > 0 and let z1 and x2 be two points from S(T"). There exist admissible
controls u; (- ) and us(-) which transfer the phase points from the positions z; and
x9, respectively, to 0. Denote by x1(-) and z5(-) the corresponding trajectories.
Denote by z a point laying on the line segment [z, z2]. Take number A\, 0 < A <1,
such that

z=(1— ANz + \s.
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The trajectory

z(t) = (1 = Nz1(t) + Aza(t)
corresponds to the admissible control

u(t) = (1 — Nup (t) + Aua(t).

Indeed,
z(t) = (1 — Nz1 (¢) + A2 (t)

= (1= N)[Az1(t) +ur ()] + (1 = X)[Az2(t) + u2(1)]

= A[(1 = Nz (t) + Az2(8)] + [(1 = Nui(t) + Aua(t)]

= Az(t) + u(t).
Since

2(0) = (1 — AN)z1(0) + Az2(0) = (1 — Ny + Azy =,

and

z(T) =1 — Nz (T) + A2 (T) = (1 = N)0+ A0 =0,
the control u(-) transfers the phase point from the position z to 0. It follows that
x € S(T).

Let us prove that xg is a boundary point of the sphere of accessibility S(T'),
where T' = t; —tg. Suppose that this is not true, i.e. that zq is an interior point of the
sphere of accessibility S(T'). There exists a triangle with vertices z1, z2, 25 € S(T),
having zop as an interior point. Let uy(-), ua(-), ug(-) be admissible controls
and let z1(-), x2(-), z3(+) be the corresponding trajectories, defined on [0, 7] and
transferring the phase points from the positions x1, 2 and x3, respectively, to 0.
For sufficiently small 7 > 0 the triangle with vertices 1 (7), z2(7) and z3(7) differs
a little from the triangle with vertices x;, xo and z3, and therefore it contains
the point zop too. Since points x1(7), z2(7), and z3(7) belong to the sphere of
accessibility S(T' — 1), and since it is convex, then the point x, belongs to the
sphere of accessibility S(T — 7). This is contrary to the assumption that the phase
point cannot be transferred from the position zg to the position 0 in the time which
is shorter than T'.

Since the point z( lays on the boundary of the sphere of accessibility S(7T'),
there exists py € X* such that pox > poxo for each € S(T'). Let p(-) : [to, t1] =
X* be the solution of the differential equation p = —pA which satisfies the condition
p(to) = po- Suppose that the maximum condition is not satisfied. Then there exists
a point T € [to,t1] at which the optimal control @(-) is continuous and the vector
u € U such that

P(ryu > Br)a(r).
Because of the continuity an interval I, 7 € I C [to, 1], exists such that
p(t)u > p(t)u(t)
for every ¢t € I. Let u(-) : [to,t1] = U be the admissible control defined by

u(t) = { a(t) tefto,ti]\1,

u tel
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and let z(-) be the corresponding trajectory ending at 0. From

/ " Byult) dt = p(tr)a(tr) — plto)a(te) = —pox(to),

to

/t CBat) dt = ()3 () — Plto)@(te) = — oo,

t1 tl
| stuwa > [ a,
t() tO
it follows that
Poz(to) < PoTo.
On the other hand, since z(tg) € S(T'), then

Pox(to) > Poo.

Contradiction! O

3. A sufficient condition for optimality

Lemma 3.1. Let p(-) : [to,t1] = X* be a nontrivial solution of the differential
equation p = —pA and let w # 0 be a vector from the phase space X. If p(t)w = 0
for infinitely many values t from the interval [to,t1], then w is an eigenvector of
the operator A.

Proof. The set of points of the interval [to,t1] for which p(t)w = 0 has at
least one accumulation point. Let 7 be one of them. The equality p(r)w = 0 is
valid because of the continuity of the function p(¢)w. The function p(t)w has the
derivative p

p(Bw = —p(t) Au.
Since between every two roots of a differentiable function there exists at least one
root of its derivative, 7 is an accumulation point of the roots of the function p(t) Aw.
Because of the continuity, the equality p(7)Aw = 0 is valid. Vectors w and Aw are
parallel because they belong to the kernel of the functional p(7). O

We say that the condition of strict stability is fulfilled if 0 is the interior point
of the set U, or if 0 is the boundary point of U, and besides, the unique support
line of the set U at the point 0 exists, and that line is not invariant with respect to
the operator A.

TuEOREM 3.1. Let the condition of strict stability be fulfilled. If the admissible
control u(-) : [to,t1] — U transferring the phase point from xo to 0, is extremal,
then it is optimal.

Proof. Let Z(-) : [to,t1] — X be the trajectory corresponding to the admis-
sible control @( - ), starting at zo and terminating at 0, and let p(-) : [to, 1] — X*
be the nontrivial solution of the differential equation p = —pA which the condition

maps p(t)u = H(t)i()
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is fulfilled for each point ¢ in which the control u(-) is continuous. Let us suppose
that there exist the admissible control u(-) and the corresponding trajectory z( -)
defined on the interval [tg, t2], to < t2 < t1, and transferring the phase point from
o to 0. Since

/ “BaE) dt = ()3 (0) — Dlto)@(te) = —Plto) o,

to

/ " Btyut) dt = plt)e(tr) — Plto)e(to) = —plto)o,

to
then
t1 t2
/ p(t)u(t) di :/ p(t)u(t) dt.
t() tO
Since
PYA(D) = maxp(t)u > Blt)u(t)
then

/t “pa) dt > / " Blyu(t) dt.

to
From the previous relations we obtain that

/ " Plt)a(t) dt < 0.

to
Since 0 € U, then
p(t)u(t) = maxp(t)u > p(t)0 =0
uelU
for each point t € [t2,?1] at which the control @(-) is continuous. From the two
previous relations it follows that
max p(t)u =0
for each t € [ta,t1]. This is possible only in the case when 0 belongs to the boundary
of the set U and when p(t)w = 0 for every ¢ € [t2, 1], where w is the vector parallel
to the support line of the set U at the point 0. It follows that w is an eigenvector
of the operator A, i.e. that the support line of the set U at the point 0 is invariant
with respect to the operator A. Contradiction! (I

4. Uniqueness of the extremal control

We say that the condition of general position is fulfilled if the control set U
has no support line which is parallel to an eigenvector of the operator A and has
more than one point in common with U.

TuEOREM 4.1. Let the condition of general position be fulfilled. If p(-) :
[to,t1] = X* is a nontrivial solution of the differential equation p = —pA, then the
unique admissible control u(-) : [to, t1] — U, satisfying the condition

maxp(t)u = p(t)u(t),
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exists. (We shall not distinguish between the admissible controls taking different
values at points of discontinuity).

Proof. Let {w; | i € I'} be a set of vectors parallel to support lines of the
control set U having more than one point in common with U. That set is countable
and no vector w;, i € I, is an eigenvector of the operator A. According to Lemma
3.1, the equality p(t)w; = 0 is satisfied only for finitely many values ¢t € [to,t1].
Therefore, the maximum condition uniquely defines the control «(-) in all but at
most countably many points of the interval [to, t1].

Let 7 be a point of uniqueness of control u(-). Then the functional p(r)
reaches its maximum on the set U at the unique point u(7). Let ¢ > 0. The
function

L PO ()]
[l = u(7)]]
is continuous and negative on the compact set U \ Blu(r), e[. Therefore there exists

> 0 such that
p(M)[u — ()] < —pllu — u(7)|l,
for every u € U \ Blu(r),e[. There exists § > 0, such that

lp(t) = p(7)[| <,
for |t — 7| < §. Suppose |t — 7| < §. For u € U \ Blu(7), e[ we have that

p)u = [p(t) — p(r)][u — u(7)] + p(r)[u — w(7)] + p(t)u(r)
< pllu = u()|| = pllu — w()l] + p(t)u(r) = p)u(r)-

Since the functional p(t) reaches its maximum on the set U at the point u(t), then
u(t) € Blu(7),e[. Hence, the control u(-) is continuous at 7.

Let 7 be a point at which the control «(-) is not uniquely defined by the
maximum condition. Then the set of points at which the functional p(r) reaches
its maximum on the set U is the segment [u_,uy] which lies on the border of the
set U. We can suppose that vectors p(7) and uy — u_ form a positive oriented
angle. Let us prove that the control u(-) has a limit as ¢t — 74.. Denote by ¢(¢) the
angle between vectors p(r) and p(t). Obviously, the function ¢(-) is continuous
and p(1) = 0. As t = 74, (t) tends to 0 from one side. If the contrary were true,
the equality p(t)(us — u—) = 0 would be satisfied for infinitely many values ¢ (for
every t for which ¢(t) = 0), which is contrary to the assumption that the condition
of general position is satisfied. Suppose, for example, that ¢(t) — 04 as t — 7.
Let us prove that then u4 (7) =u4. Let € > 0. Let @ € [u_, u4]. The function

p(7)[u — 1]

u = —
[l —l]

is continuous and negative on the compact set U\ B][u_, u],e[. Therefore, a u > 0
exists such that

p(7)[u — 1] < —pllu —ul],
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for every w € U \ B][u—, u4],e[. There exists § > 0, such that

lp(®) = p(7)[| <,

for |t — 7| < 4. Suppose |t — 7| < §. For u € U \ B]lu—,uy],e[ we have that

p(t)u = [p(t) — p(7)][u —u] + p(7)[u —u] + p(t)w
< pllu —al| — pllu =Tl + p(t)a = p(t)a.

Since the functional p(t) reaches its maximum on the set U at the point w(t),
then u(t) € Bllu_,uy],e[ for 7 < t < 7+ §. For § sufficiently small we have
0 < p(t) < /2 when 7 < t < 7+ 4. The line which is orthogonal to p(t) and
goes through the point «(t) and the line determined by the segment [u_,u ] are
the support lines of the set U. The angle determined by those lines in which the
set U lies, is obtuse. The point u(t) lies on one side of that angle and the points
u_ and w4 on the other side. Besides, the point u is closer to the vertex of that
angle then the point u_. Therefore, the closest point of the segment [u_,u] to
the point w(t) is uy. It follows that u(t) € Bluy, e[ for 7 <t <7+6. O

THEOREM 4.2. Let the condition of general position be satisfied. FEvery two
optimal controls defined on the same interval coincide.

Proof. Let u(-) and u(-) be optimal controls defined on the same interval
[to,t1]. According to the theorem 3.1, there exists a nontrivial solution p( -) of the
differential equation p = —pA, such that

p(t)u = p(t)u(t
max p(t)u = p(t)u(t),
when @( ) is continuous at the point ¢. Denote by Z(-) and x(-) the trajectories
corresponding to the controls u(-) and u( ), beginning at the point xg and ending
at 0. From

/ CBaE) dt = ()3 (0) — Dlto)@(te) = —Plto) o,

to
ty
/t p(t)u(t) dt = p(t)x(ty) — p(to)(to) = —p(to)zo
0
and
p)u(t) > p(t)u(t),
it follows that
p(t)u(t) = p(t)u(t).
According to the previous theorem we conclude that the controls @(-) and u(-)
coincide. O
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5. Existence of optimal control

THEOREM 5.1. Suppose conditions of strict stability and general position are
satisfied. If the admissible control transferring the phase point from the position xg
into 0 exists, then the optimal control exists.

Proof. Let T > 0 and let # € X*\ {0}. Denote by p(t,n) the solution of the
differential equation p = —pA, which satisfies the initial condition p(0) = w. From
the linear differential equation theory it is known that p(¢t,7) = 7R(0,T). Denote
by wu(t,n) the control defined on [0,+oc0[ with countably many discontinuities of
the first kind only, satisfying the condition

max p(t, m)u = p(t, m)u(t, )
uelU

at every point of continuity ¢. Let z(¢, T, 7) be the trajectory defined on the interval
[0,T], corresponding to the admissible control u(t,7) and ending at 0. Let {(T, )
be the beginning of that trajectory. Since

T
z(T,T,7) = R(T,0) {f(T, ) + /0 R(0,t)u(t, ) dt

then .
&T,m) = —/0 R(0, t)u(t, ) dt.

Let us prove that the function ¢ is continuous. Let T > 0, # € X*\ {0}.
Then let £ > 0 be a point at which the function u(t,7) is uniquely defined by the
maximum condition. Using the technique from the proof of Theorem 4.1, it is easy
to prove that u(f,7) — u(f,7) as * — 7. According to the Lebesgue’s bounded
convergence theorem, we have that

|€(T,7T):€(Tﬁ)| - -
- ‘/OTR(O,t)u(t,w) dt—/OTR(O,t)u(t,f) dt‘+‘/TTR(O,t)u(t,7r) dt] =0

as (T,m) — (T,7). It follows that the function ¢ is continuous at the point (T, 7).

According to Theorem 3.1 we conclude that u(¢,n) is the optimal control
transferring the phase point from the position £(T,7) to 0 during the time 7.
Therefore the point (T, 7) belongs to the border of the sphere of accessibility
S(T). Let = be a point of the sphere of accessibility S(T"), different from the point
&(T,m). Let u(-) : [0,T] — U be the admissible control transferring the phase
point from z to 0 and let z(-) be the corresponding trajectory. Then

p(t, mult,®) > p(t, m)u(t)

and the inequality is strict on at least one subinterval of [0,T]. It follows that

T T
/Op(tm)U(t,vr)dt>/0 p(t, m)u(t) dt.
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Since -
/ p(t, m)u(t,w) dt = —w&(T, )
0
and
T
/ p(t, m)u(t) dt = —7x,
0

we have that 7&(T,7) < mz. Therefore, £(T,7) + ker 7 is the support line of the
sphere of accessibility S(T') having with it only the point (T, 7) in common.

Let us prove that S(T) is a compact set. Let II be the unit sphere of the
space X *. Since the function £ is continuous and the set II is compact, then the set
&(T,10) is compact. It follows that the set conv&(T,II) is compact too. Suppose
that there exists a point z from the set S(7T") which does not belong to the set
conv {(T,II). There exists a functional = € II which takes greater values on the set
conv {(T,II) than at the point . From the previous considerations we conclude
that 7£(T, w) < mz. Contradiction! Thus we have proved that S(T") C conv (7T, 1I).
The converse inclusion follows from &(7',II) C S(T') and the convexity of S(T').

Let us prove that from each border point of the accessibility sphere S(T") the
optimal trajectory runs to 0. It will be sufficient to prove that bd S(T") = &(T',II).
We already know that £(7,II) C bd S(T'). Let us prove the converse inclusion. Let
x € bd S(T). The functional = € II that reaches its minimum on the set S(T') at
the point z exists. Since 7&(T, 7) < wx, where the equality is valid only in the case
when z = &(T, ), we conclude that © = £(T, 7).

The half-line L starting at 0 and going through z, intersects the border of the
sphere of accessibility S(T') at exactly one point s(T'). Let o(T) = ||s(T)||.- Let us
prove that the function ¢ is continuous. Let T > 0 and € > 0. The set L\ B]s(T), [
is closed and disjoint from bd S(T). Therefore the distance d between those sets
is positive. Because of the continuity of the function £ and the compactness of
the set II, there exists § > 0 such that ||¢(T,7) — &(T,7)|| < d for every m € II
and for every T > 0 which satisfies the condition |[|T —T|| < §. It follows that
s(T) € B]s(T),¢[, and consequently ||o(T) — o(T)|| < € for every T > 0 satisfying
|IT —T|| < 4. That means that the function o is continuous.

Since the admissible control transferring the phase point from the position
xo to 0 exists, there exists 7' > 0 such that o(T") > ||zo||- On the other hand, we
have 0(0) = 0 < ||zo||- Because of the continuity of o, there exists T' > 0 such that
o(T) = ||xo||, i-e. such that zo € bd S(T). O

6. Case when phase space dimension is greater then two

If we consider the same optimal control problem with the assumption that
the phase space X is the Euclidean space R™ and the control set U is a convex
compact subset of R", we cannot apply directly the results from the previous
sections to this new setting. In vector spaces of dimension greater then two there
exist convex compact sets with uncountably many hyperplanes of support having
with them more than one point in common. Consequently, if we wish to apply a
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similar concept, we have to introduce the following changes in the formulation of
the problem:

— the control set U is the convex compact set from X with countably many
hyperplanes of support having more than one point in common with U,

— control u(-) is admissible if it has countably many discontinuities.

For such a problem all theorems proved in sections 2, 3, 4 and 5 are valid and
they can be proved in the similar way if the conditions of the strict stability and of
general position have the following formulation:

— the condition of strict stability is satisfied if 0 is an interior point of the set
U, or if 0 is the boundary point of the set U and the intersection of all hyperplanes
of support of the set U in 0 is not contained in some proper subspace of X which
is invariant under the operator A;

— the control set U is in the general position if there exists a non-empty
countable family S of subspaces of the phase space X, which satisfies the following
two conditions:

1. each hyperplane of support of the set U, having with U more than one
common point is parallel to some subspace from S;

2. no subspace from § is contained in the proper subspace of the phase space
X, which is invariant under the operator A.
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