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ON ULTRAPOWERS OF LINEAR TOPOLOGICAL SPACES
WITHOUT CONVEXITY CONDITIONS

Zoran Kadelburg and Stojan Radenovi�c

Abstract. We de�ne and study the full and the bounded ultrapower of a linear topological
space without convexity conditions. We obtain also some results which are true for ultrapowers
of locally convex spaces.

1. Introduction

The theory of ultraproducts and, particularly, ultrapowers has proved to be
an important tool in functional analysis. Let us mention the papers [4] and [5] in
which some interesting results on nonlinear classi�cation of locally convex spaces
were obtained by this method. As is well known, a lot of linear topological spaces
which are important in applications (e.g. the spaces Lp, 0 � p < 1) are not locally
convex. So, it is natural to ask to what extent such results can be transfered to the
case of non-locally convex linear topological spaces. Although it was remarked in
[4] that such a transformation is natural, we want to point in this paper to same
new moments which arise in this setting.

Ultraproducts of linear topological spaces can be de�ned either over
countably-complete, or over countably-incomplete ultra�lters. The �rst approach
is treated e.g. in [3] and [11], while the second is covered by a wider bibliography
(see e.g. [4{8]). Each of these approaches has certain advantages | while the �rst
one enables us to consider ultraproducts of di�erent spaces, the second is naturally
concerned only with the ultrapower of a certain space. But this latter approach
has a greater importance in applications and it does not need any assumptions on
the cardinality of the index set. In the present paper we shall follow this approach.

We shall not use any nonstandard theory in this paper, although it is obvious
that a lot of ideas and some notation will be inspired by the nonstandard analysis.
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2. Preliminaries

The notions concerning the theory of linear topological spaces (lts) without
convexity conditions can be found in [1]. We give here only the basic ones. Let
E be a Hausdor� lts over the �eld K (of real or complex numbers). A string in
E is a sequence (Vn)n2N of subsets of E which are circled, absorbing and satisfy
Vn+1 + Vn+1 � Vn (n = 1; 2; . . . ). The string (Vn)n2N is said to be topological if
each Vn is a neighborhood of 0 in E. It is clear that each circled neighborhood of
0 in E generates a (non uniquely determined) topological string.

A function p : E ! R satisfying the conditions:

(a) p(x) � 0 for each x 2 E;

(b) p(x+ y) � p(x) + p(y) for each x; y 2 E;

(c) p(�x) � p(x) for each x 2 E and each � 2 K, j�j � 1;

(d) if �n 2 K, �n ! 0 and x 2 E, then p(�nx)! 0

is called an (F)-seminorm. If, moreover, p(x) = 0 implies x = 0, p is called an
(F)-norm. (F)-seminorms in a certain sense have the similar role in the theory
of linear topological spaces as the seminorms have in the theory of locally convex
spaces. Namely, each linear topology on a vector space can be determined by a
family of continuous (F)-seminorms. If the lts E is metrizable, then its topology
can be given by a single (F)-norm. It is known that to each topological string in a
lts a continuous (F)-seminorm can be corresponded, and conversely.

For the given lts E we shall denote: by U(E) the set of all circled and closed
neighborhoods of 0, by F(E) the set of all continuous (F)-seminorms, by B(E)
the set of all circled and bounded subsets, by P(E) the set of all circled and
precompact subsets, by @U (E) the least cardinality of a base of neighborhoods of
0, by @B(E) the least cardinality of a fundamental system of bounded subsets, and
@ = @(E) = maxf@U(E);@B(E)g.

The rest of the terminology is taken from [1] or [16]. Particularly, when we
say, e.g., \barrelled space", that means \barrelled in the category of lts" (\ultra-
barrelled" in the terminology of [9]).

A �lter on the set I is said to be an ultra�lter if there is no strictly stronger
�lter on I . The ultra�lter D on the set I is called countably-incomplete if there
exists a sequence of sets In 2 D, with In � In+1 (n = 1; 2; . . . ) and

T
n2N In = ?.

For example, each free ultra�lter on the set N of positive integers is countably-
incomplete. For our purposes we need also the notion of an @-good ultra�lter (@|
an in�nite cardinal); its de�nition and main properties can be found in [4], [13] or
[17], so we omit the details here. We mention only that on each set of cardinality
not less than @ there exists an @+-good countably-incomplete ultra�lter. Also, each
countably-incomplete ultra�lter is @1-good.

Let A be an arbitrary set, I an index set and D an ultra�lter on I . Then
the set-theoretical ultrapower AI=D is de�ned as the Cartesian power AI , factored
by the equivalence relation (ai) � (bi) () fi : ai = big 2 D. The equivalence
class containing (ai) is denoted by (ai)=D. If Ai � A (i 2 I) are given, we write
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Q
i Ai=D for the set

�
(ai)=D 2 AI=D : ai 2 Ai (i 2 I)

	
. Such subsets of AI=D are

called internal . If Ai = B for each i 2 I , we write BI=D instead of
Q

iAi=D.

Some of our results shall depend on certain \goodness" of the given ultra�l-
ter D, i.e. on some saturation properties of the corresponding ultrapower. When
considering the ultrapower EI=D of an lts E, we shall always assume that D is
@+-good, where @ = @(E), although some of these results can be obtained without
this assumption.

3. The full and the bounded ultrapower of a linear topological space

Let now E be a Hausdor� lts and EI=D its set-theoretical ultrapower over
a countably-incomplete @+-good ultra�lter D. Identifying x 2 E with (xi)=D 2
EI=D, xi = x for each i 2 I , we shall consider E as a linear subspace of EI=D.

Following [4], [7] and [13] we have three possibilities for de�ning �nite ele-
ments of EI=D.

1Æ Finite elements with respect to the topology of the space E form the set

�n(EI=D) =
�
(xi)=D 2 EI=D : (8U 2 U(E))(9n 2 N)(xi)=D 2 nU I=D

	
:

2Æ Finite elements with respect to the corresponding uniform structure of the
space E are the elements of the set

�nV(E
I=D) =

�
(xi)=D 2 EI=D : (8U 2 U(E))(9n 2 N)

(xi)=D 2 U I=D + � � �+ U I=D (n summands)
	
:

3Æ Finite elements with respect to the semi-metrics which de�ne this uniform
structure, i.e. with respect to the continuous (F)-seminorms of the space E:

�nF (E
I=D) =

�
(xi)=D 2 EI=D : (8p 2 F(E)) lim

D
p(xi) < +1

	
:

It is clear that the monad can be de�ned in the two following ways:

1Æ �(EI=D) =
T
U2U(E) U

I=D;

2Æ �F(E
I=D) =

T
p2F(E)

�
(xi)=D 2 EI=D : limD p(xi) = 0

	
.

In the locally convex case the introduced concepts of �niteness and monads,
respectively, are the same. In the general linear topological case the �rst concept
of �niteness is di�erent from the latter two (see Example 1). Before de�ning the
full and the bounded ultrapower of an arbitrary lts , let us prove the following

PROPOSITION 3.1. Let E be a Hausdor� lts and D a countably-incomplete
@+-good ultra�lter. Then :

(i) Internal subsets U I=D of EI=D, U 2 U(E), form a base of neighborhoods
of 0 of a complete topological vector group (in the sense of [15]) which is not
Hausdor�. E is a topological subspace of EI=D.

(ii) �n(EI=D) � �nV(E
I=D) = �nF(E

I=D). �n(EI=D) is closed in EI=D
and it is the maximal subspace on which the topology of EI=D induces a linear
topology.
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(iii) �(EI=D) = �F (E
I=D) and it is a closed subspace of EI=D.

Proof . (i) For each U 2 U(E) �nd V 2 U(E) such that V + V � U and
then V I=D + V I=D � U I=D. By [15] it means that the sets U I=D, U 2 U(E),
form the base of a topological vector group. The completeness follows from the
saturation like in [4, Theorem 1.1]. Because of U I=D \ E = U , EI=D induces the
initial topology on E.

(ii) �n(EI=D) � �nV(E
I=D) follows from nU I=D � U I=D + � � � + U I=D (n

summands). �nV(E
I=D) = �nF (E

I=D) follows from the fact (which can be easily
checked) that the set A � E is bounded with respect to the uniform structure of
the space E i� p(A) is bounded for each p 2 F(E). The closedness of �n(EI=D)
was proved in [4] and the maximality follows from the de�nition.

(iii) Let (xi)=D 2 �(EI=D) and p 2 F(E). The (F)-seminorm p generates a
topological string (Vk)k2N, where Vk = fx 2 E : p(x) < 2�kg. Now we have xi 2 Vk
for each i 2 I , k 2 N, and so limD p(xi) � 2�k for each k 2 N, which proves that
limD p(xi) = 0, i.e., (xi)=D 2 �F (E

I=D). Conversely, let (xi)=D =2 �(EI=D) and so
let U 2 U(E) be such that xi =2 U for each i 2 I . Form a topological string (Un)n2N
in E such that U = U1 and a continuous (F)-seminorm q as in [1], p. 11. Then
q(xi) � 1 for each i 2 I , which means that q(xi) 6! 0 (D) i.e. (xi)=D =2 �F (E

I=D).
�

Now we give an example showing that �n(EI=D) can be a proper subspace
of �nV(E

I=D) and �nF (E
I=D).

Example 1. Let E =
�
x = (xn)n2N : xn 2 R;

P1

n=1 jxnj
1=n < 1

	
, with the

(F)-norm jxj =
P1

n=1 jxnj
1=n. It was proved in [18] that there exists a subset A

which is bounded with respect to the uniform structure of the space E, but not
bounded in E. It can be easily checked that then there exists (xi)=D 2 AI=D �
�nV(E

I=D) such that (xi)=D =2 �n(EI=D). (Compare with Example 3.4 in [7]).

The results of Proposition 3.1 and Example 1 suggest that the full ultrapower
of an arbitrary lts E can be de�ned as the quotient �n(EI=D)=�(EI=D) with the
corresponding quotient topology. It will be denoted as in [4]. So, if E is a Hausdor�
lts and D a countably-incomplete @+-good ultra�lter, then

(E)D = �n(EI=D)=�(EI=D)

is the full ultrapower of E over D. It is the associated Hausdor� space to the lts
�n(EI=D). Its elements are equivalence classes (xi)D = �

�
(xi)=D

�
= (xi)=D +

�(EI=D), where � is the quotient map. The zero-neighborhood basis is formed by
the sets (V )D = �

�
V I=D \ �n(EI=D)

	
, V 2 U(E).

The bounded ultrapower can be de�ned as in the locally convex case: �rst let
bd(EI=D) =

S�
BI=D : B 2 B(E)

	
and then the linear and topological subspace of

(E)D generated by �
�
bd(EI=D)

�
is denoted by [E]D and called the bounded ultra-

power of E. Let us mention that, unlike the locally convex case, bd(EI=D) is not
equal to the set

�
(xi)=D 2 EI=D : (9I0 2 D) supI0 p(xi) <1 for each p 2 F(E)

	
.

It will be proved later (see Proposition 3.3) that bd(EI=D) � �n(EI=D).
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So, we have obtained two new lts's which contain the given space E as their
subspace.

The following proposition shows that the topology of the full ultrapower can
be de�ned by the family F(E) of continuous (F)-seminorms of the space E, which
is similar to the locally convex case.

PROPOSITION 3.2. If p 2 F(E), then by �p
�
(xi)D

�
= limD p(xi) a continuous

(F)-seminorm on the space (E)D is de�ned.

Proof . For the proof we need the following result which was in nonstandard
terminology obtained in [7]: (xi)=D 2 �n(EI=D) i� (�i)=D � (xi)=D 2 �(EI=D) for

each (�i)=D 2 �(RI=D).

Only the condition (d) from the de�nition of (F)-seminorms is nontrivial. Let
(xi)D 2 (E)D and let �n 2 K, �n ! 0 (n ! 1). We can take �n 2 R. �p can

be considered as a function from EI=D into RI=D and from the continuity of p it

follows that �p
�
�(EI=D)

�
� �(RI=D). So, we have to prove that �p

�
�n(xi)=D

�
!

0 (n ! 1), which is equivalent to �p
�
(�(ni))=D � (xi)=D

�
2 �(RI=D) for each

(ni)=D 2 NI=D nN. As far as
�
�(ni)

�
=D 2 �(RI=D) (because �n ! 0), from the

mentioned result it follows that (�(ni))=D � (xi)=D 2 �(EI=D), which gives

�p
�
(�(ni))=D � (xi)=D

�
2 �p
�
�(EI=D)

�
� �(RI=D)

and so the proof is complete. �

The relationship between the spaces E, [E]D, (E)D and �n(EI=D) can be
better understood using the following two subspaces of EI=D. Since EI=D is a
complete topological vector group [15], the closure E of E in EI=D has the form:

E =
�
(xi)=D 2 EI=D :(8U 2 U(E))(9y 2 E)(xi)=D 2 (yi)=D + U I=D;

where yi = y for each i 2 I
	
:

We shall denote this space by pns(EI=D) [13]. On the other hand, we shall denote
by ns(EI=D) the set of those classes from EI=D which have the same image by the
cannonical mapping � as some points from E:

ns(EI=D) =
�
(xi)=D 2 EI=D :(9y 2 E)(xi)=D � (yi)=D 2 �(EI=D);

where yi = y for each i 2 I
	
:

Now we have the following inclusions between the introduced spaces:

ns(EI=D) � pns(EI=D) � �n(EI=D);

�(EI=D) � pns(EI=D);

bd(EI=D) � �n(EI=D) (see the next proposition).

PROPOSITION 3.3. Let E be an arbitrary lts and D a countably-incomplete
@+-good ultra�lter. Then

(i) A � E is bounded i� AI=D � �n(EI=D) ;
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(ii) A � E is precompact i� AI=D � pns(EI=D) ;

(iii) A � E is relatively compact i� AI=D � ns(EI=D) ;

(iv) E is complete i� ns(EI=D) = pns(EI=D).

Proof . (i) and (ii) were proved, using nonstandard analysis in [7] and (iii)
and (iv) in [13]. Let us prove only the \if" part of (i) in a standard way to
emphasize the importance of saturation property. If A � E is not bounded, then
for some U 2 U(E) we can �nd n 2 N so that A 6� nU . Now, obviously, the family�
AI=D\C(nU)I=D : n = 1; 2; . . .

	
has the �nite intersection property, and so the

goodness of D implies that there exists (xi)=D 2 AI=D such that (xi)=D =2 nU I=D,
which means that AI=D 6� �n(EI=D). �

Remark . The mentioned inclusions between the introduced subsets of EI=D
and the previous proposition give us the following diagram (the arrows stand for
inclusions):

[E]D
% &

E (E)D
& %

�(pns(EI=D))

Here �
�
pns(EI=D)

�
is the completion eE of E and eE and [E]D are incomparable in

general.

One of the natural questions about the relationship between the spaces in this
diagram is answered in the following proposition whose proof is nearly the same as
in [4].

PROPOSITION 3.4. If E is an lts and D an @+-good countably incomplete
ultra�lter, then the following conditions are equivalent :

(i) [E]D is dense in (E)D ;

(ii) (8� : U(E)! R+)(8V 2 U(E))(9�nite U � U(E))(9B 2 B(E))T
U2U �(U)U � B + V (\the density condition" ).

Let us mention that (non-locally convex) DF-spaces [1], according to [12],
satisfy this condition. Later on (see section 5) we shall prove that Frechet-Montel
spaces (also considered in the category of lts's) satisfy the density condition, too.

Recall that an lts E is called locally bounded if it has a bounded neighborhood
of 0 and boundedly compact if all of its bounded subsets are relatively compact.
Locally bounded and metrizable lts 's are stable under the full ultrapowers.

The following proposition, which can be compared with [4, Proposition 1.5]
(see also [7] and [13]), shows that in a certain sence locally bounded spaces play
the same role in the theory of lts's as normed spaces do in the theory of locally
convex spaces.

PROPOSITION 3.5. Let E be an lts and D a countably-incomplete @+-good
ultra�lter. Then :
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(i) �n(EI=D) = bd(EI=D) i� E is locally bounded. Either of these condi-
tions implies that [E]D = (E)D .

(ii) P(E) = B(E) i� E is dense in [E]D and i� bd(EI=D) � pns(EI=D).

(iii) E = [E]D i� E is boundedly compact.

(iv) E satis�es the density condition and P(E) = B(E) i� �
�
pns(EI=D)

�
=

(E)D.

Note that the implication [E]D = (E)D =) �n(EI=D) = bd(EI=D) does
not hold in general (see also Proposition 4.1).

As a corollary we can mention that E = (E)D i� E is complete, boundedly
compact and satis�es the density condition.

4. Ultrapowers and topological operations

In this section we shall deal with some aspects of topological operations with
both ultrapowers in the category of lts's which di�er from the locally convex case.

It can be easily proved that the ultrapower \behaves well" in connection with
the projective topology (as de�ned in the non-locally convex case in [1]), i.e., similar
propositions as in [4, x2] hold. Particularly, the full ultrapower of each lts has the
projective topology of a system of full ultrapowers of complete metrizable lts's .
In the proof we have to substitute the fundamental system of absolutely convex
neighborhoods of 0 by some fundamental system of topological strings in E (see
[1]).

When non-locally convex inductive limits are concerned (see de�nition in [1]),
there are some di�erences.

The following proposition, which can be compared with [4, Proposition 2.6],
shows how some new classes of spaces satisfying [E]D = (E)D can be obtained.
Also, it shows again the role of locally bounded spaces in the category of lts's .

PROPOSITION 4.1. Let (En) be a sequence of lts's such that each En is a
closed subspace of En+1. Let E = ind limEn and let D be a countably-incomplete
@(E)+-good ultra�lter. Then the following identities hold algebraically :

(E)D = ind lim(En)D; [E]D = ind lim[En]D:

If the spaces En are locally bounded, these identities hold also topologically.

Proof . As in the corresponding proof in [4], for the �rst assertion it is enough
to prove that the cannonical injection � : ind lim(En)D ! (E)D is surjective and
this will be proved by establishing the following: for each y 2 �n(EI=D) there exists
n 2 N such that for every U 2 U(E), y 2 EI

n=D+U I=D. Let us assume that this is
not the case, i.e., for some y 2 �n(EI=D) and each n 2 N there exists Un 2 U(E)
such that y =2 EI

n=D + U I
n=D. Now we have to use the characteristic shape of

zero-neighborhoods in a non-locally convex inductive limit [1]. Namely, we can
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take Un =
P1

k=1 Un;k
� where Un;k 2 U(Ek) for each n; k 2 N. De�ne Vk 2 U(Ek)

(k 2 N) by Vk = k�1
Tk
j=1 Uj;k, and we obviously have V =

P1

k=1 Vk 2 U(E) and

V �

nX
k=1

Vk +

1X
k=n+1

Vk � En +
1

n

1X
k=n+1

Un;k �
1

n
(En + Un):

Passing to the ultrapowers, we have y =2 nV I=D, which is a contradiction.

Let now each En be a locally bounded space. We have to prove that ��1 is
continuous, and it will be established by proving that

�P1

n=1 Un

�
D
�
P1

n=1(Un)D,
where Un 2 U(En) are bounded.

Let x = (xi)D 2
�P1

n=1

�
D
, i.e. (xi)=D 2

�P1

n=1 Un

�I
=D \ �n(EI=D). By

the de�nition of
P1

n=1 Un we have that for some m 2 N:

xi = y1;i + y2;i + � � �+ ym;i where yk;i 2 Uk, k = 1; . . . ;m, i 2 I .

The boundedness of the neighborhoods Uk implies that U I
k=D � �n(EI

k=D) �
�n(EI=D) and so

(yk;i)=D 2 U I
k=D \ �n(EI

k=D) � U I
k=D \ �n(EI=D);

hence

(xi)=D = (y1;i)=D + � � �+ (ym;i)=D 2 U I
1 =D + � � �+ U I

m=D:

So, (xi)D 2 (U1)D + � � � + (Um)D, or (xi)D 2
P1

n=1(Un)D, which completes the
proof. �

The last proposition gives us also that inductive limits of locally bounded
spaces satisfy the density condition.

When the Proposition 2.5 [4] is concerned, it can be transfered to the non-
locally convex case almost directly. Only the more complicated structure of typical
neighborhoods of zero in the direct sum (see [1, p. 20]) has to be taken into account.

5. (HM)-spaces

From [17] we know that a locally convex space E is an (HM)-space if it has
the invariant nonstandard hull, i.e., if its full ultrapower (E)D does not depend on
the ultra�lter D. The same de�nition gives us the notion of arbitrary lts's of the
type (HM) | we can also say that an lts is an (HM)-space if its full ultrapower
(E)D is always isomorphic to the completion �(E) of the space E, or, equivalently, if

�n(EI=D) = pns(EI=D) for each ultra�lter D. So, E is an (HM)-space if eE = (E)D
or, particularly, if E = (E)D. The class of (HM)-spaces is stable under taking
subspaces, arbitrary products and projective topologies, but it is not stable under
taking separated quotients [14]. If the ultra�lter D is countably complete, then
this class is not stable under taking ultrapowers [3]. We begin this section with the
following

�
P
1

k=1
Mk =

S
1

N=1

P
N

k=1
Mk
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PROPOSITION 5.1. Let E be an (HM)-space and D a countably-incomplete
@+-good ultra�lter. Then (E)D and [E]D are also (HM)-spaces.

Proof . Since E is an (HM)-space, its completion is (E)D and so the spaces E
and (E)D have the same full ultrapowers (a space and its dense subspace have the
same full ultrapowers). Hence, (E)D is an (HM)-space, too. But then its subspace
[E]D is also an (HM)-space (see [14, Theorem 3]). �

Remark . So, for (HM)-space we have [E]D = (E)D. But the equality [E]D =
(E)D is not obligatory for (HM)-spaces. E.g., if E is an arbitrary Banach space of
in�nite dimension and E0� its weak dual, then [E0� ]D = E0� 6= (E0�)D = [(E0�)D]D.
The same example shows that a space and its dense subspace need not have the
same bounded ultrapowers.

For lts's E and F let L�(E;F ) denotes the space of continuous linear map-
pings from E to F with the topology of simple convergence. The following propo-
sition can be compared with [4, Proposition 1.6].

PROPOSITION 5.2. Let E and F be lts's such that F is an (HM)-space. Then

(i) L�(E;F ) is an (HM)-space.

(ii) If, moreover, E is barrelled and F complete, then [L�(E;F )]D = L�(E;F )
for each countably-incomplete, @+-good ultra�lter D, where @ = @(L�(E;F )).

Proof . (i) The space L�(E;F ) is a subspace of the space F
E with its product

topology [16], so the result follows from [14].

(ii) By Proposition 3.5, in each (HM)-space the classes of bounded and pre-
compact subsets coincide. From (i) it follows that each simply bounded subset of
L(E;F ) is precompact. On the other hand, the barrelledness of E implies that each
L�(E;F )-bounded subset is equicontinuous [1]. So, the closure of such a subset
is complete [16, III.4.4]. This means that L�(E;F ) is boundedly-compact, which,
again by Proposition 3.5, implies that [L�(E;F )]D = L�(E;F ). �

A Banach space is (HM) i� it is of �nite dimension, [7], [17]. For locally
bounded lts's we have the similar

PROPOSITION 5.3. A locally bounded space E is (HM) i� it is of �nite dimen-
sion.

Proof . If E is a locally bounded (HM)-space, then it is clear that [E]D =
(E)D is also a locally bounded (HM)-space. Hence, (E)D has a relatively compact
neighborhood of 0 and so it is of �nite dimension. Then the same is true for E.
The converse is trivial. �

COROLLARY. The spaces lp and Lp, 0 � p < 1, are not (HM)-spaces.

For some classes of locally convex spaces E the condition of being an (HM)-
space is equivalent to the condition B(E) = P(E) (see [2], [8]). E.g. a Frechet
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locally convex space is (HM) i� it is Frechet-Montel. Taking into account that each
metrizable lts is de�ned by a single string, i.e. by a single (F)-norm, we have:

PROPOSITION 5.4. If E is a metrizable lts, then the following conditions are
equivalent :

(i) P(E) = B(E);

(ii) E is an (HM)-space;

(ii) the completion eE is a Montel space.

Proof . The implications (ii) =) (ii) =) (i) are trivial. To prove that
(i) =) (ii) in our (non-locally convex) case, we cannot use the method of [8],
Theorem 1, since the boundness is not in general equivalent with the boundness with
respect to (F)-seminorms. But, on the other hand, we can use the characterization
of (HM)-spaces given in [7, Theorem 4.1], which says that the space E is (HM) i�
each ultra�lter F in E satisfying the condition (8U 2 U(E))(9n 2 N)nU 2 F is a
Cauchy ultra�lter. �

The results of the following proposition are partial analogue of the results
from [2] about locally convex (DF)-spaces. We use the fact from [12] that a (non-
locally convex) (DF)-space is quasinormed, i.e., it satis�es the density condition.
For lts's E and F let Lb(E;F ) denotes the space of continuous linear mappings
from E to F with the topology of uniform convergence on all bounded subsets of
E. Recall [9] that an lts E is called almost-convex if each bounded subset of E is
contained in some bounded, circled and closed subset B such that B+B � �B for
some � � 0. E.g., each locally bounded lts is almost-convex.

PROPOSITION 5.5. Let E be a (DF) lts and consider the following conditions :

(i) E is an (HM)-space;

(ii) P(E) = B(E);

(iii) Lb(E;F ) is an (HM)-space for each Frechet-Montel lts F ;

(iv) Lb(E;F ) is an (HM)-space for each Frechet lts F ;

(v) the completion eE is barrelled.

Then (i)() (ii) and (ii) =) (iii). If E is almost-convex, then (ii) =) (v)
and (iv) =) (v).

Proof . We know already that (i) =) (ii) holds.

(ii) =) (i): Let D be an arbitrary countably-incomplete @+-good ultra�lter.

Since the (DF)-space E satis�es the density condition we have [E]D = (E)D . Then
P(E) = B(E), by Proposition 3.5, implies that E = (E)D, which means that E is
an (HM)-space.

(ii) =) (iii): Under the given assumptions Lb(E;F ) is a metrizable space
and so it is enough to prove that it has precompact bounded subsets. Suppose that
this is not the case, and so that there exists a bounded sequence (xn) in Lb(E;F ),
such that A = fxn : n 2 Ng is not precompact. But P(E) = B(E) implies that
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the topologies of Lb(E;F ) and L�(E;F ) coincide on A (see [16, III.4.5]), which by
Proposition 5.2, means that A is precompact, hence a contradiction.

(ii) =) (v), (iv) =) (v): Each of the conditions (ii) or (iv) implies that E
is quasibarrelled. The �rst implication was proved in [1]. To prove the second
consider an arbitrary bounded subset A of Lb(E;F ). By (iv) it is precompact and
then by [10, Proposition 1.3], equicontinuous (in [10] Db-spaces were considered
which contain the class of (DF)-spaces). Now from [9] it follows that the completion
eE is barrelled. �

Remark . So, as in the locally convex case [2], the conditions (i) and (ii) of
the last proposition are equivalent for (F) and (DF) spaces in the general situation.
For the spaces which are neither (F) nor (DF) we can only say that the space E is
(HM) i� P(E) = B(E) and E satis�es the density condition (see Proposition 3.5).
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