LINEAR COMBINATIONS OF REGULAR FUNCTIONS OF ORDER ALPHA WITH NEGATIVE COEFFICIENTS

M. K. Aouf

Abstract

Let $f(z)=a_{p} z^{p}-\sum_{n=1}^{\infty} a_{n+k} z^{n+k}, k \geq p \geq 1$, with $a_{p}>0, a_{n+k} \geq 0$ be regular in $U=\{z:|z|<1\}$ and $F(z)=(1-\lambda) f(z)+\lambda p^{-1} z f^{\prime}(z), z \in U$, where $\lambda \geq 0$.

The radius of p-valent starlikeness of order $\delta, 0 \leq \delta<p$, of $F(z)$ as $f(z)$ varies over a certain subclass of p-valent regular functions of order $\alpha, 0 \leq \alpha<p$, in U is determined. All the results are sharp.

1. Introduction. Let $U=\{z:|z|<1\}$ be the unit disc and $H=\{w: w$ is regular in U such that $w(0)=0,|w(z)|<1, z \in U\}$. Let $P_{p}(A, B, \alpha)$ denote the class of functions regular in U which are of the form

$$
\frac{p+[p B+(A-B)(p-\alpha)] w(z)}{1+B w(z)}, \quad-1 \leq A<B \leq 1, \quad 0 \leq \alpha<p, \quad w \in H
$$

Let T_{p} be the class of functions $f(z)=a_{p} z^{p}-\sum_{n=1}^{\infty} a_{n+k} z^{n+k}, k \geq p \geq 1, a_{p}>0$ and $a_{n+k} \geq 0$, regular in U. Let

$$
\begin{aligned}
S_{p}^{*}(A, B, \alpha) & =\left\{f \in T_{p}: z f^{\prime}(z) / f(z) \in P_{p}(A, B, \alpha)\right\} \quad \text { and } \\
K_{p}(A, B, \alpha) & =\left\{f \in T_{p}: 1+z f^{\prime \prime}(z) / f^{\prime}(z) \in P_{p}(A, B, \alpha)\right\} .
\end{aligned}
$$

We note that $S_{p}^{*}(A, B, \alpha)$ and $K_{p}(A, B, \alpha)$ are subclasses of T_{p} consisting of p valently starlike functions of order α, and p-valently convex functions of order α, $0 \leq \alpha<p$, respectively. Further if $f(z) \in S_{p}^{*}(A, B, \alpha)$ and $z=r e^{i \theta}, r<1$,

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{Re} \frac{z f^{\prime}(z)}{f(z)} d \theta=\frac{(p-\alpha)}{2 \pi} \int_{0}^{2 \pi} \operatorname{Re} \frac{1+A w(z)}{1+B w(z)} d \theta+\frac{\alpha}{2 \pi} \int_{0}^{2 \pi} d \theta=p
$$

since $\operatorname{Re} \frac{1+A w(z)}{1+B w(z)}$ is a harmonic function in U with $w(0)=0$. This argument shows the p-valence of $f(z)$ in $S_{p}^{*}(A, B, \alpha)$. Similarly $f(z) \in K_{p}(A, B, \alpha)$ is p valently convex of order $\alpha, 0 \leq \alpha<p$ in U. Define $P^{*}(A, B, \alpha)=\left\{f \in T_{1}\right.$: $\left.f^{\prime}(z) \in P_{1}(A, B, \alpha), a_{1}=1\right\}$.

In this paper we determine the radius of p-valence of the function $F(z)+$ $(1-\lambda) f(z)+\lambda p^{-1} z f^{\prime}(z), \lambda \geq 0$, under the assumption that $0<B \leq 1$, when $f(z)$ is in $S_{p}^{*}(A, B, \alpha), K_{p}(A, B, \alpha)$ and $P^{*}(A, B, \alpha)$.

Throughout this paper we assume that $0<B \leq 1$ and $\lambda \geq 0$.
2. Main Results. We use the following notations for the sake of brevity. $n+k=m,(m-p)(B+1)+(B-A)(p-\alpha)=C_{m}$ and $\sum_{m=k+1}^{\infty}=\sum$. We begin by proving the following:

Lemma 1. Let $f(z) \in T_{p}$. Then $f(z) \in S_{p}^{*}(A, B, \alpha)$ if and only if

$$
\begin{equation*}
\sum C_{m} a_{m} \leq(B-A)(p-\alpha) a_{p} \tag{2.1}
\end{equation*}
$$

Proof. Suppose $f(z) \in S_{p}^{*}(A, B, \alpha)$. Then

$$
\begin{gathered}
\frac{z f^{\prime}(z)}{f(z)}=\frac{p+[p B+(A-B)(p-\alpha)] w(z)}{1+B w(z)} \\
-1 \leq A<B \leq 1, \quad 0<B \leq 1, \quad 0 \leq \alpha<p, \quad w(z) \in H, \quad z \in U
\end{gathered}
$$

That is,

$$
w(z)=\frac{p-z f^{\prime}(z) / f(z)}{B z f^{\prime}(z) / f(z)-[p B+(A-B)(p-\alpha)]}, \quad w(0)=0
$$

and

$$
\begin{aligned}
|w(z)| & =\left|\frac{z f^{\prime}(z)-p f(z)}{B z f^{\prime}(z)-[p B+(A-B)(p-\alpha) f(z)]}\right| \\
& =\left|\frac{\sum(m-p) a_{m} z^{m}}{(B-A)(p-\alpha) a_{p} z^{p}-\sum[(m-p) B+(B-A)(p-\alpha)] a_{m} z^{m}}\right|<1
\end{aligned}
$$

Thus

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\sum(m-p) a_{m} z^{m}}{(B-A)(p-\alpha) a_{p} z^{p}-\sum[(m-p) B+(B-A)(p-\alpha)] a_{m} z^{m}}\right\}<1 \tag{2.2}
\end{equation*}
$$

Take $z=r$ with $0<r<1$. Then, for sufficiently small r, the denominator of the left-hand member of (2.2) is positive and so it is positive for all $r, 0<r<1$, since $w(z)$ is regular for $|z|<1$. Then (2.2) gives

$$
\sum(m-p) a_{m} r^{m}<(B-A)(p-\alpha) a_{p} r^{p}-\sum[(m-p) B+(B-A)(p-\alpha)] a_{m} r^{m}
$$

that is,

$$
\sum[(m-p)(B+1)+(B-A)(p-\alpha)] a_{m} r^{m}<(B-A)(p-\alpha) a_{p} r^{p}
$$

that is $\sum C_{m} a_{m} r^{m}<(B-A)(p-\alpha) a_{p} r^{p}$, and (2.1) follows on letting $r \rightarrow 1$.
Conversely, for $|z|=r, 0<r<1$, since $r^{m}<r^{p}$, by (2.1) we have $\sum C_{m} a_{m} r^{m}<r^{p} \sum C_{m} a_{m}<(B-A)(p-\alpha) a_{p} r^{p}$. Using this inequality we have

$$
\begin{aligned}
& \left|\sum(m-p) a_{m} z^{m}\right| \leq \sum(m-p) a_{m} r^{m} \\
& \quad<(B-A)(p-\alpha) a_{p} r^{p}-\sum[(m-p) B+(B-A)(p-\alpha)] a_{m} r^{m} \\
& \quad \leq\left|(B-A)(p-\alpha) a_{p} z^{p}-\sum\left[(m-p) B+(B-A)(p-\alpha) a_{m} z^{m}\right]\right|
\end{aligned}
$$

This proves that $z f^{\prime}(z) / f(z)$ is of the form

$$
\frac{p+[p B+(A-B)(p-\alpha)] w(z)}{1+B w(z)}, \quad w \in H
$$

Therefore $f(z) \in S_{p}^{*}(A, B, \alpha)$ and the proof is complete.
Remark on Lemma 1. For $\alpha=0$, Lemma 1 reduces to Lemma 1 in [3].
Corollary 1. Let $f(z) \in T_{p}$. Then $f(z) \in S_{p}^{*}(-1,1, \alpha)=S_{p}^{*}(\alpha)$, the class of p-valent starlike functions of order $\alpha, 0 \leq \alpha<p$, if and only if $\sum(m-\alpha) a_{m} \leq$ $(p-\alpha) a_{p}$.

Remarks on Corollary 1. (1) For $k=p=1$, Corollary 1 reduces to Corollary 1 in [3]. (2) For $k=p=1$ and $a_{1}=1$, Corollary 1 reduces to Theorem 1 in [5].

Theorem 1. Let $f(z) \in S_{p}^{*}(A, B, \alpha)$ and $F(z)=(1-\lambda) f(z)+\lambda p^{-1} z f^{\prime}(z)$, $z \in U$. Then $F(z)$ is p-valently starlike of order $\delta, 0 \leq \delta<p$, for

$$
\begin{gathered}
|z|<r_{1}=\inf _{m}\left[\frac{p(p-\delta)}{(m-\delta)(p+\lambda(m-p))} \cdot \frac{C_{m}}{(B-A)(p-\alpha)}\right]^{1 /(m-p)} \\
m=k+1, k+2, \ldots
\end{gathered}
$$

The result is sharp.
Proof. We have

$$
\begin{aligned}
F(z) & =(1-\lambda) f(z)+\lambda p^{-1} z f^{\prime}(z) \\
& =a_{p} z^{p}-\sum p^{-1}(p+\lambda(m-p)) a_{m} z^{m} \\
\frac{z F^{\prime}(z)}{F(z)} & =\frac{p a_{p} z^{p}-\sum m p^{-1}(p+\lambda(m-p)) a_{m} z^{m}}{a_{p} z^{p}-\sum p^{-1}(p+\lambda(m-p)) a_{m} z^{m}}
\end{aligned}
$$

Now it sufficies to show that $\left|z F^{\prime}(z) / F(z)-p\right| \leq(p-\delta)$ for $|z|<r_{1}$. Now

$$
\left|\frac{z F^{\prime}(z)}{F(z)}-p\right|=\left|\frac{-\sum(m-p) p^{-1}(p+\lambda(m-p)) a_{m} z^{m}}{a_{p} z^{p}-\sum p^{-1}(p+\lambda(m-p)) a_{m} z^{m}}\right|
$$

$$
\begin{equation*}
\leq \frac{\sum(m-p) p^{-1}(p+\lambda(m-p)) a_{m}|z|^{m-p}}{\left.\left|a_{p}-\sum p^{-1}(p+\lambda(m-p)) a_{m}\right| z\right|^{m-p} \mid} \tag{2.3}
\end{equation*}
$$

Consider the values of z for which $|z|<r_{1}$, so that

$$
|z|^{m-p} \leq \frac{p(p-\delta)}{(m-\delta)(p+\lambda(m-p))} \cdot \frac{C_{m}}{(B-A)(p-\alpha)}
$$

holds. Then

$$
\begin{aligned}
\sum\left(\frac{p+\lambda(m-p)}{p}\right) a_{m}|z|^{m-p} & \leq \sum \frac{(p-\delta)}{(m-\delta)} \cdot \frac{C_{m}}{(B-A)(p-\alpha)} a_{m} \\
& \leq \frac{C_{m}}{(B-A)(p-\alpha)} a_{m}<a_{p}
\end{aligned}
$$

which is true by (2.1). Thus, the expression within the modulus sign in the denominator of the right hand side of (2.3) for the considered values of z is positive and so we have

$$
\left|\frac{z F^{\prime}(z)}{F(z)}-p\right| \leq \frac{\sum(m-p) p^{-1}(p+\lambda(m-p)) a_{m}|z|^{m-p}}{a_{p}-\sum p^{-1}(p+\lambda(m-p)) a_{m}|z|^{m-p}} \leq(p-\delta)
$$

if

$$
\sum(m-\delta) p^{-1}(p+\lambda(m-p)) a_{m}|z|^{m-p} \leq(p-\delta) a_{p}
$$

that is, if

$$
\begin{equation*}
\sum \frac{(m-\delta) p^{-1}(p+\lambda(m-p)) a_{m}|z|^{m-p}}{(p-\delta) a_{p}} \leq 1 \tag{2.4}
\end{equation*}
$$

By Lemma 1, we have $f(z) \in S_{p}^{*}(A, B, \alpha)$ if and only if $\sum \frac{C_{m} a_{m}}{(B-A)(p-\alpha) a_{p}} \leq 1$.
Hence (2.4) is true if

$$
\frac{(m-\delta) p^{-1}(p+\lambda(m-p))}{(p-\delta)}|z|^{m-p} \leq \frac{C_{m}}{(B-A)(p-\alpha)}
$$

that is, if

$$
|z| \leq\left[\frac{p(p-\delta)}{(m-\delta)(p+\lambda(m-p))} \cdot \frac{C_{m}}{(B-A)(p-\alpha)}\right]^{1 /(m-p)}
$$

To see the p-valence of $F(z)$ in $|z|<r_{1}$, we observe that $z F^{\prime}(z) / F(z)$ is regular in $|z|<r_{1}$ and hence $\operatorname{Re}\left(z F^{\prime}(z) / F(z)\right)$ is harmonic in that disc. For $r<r_{1}$ and $z=r e^{i \theta}$,

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{Re} \frac{z F^{\prime}(z)}{F(z)} d \theta=p
$$

showing that $F(z)$ is p-valent in $|z|<r_{1}$. Hence the proof follows. The extremal function is given by

$$
f(z)=a_{p} z^{p}-(B-A)(p-\alpha) a_{p} C_{m}^{-1} z^{m}, \quad m=k+1, k+2, \ldots
$$

Remarks on Theorem 1. (1) For $k=p=1, A=-1, B=1$ and $a_{1}=1$, Theorem 1 reduces to Theorem 2 in [1]. (2) For $\alpha=0, m=n+p, n=1,2,3, \ldots$, $a_{p}=1$ and $\delta=p \delta^{\prime}$, Theorem 1 reduces to Theorem 2 in [2].

Corollary 2. If $f(z) \in S_{p}^{*}(A, B, \alpha)$, then $f(z)$ is p-valently starlike of order $\delta, 0 \leq \delta<p$, in

$$
|z|<\inf _{m}\left[\frac{(p-\delta)}{(m-\delta)} \cdot \frac{C_{m}}{(B-A)(p-\alpha)}\right]^{1 /(m-p)}, \quad m=k+1, k+2, \ldots
$$

The result is sharp.
Proof. Put $\lambda=0$ in Theorem 1.
Corollary 3. If $f(z) \in S_{p}^{*}(A, B, \alpha)$, then $f(z)$ is p-valently convex of order $\delta, 0 \leq \delta<p$, in

$$
|z|<\inf _{m}\left[\frac{p}{m} \cdot \frac{(p-\delta)}{(m-\delta)} \cdot \frac{C_{m}}{(B-A)(p-\alpha)}\right]^{1 /(m-p)}, \quad m=k+1, k+2, \ldots
$$

The result is sharp.
Proof. Put $\lambda=1$ in Theorem 1 and note that $z f^{\prime}(z) / p \in S_{p}^{*}(A, B, \alpha)$ if and only if $f(z) \in K_{p}(A, B, \alpha)$.

Corollary 4. If $f(z) \in S_{p}^{*}(A, B, \alpha)$ and $c>-p$, then $F(z)=\left(z^{c} f(z)\right)^{\prime} \times$ $z^{-(c-1)} /(p+c)$, for $z \in U$, is p-valently starlike of order $\delta, 0 \leq \delta<p$, in

$$
|z|<\inf _{m}\left[\frac{(p-\delta)(p+c)}{(m-\delta)(m+c)} \cdot \frac{C_{m}}{(B-A)(p-\alpha)}\right]^{1 /(m-p)}, \quad m=k+1, k+2, \ldots
$$

The result is sharp.
Proof. Put $\lambda=p /(p+c), c>-p$, in Theorem 1.
Theorem 2. Let $f(z) \in K_{p}(A, B, \alpha)$ and $F(z)=(1-\lambda) f(z)+\lambda p^{-1} z f^{\prime}(z)$ for $z \in U$. Then $F(z)$ is p-valently close-to-convex of order zero and type $\alpha, 0 \leq \alpha<p$, in U if $\lambda<\frac{p(1+B)}{(B-A)(p-\alpha)}$ and $F(z)$ is p-valently convex of order $\delta, 0 \leq \delta<p$, in $|z|<r_{1}$, where r_{1} is as in Theorem 1. The result is sharp.

Proof. We have $F^{\prime}(z)=(1-\lambda) f^{\prime}(z)+\lambda p^{-1}\left\{z f^{\prime}(z)\right\}^{\prime}$. Therefore

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{F^{\prime}(z)}{f^{\prime}(z)}\right\}=1-\lambda+\frac{\lambda}{p} \operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\} \tag{2.5}
\end{equation*}
$$

Since $f(z) \in K_{p}(A, B, \alpha)$, we can easily prove

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\} \geq \frac{p+[p B+(A-B)(p-\alpha)]}{1+B} \tag{2.6}
\end{equation*}
$$

By using (2.6) in (2.5) we have

$$
\operatorname{Re}\left\{\frac{F^{\prime}(z)}{f^{\prime}(z)}\right\} \geq 1-\lambda+\frac{\lambda}{p} \frac{p+[p B+(A-B)(p-\alpha)]}{1+B} \geq 1-\lambda \frac{(B-A)(p-\alpha)}{p(1+B)}
$$

Now,

$$
\operatorname{Re}\left\{\frac{F^{\prime}(z)}{f^{\prime}(z)}\right\}>0 \quad \text { if } \quad 1-\lambda \frac{(B-A)(p-\alpha)}{p(1+B)}>0 \quad \text { or if } \quad \lambda<\frac{p(1+B)}{(B-A)(p-\alpha)} .
$$

Hence $F(z)$ is p-valently close-to-convex of order zero and type $\alpha, 0 \leq \alpha<p$, in U if $\lambda<\frac{p(1+B)}{(B-A)(p-\alpha)}$.

We now prove that $F(z)$ is p-valently convex of order $\delta, 0 \leq \delta<p$, in $|z|<r_{1}$, where r_{1} is as given in Theorem 1. We have

$$
\begin{equation*}
\frac{z F^{\prime}(z)}{p}=(1-\lambda) \frac{z f^{\prime}(z)}{p}+\frac{\lambda}{p} z\left\{\frac{z f^{\prime}(z)}{p}\right\}^{\prime} \quad \text { for } z \in U \tag{2.7}
\end{equation*}
$$

Since $f(z) \in K_{p}(A, B, \alpha)$, it follows that $z f^{\prime}(z) / p \in S_{p}^{*}(A, B, \alpha)$.
Applying Theorem 1 with $z f^{\prime}(z) / p$ in place of $f(z)$, it follows from (2.7) that $z F^{\prime}(z) / p$ is p-valently starlike of order $\delta, 0 \leq \delta<p$, in $|z|<r_{1}$, equivalently, $F(z)$ is p-valently convex of order $\delta, 0 \leq \delta<p$, in $|z|<r_{1}$. The extremal function is given by

$$
f(z)=a_{p} z^{p}-\frac{p(B-A)(p-\alpha) a_{p}}{m C_{m}} z^{m}, \quad m=k+1, k+2, \ldots
$$

Remarks on Theorem 2. (1) For $k=p=1, A=-1, B=1$ and $a_{1}=1$, Theorem 2 reduces to Theorem 3 in [1]. (2) For $\alpha=0, m=n+p, n=1,2,3, \ldots$, $a_{p}=1$ and taking $\delta=p \delta^{\prime}, 0 \leq \delta^{\prime}<1$, Theorem 2 reduces to theorem 3 in [2].

Lemma 2. Let $f(z) \in T_{1}, a_{1}=1$. Then $f(z) \in P^{*}(A, B, \alpha)$ if and only if

$$
\begin{equation*}
\sum_{m=2}^{\infty} m(B+1) a_{m} \leq(B-A)(1-\alpha) \tag{2.8}
\end{equation*}
$$

Proof. Proof of Lemma 2 is similar to the proof of Lemma 1 and is hence omitted.

Remarks on Lemma 2. (1) For $\alpha=0$, Lemma 2 reduces to Lemma 2 in [3]. (2) For $A=-1, B=1$, Lemma 2 reduces to Theorem 1 (ii) in [4].

Theorem 3. Let $f(z) \in P^{*}(A, B, \alpha)$ and $F(z)=(1-\lambda) f(z)+\lambda z f^{\prime}(z)$ for $z \in U$. Then $\operatorname{Re} F^{\prime}(z)>\delta, 0 \leq \delta<1$, for

$$
|z|<r_{2}=\inf _{m}\left[\frac{(1-\delta)}{1+(m-1) \lambda} \cdot \frac{B+1}{(B-A)(1-\alpha)}\right]^{1 /(m-1)}, \quad m \geq 2
$$

The result is sharp.

Proof. It suffices to show that $\left|F^{\prime}(z)-1\right| \leq 1-\delta$ for $|z|<r_{2}$. Since $f(z) \in P^{*}(A, B, \alpha)$, using Lemma 2, we see that (2.8) holds. Since $F^{\prime}(z)=$ $1-\sum_{m=2}^{\infty} m(1+(m-1) \lambda) a_{m} z^{m-1}$, using (2.8), we see that $\left|F^{\prime}(z)-1\right| \leq$ $\sum_{m=2}^{\infty} m(1+(m-1) \lambda) a_{m}|z|^{m-1} \leq 1-\delta$ provided

$$
\begin{equation*}
\frac{m(1+(m-1) \lambda)}{1-\delta}|z|^{m-1} \leq \frac{m(B+1)}{(B-A)(1-\alpha)} \tag{2.9}
\end{equation*}
$$

Now (2.9) holds if

$$
|z| \leq\left[\frac{1-\delta}{1+(m-1) \lambda} \cdot \frac{(B+1)}{(B-A)(1-\alpha)}\right]^{1 /(m-1)}, \quad m \geq 2
$$

and the proof follows. The extremal function is

$$
f(z)=z-\frac{(B-A)(1-\alpha)}{m(B+1)} z^{m}, \quad m=2,3, \ldots
$$

Remarks on Theorem 3. (1) For $\alpha=0$, Theorem 3 reduces to Theorem 3 in [3]. (2) For $A=-1, B=1$, Theorem 3 reduces to Theorem 4 in [1].

REFERENCES

[1] S. S. Bhoosnurmath, S. R. Swamy, Analytic functions with negative coefficients, Indian J. Pure Appl. Math. 12 (6) (1981), 738-742.
[2] Dashrath and V. Kumar, Radii of p-valence of certain analytic functions with negative coefficients, Comm. Fac. Sci. Ankara Sér. A Math. 31 (1982), No. 17, 145-153 (1984).
[3] G. Lakshma and P. S. Padmanabhan, Linear combinations of regular functions with negative coefficients, Publ. Inst. Math. (Belgrade) 34 (48) (1983), 109-116.
[4] S. M. Sarangi and B. A. Uralegaddi, The radius of convexity and starlikeness for certain classes of analytic functions with negative coefficients I, Acad. Naz. Lincei, Rend. 65 (1978), 38-42.
[5] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109-116.

Department of Mathematics

