FIXED POINT THEOREMS IN BANACH SPACES

Ljubomir Ćirić

Abstract

A class of self-maps on Banach spaces which have at least one fixed-point is presented and investigated.

We shall prove three fixed point theorems in Banach spaces.
Theorem 1. Let K be a closed and convex subset of a Banach space with the norm $\|x\|=d(x, 0)$ and $f: K \rightarrow K$ a mapping which satisfies the condition

$$
\begin{equation*}
d[x, f(x)]+d[y, f(y)] \leq q d(x, y) \tag{1}
\end{equation*}
$$

for all x, y in K, where $2 \leq q<4$. Then f has at least one fixed point.
Proof. Let x_{0} in K be arbitrary and let a sequence $\left\{x_{n}\right\}$ be defined by

$$
\begin{equation*}
x_{n+1}=\left[x_{n}+f\left(x_{n}\right)\right] / 2 \quad(n=0,1,2, \ldots) \tag{2}
\end{equation*}
$$

For this sequence we have

$$
\begin{equation*}
x_{n}-f\left(x_{n}\right)=2\left[x_{n}-\left(x_{n}+f\left(x_{n}\right)\right) / 2\right]=2\left(x_{n}-x_{n+1}\right) \tag{3}
\end{equation*}
$$

and hence $d\left[x_{n}, f\left(x_{n}\right)\right]=\left\|x_{n}-f\left(x_{n}\right)\right\|=2 d\left(x_{n}, x_{n+1}\right)(n=0,1,2, \ldots)$. Therefore, for $x=x_{n-1}$ and $y=x_{n}$ the condition (1) states

$$
2 d\left(x_{n-1}, x_{n}\right)+2 d\left(x_{n}, x_{n+1}\right) \leq q d\left(x_{n-1}, x_{n}\right) .
$$

Hence we have that $d\left(x_{n}, x_{n+1}\right) \leq c d\left(x_{n-1}, x_{n}\right)$, where $0 \leq c=(q-2) / 2<1$, as $2 \leq q<4$. Therefore, $\left\{x_{n}\right\}$ is a Cauchy sequence in K and hence converges to some $u \in K$. Since

$$
d\left[u, f\left(x_{n}\right)\right] \leq d\left(u, x_{n}\right)+d\left[x_{n}, f\left(x_{n}\right)\right]=d\left(u, x_{n}\right)+2 d\left(x_{n}, x_{n+1}\right)
$$

we conclude that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=u \tag{4}
\end{equation*}
$$

Now, let us put in (1) $x=u$ and $y=x_{n}$, and use (3). Then we have

$$
d[u, f(u)]+2 d\left(x_{n}, x_{n+1}\right) \leq q d\left(u, x_{n}\right)
$$

If now n tends to infinity one has $d[u, f(u)] \leq 0$, which implies $f(u)=u$, and our theorem is established.

Remark. The identity mapping satisfies (1). Therefore, maps which satisfy (1) may have many fixed points.

Corollary. Let K be as in Theorem 1 and let $f: K \rightarrow K$ be a mapping which satisfies the condition

$$
\begin{equation*}
d[x, f(y)]+d[y, f(x)] \leq p d(x, y) ; \quad 0 \leq p<2 \tag{5}
\end{equation*}
$$

Then f has a fixed point.
Proof. Using the triangle inequality we have

$$
d[x, f(x)]+d[y, f(y)] \leq d(x, y)+d[y, f(x)]+d(y, x)+d[x, f(y)]
$$

By (5) we now get

$$
d[x, f(x)]+d[y, f(y)] \leq p d(x, y)+2 d(x, y)
$$

Hence we conclude that f satisfies (1) with $q=p+2<4$.
Theorem 2. Let K be as in Theorem 1 and let $f: K \rightarrow K$ be a mapping such that

$$
\begin{equation*}
d[f(x), f(y)]+d[x, f(x)]+d[y, f(y)] \leq q d(x, y) \tag{6}
\end{equation*}
$$

for all x, y in K where $2 \leq q<5$. Then f has at least one fixed point.
Proof. Consider a sequence $\left\{x_{n}\right\}$ in K defined by (2). For this sequence the equalities (3) and

$$
\begin{equation*}
x_{n}-f\left(x_{n-1}\right)=\left[x_{n-1}+f\left(x_{n-1}\right)\right] / 2-f\left(x_{n-1}\right)=\left[x_{n-1}-f\left(x_{n-1}\right)\right] / 2 \tag{7}
\end{equation*}
$$

hold. Then the inequality

$$
\begin{equation*}
d\left[x_{n}, f\left(x_{n}\right)\right]-d\left[x_{n}, f\left(x_{n-1}\right)\right] \leq d\left[f\left(x_{n-1}\right), f\left(x_{n}\right)\right] \tag{8}
\end{equation*}
$$

becomes

$$
\begin{equation*}
2 d\left(x_{n}, x_{n+1}\right)-d\left(x_{n-1}, x_{n}\right) \leq d\left[f\left(x_{n-1}\right), f\left(x_{n}\right)\right] \tag{9}
\end{equation*}
$$

Now, if we put in (6) $x=x_{n-1}$ and $y=x_{n}$, and use (3), then from (6) and (9) we get

$$
\begin{equation*}
2 d\left(x_{n}, x_{n+1}\right)-d\left(x_{n-1}, x_{n}\right)+2 d\left(x_{n-1}, x_{n}\right)+2 d\left(x_{n}, x_{n+1}\right) \leq q d\left(x_{n-1}, x_{n}\right) \tag{10}
\end{equation*}
$$

and hence $d\left(x_{n}, x_{n+1}\right) \leq((q-1) / 4) d\left(x_{n-1}, x_{n}\right)$. Since $1 \leq q<5$, it follows that the sequence $\left\{x_{n}\right\}$ is a Cauchy sequence which converges to some $u \in K$. Since $f\left(x_{n}\right)$ also converges to u, from the inequality (6) with $x=u$ and $y=x_{n}$ we get $d[f(u), u]+d[u, f(u)] \leq 0$ which implies $f(u)=u$ and our theorem is established.

Now we give a general form of the inequality (6) which includes (1) and (6).
Theorem 3. Let f be a self-map on K, where K is as in Theorem 1. If there exist real numbers a, b and q such that

$$
\begin{gather*}
0 \leq q+|a|-2 b<2(a+b) \tag{11}\\
a d[f(x), f(y)]+b\{d[x, f(x)]+d[y, f(y)]\} \leq q d(x, y) \tag{12}
\end{gather*}
$$

for all x, y in K, then f has at least one fixed point.
Proof. Consider a sequence $\left\{x_{n}\right\}$ defined by (2) and put in (12) $x=x_{n-1}$ and $y=x_{n}$. If $a \geq 0$, then by (8) and (12) we obtain, similarly as (10) in Theorem 2 , the inequality

$$
\begin{equation*}
2 a d\left(x_{n}, x_{n+1}\right)-|a| d\left(x_{n-1}, x_{n}\right)+2 b\left[d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)\right] \leq q d\left(x_{n-1}, x_{n}\right) \tag{13}
\end{equation*}
$$

since then $-a=-|a|$. If $a<0$, than we use the inequality

$$
\begin{equation*}
d\left[x_{n}, f\left(x_{n}\right)\right]+d\left[x_{n}, f\left(x_{n-1}\right)\right] \geq d\left[f\left(x_{n-1}\right), f\left(x_{n}\right)\right] \tag{14}
\end{equation*}
$$

instead of (8). Then by (14) and (12) (with $x=x_{n-1}$ and $y=x_{n}$) we obtain (13), because in this case we can write $-|a|$ instead of a. Therefore, (13) holds for all a, b and q. From (13) we get

$$
d\left(x_{n}, x_{n+1}\right) \leq k d\left(x_{n-1}, x_{n}\right) ; \quad k=(|a|-2 b+q) /(2(a+b))
$$

Since (11) implies $0 \leq k<1$, it follows that $\left\{x_{n}\right\}$ is a Cauchy sequence and therefore it converges to some $u \in K$. Using (12) with $x=u$ and $y=x_{n}$ and letting n to tend to infinity we obtain

$$
a d[f(u), u]+b d[u, f(u)] \leq 0
$$

Then, as $a+b>0$, it follows that $f(u)=u$, completing the proof.

REFERENCES

[1.] Lj. B. Ćirić, Quasi-contractions in Banach spaces, Publ. Inst. Math. (Beograd) (N.S.) 21 (35) (1977), 41-48.
[2.] M. Edelstein, A remark on a theorem of M. A. Krasnoselski, Amer. Math. Monthly 73 (1966), 509-510.
[3.] K. Goebel, W. Kirk and T. Shimi, A fixed point theorem in uniformly convex spaces, Boll. U.M.I. (4) 7 (1973), 67-75.

[^0]
[^0]: Katedra za matematiku (Received 1005 1989)

