ON HAAR MEASURE ON $SL(N, \mathbf{R})$

Ljuban Dedić

Abstract. We found an explicit form of Haar measure on the group $SL(n, \mathbf{R})$, i.e. its density with respect to Hausdorff (n^2-1) -measure on $GL(n, \mathbf{R})$ and some interesting parametrizations of the group $SL(n, \mathbf{R})$.

1. Introduction and notations. Dealing with Lie groups one usually use differential forms techniques, but we here prefer classical techniques which gives easier and transparent proofs. The main result (see Theorem 8 bellow) can be proved by differential forms techniques developed e.g. in [5, pp. 153-155]. The other reason is that the theory developed here is applicable not only to manifolds but to surfaces in \mathbb{R}^n as well.

We use the standard basis $\{e_1, \ldots, e_n\}$ of \mathbf{R}^n and $x \in \mathbf{R}^n$ is respented as a column. Norm in \mathbf{R}^n is Euclidean

$$||x||^2 = (x \mid x) = \sum_{i=1}^n x_i^2, \qquad x = \sum_{i=1}^n x_i e_i.$$

The derivative of a function $f: \mathbf{R}^n \to \mathbf{R}$ is represented as a row. By $gl(n, \mathbf{R})$ we denote the Lie algebra of $GL(n, \mathbf{R})$. Norm on $gl(n, \mathbf{R})$ is Euclidean $\|A\|^2 = (A \mid A) = \operatorname{tr} A A^{\tau}, \ A \in gl(n, \mathbf{R})$. We also need the group $SL^*(n, \mathbf{R}) = \{A \in GL(n, \mathbf{R}); \det A = \pm 1\}$. If $A \in gl(n, \mathbf{R})$, by A^+ we denote the matrix of algebraic complements. If $\operatorname{rank}(A) = 1$ then there exist $x, y \in \mathbf{R}^n$ such that $A = xy^{\tau}$ i.e. $Az = (y \mid z)x, z \in \mathbf{R}^n$.

We need the following elementary lemma from linear algebra.

- 2. Lemma. Let $x, y \in \mathbf{R}^n$. Then
- (1) $\det(I + xy^{\tau}) = 1 + (x \mid y);$
- (2) $(I + xy^{\tau})^{+} = (1 + (x \mid y))I yx^{\tau};$
- (3) $(I + xy^{\tau})^{-1} = I xy^{\tau}/(1 + (x \mid y)), (x \mid y) \neq -1;$

(4) Let B be an $n \times (n-1)$ -matrix and $A \in gl(n, \mathbf{R})$. Then there exists $a \in \mathbf{R}^n$, ||a|| = 1, such that $a^{\tau}B = 0$ and

$$\det((AB)^{\tau}AB) = ||A^+a||^2 \det(B^{\tau}B).$$

The vector a is unique up to a sign if rank(B) = n - 1 and $det A \neq 0$.

- 3. Theorem (Change-of-variable-theorem for hypersurfaces). Let $M_1, M_2 \subset \mathbf{R}^n$ be hypersurfaces, smooth by parts, h Hausdorff (n-1)-measure on \mathbf{R}^n , n(x) unit normal at $x \in M_1$ existing h-a.e. on M_1 , U open neighbourhood of M_1 and $f: U \to \mathbf{R}^n$ such that:
 - (1) $f(M_1) = M_2$;
 - (2) f is differentiable on M_1 h-a.e. and $f'(x)^+ \neq 0$ h-a.e. on M_1 ;
 - (3) card $f^{-1}(x) = 1$, h-a.e. on M_2 .

Then for every $F \in L_1(M_2, h)$

$$\int_{M_2} F \, dh = \int_{M_1} F(f(x)) \|f'(x)^+ n(x)\| \, dh(x).$$

Proof. Let $\sigma: \mathbf{R}^{n-1} \to M_1$ be a parametrization of M_1 . Then $f \circ \sigma$ is a parametrization of M_2 and $(f \circ \sigma)'(t) = f'(\sigma(t))\sigma'(t)$, $t \in \mathbf{R}^{n-1}$. By the above lemma with A = f'(x), $B = \sigma'(t)$, $x = \sigma(t)$, a = n(x) we have

$$\det(f \circ \sigma)'(t)^{\tau} (f \circ \sigma)'(t) = \det(f'(x)\sigma'(t))^{\tau} f'(x)\sigma'(t)$$
$$= ||f'(x)^{+} n(x)|| \det \sigma'(t)^{\tau} \sigma'(t).$$

Let $F \in L_1(M_2, h)$. Then

$$\int_{M_2} F \, dh = \int_{\mathbf{R}^{n-1}} F(f(\sigma(t))) |\det(f \circ \sigma)'(t)^{\tau} (f \circ \sigma)'(t)|^{1/2} \, dt
= \int_{\mathbf{R}^{n-1}} F(f(\sigma(t))) ||f'(\sigma(t))^{+} n(\sigma(t))|| \cdot |\det \sigma'(t)^{\tau} \sigma'(t)|^{1/2} \, dt
= \int_{M_1} F(f(x)) ||f'(x)^{+} n(x)|| \, dh(x).$$

- 4. Definition. Let H(n) be the set of all continuous functions $\varphi: \mathbf{R}^n \to [0, \infty)$ such that
 - (1) $\varphi(tx) = t\varphi(x), t > 0, x \in \mathbf{R}^n$;
 - (2) φ is differentiable a.e. and $\varphi'(x) \neq 0$ a.e.

For $\varphi \in H(n)$ we introduce the sets

$$S_{\varphi} = \{ x \in \mathbf{R}^n; \ \varphi(x) = 1 \},$$

$$D_{\varphi} = \{ x \in \mathbf{R}^n; \ \varphi(x) < 1 \},$$

$$O_{\varphi} = \{ x \in \mathbf{R}^n; \ \varphi(x) = 0 \}.$$

58 Dedić

Differentiating (1) with respect to t and x we obtain

- (a) $\varphi'(x)x = \varphi(x)$, a.e., $x \in \mathbf{R}^n$;
- (b) $\varphi'(tx) = \varphi'(x)$, a.e., $x \in \mathbf{R}^n$, t > 0.
- 5. LEMMA. Let $\varphi, \psi \in H(n)$ and $f : \mathbf{R}^n \setminus (O_{\varphi} \cup O_{\psi}) \to \mathbf{R}^n \setminus (O_{\varphi} \cup O_{\psi})$, $f(x) = (\varphi(x)/\psi(x))x$. Then
 - (1) f is a homeomorphism and $f^{-1}(x) = \frac{\psi(x)}{\varphi(x)}x$;
 - $(2) f(S_{\varphi} \setminus O_{\psi}) = S_{\psi} \setminus O_{\varphi};$
 - (3) det $f'(x) = \varphi(x)^n / \psi(x)^n$, a.e.;

(4)
$$\left\| f'(x)^{+} \frac{\varphi'(x)^{\tau}}{\|\varphi'(x)\|} \right\| = \frac{\varphi(x)^{n}}{\psi(x)^{n}} \cdot \frac{\|\psi'(x)\|}{\|\varphi'(x)\|}, \ a.e. \ (\|x^{\tau}\| = \|x\|).$$

Proof. (1) and (2) are evident; (3) and (4) follow from Lemma 1 and

$$f'(x) = \frac{\varphi(x)}{\psi(x)} \left[I + x \left(\varphi'(x) \psi(x) - \psi'(x) \varphi(x) \right) / \left(\varphi(x) \psi(x) \right) \right].$$

6. Corollary. Let $\varphi, \psi \in H(n)$ and $F \in L_1(S_{\varphi}, h)$. Then

$$(1) \int_{S_{\psi}} F dh = \int_{S_{\varphi}} F\left(\frac{x}{\psi(x)}\right) \frac{1}{\psi(x)^n} \cdot \frac{\|\psi'(x)\|}{\|\varphi'(x)\|} dh(x);$$

$$(2) \int_{S_{\psi}} \frac{F dh}{\|\psi'\|} = \int_{S_{\varphi}} F\left(\frac{x}{\psi(x)}\right) \frac{1}{\psi(x)^n} \frac{dh(x)}{\|\varphi'(x)\|};$$

(3)
$$\int_{D_{\psi}} F(x) dx = \int_{D_{\varphi}} F\left(\frac{\varphi(x)}{\psi(x)} x\right) \frac{\varphi(x)^n}{\psi(x)^n} dx.$$

Proof follows from Lemma 5 and Theorem 3.

7. Theorem (Polar formula). Let $\varphi \in H(n)$ and $F \in L_1(\mathbf{R}^n)$. Then the following formula holds

$$\int_{\mathbf{R}^n} F(x) dx = \int_0^\infty \int_{S_\varphi} F(tx) t^{n-1} \frac{dt dh(x)}{\|\varphi'(x)\|}.$$

Proof. (1) Let first $\varphi(x) = ||x|| = (x \mid x)^{1/2}$. Then $\varphi'(x) = x^{\tau}/||x||$ and $||\varphi'(x)|| = 1$, $x \neq 0$. Let $\sigma: \mathbf{R}^{n-1} \to S_{\varphi}$ be a parametrization of the Euclidean sphere S_{φ} . For $x \in \mathbf{R}^n$ we have $x = \psi(t,y) = t\sigma(y)$, $y \in \mathbf{R}^{n-1}$, t = ||x||, and now $\psi'(t,y) = [\sigma(y), t\sigma'(y)] \in GL(n,\mathbf{R})$. Hence $|\det \psi'(t,y)| = t^{n-1} |\det \sigma'(y)^{\tau} \sigma'(y)|^{1/2}$ and therefore

$$\int_{\mathbf{R}^n} F(x) dx = \int_0^\infty \int_{\mathbf{R}^{n-1}} F(t\sigma(y)) t^{n-1} |\det \sigma'(y)^{\tau} \sigma'(y)|^{1/2} dt dy$$
$$= \int_0^\infty \int_{S_{\omega}} F(tx) t^{n-1} dt dh(x).$$

(2) Using now Corollary 6 and Fubini theorem we obtain the polar formula for any $\varphi \in H(n)$.

In standard monographs [1], [2] and [3] there is no explicit form of the Haar measure on the group $SL(n, \mathbf{R})$. Let us apply above theory to find it.

8. Theorem. Let h be the Hausdorf (n^2-1) -measure on $gl(n, \mathbf{R})$ and let ω be a measure on $SL^*(n, \mathbf{R})$ defined by

$$d\omega(X) = n \, dh(X) / ||X^{-1}||, \qquad X \in SL^*(n, \mathbf{R}).$$

Then ω is the Haar measure on $SL^*(n, \mathbf{R})$.

Proof. Let $A, B \in gl(n, \mathbf{R})$, and $\mathcal{A}_{A,B} : gl(n, \mathbf{R}) \to gl(n, \mathbf{R})$, $\mathcal{A}_{A,B}X = AXB$. Then det $\mathcal{A}_{A,B} = (\det AB)^n$. Because of $\det'(A)B = (A^+ \mid B) = \operatorname{tr} A^+ B^\tau$ the unit normal on the group $SL^*(n, \mathbf{R})$ at $X \in SL^*(n, \mathbf{R})$ is $n(X) = X^+ / \|X^{-1}\|$. Let $Y \in SL^*(n, \mathbf{R})$. Then $\mathcal{A}_{Y,I}SL^*(n, \mathbf{R}) = SL^*(n, \mathbf{R})$ and we can apply Theorem 3 on $f = \mathcal{A}_{Y,I}$. We have

$$f'(X)^{+} = \mathcal{A}_{Y,I}^{+} = (\det Y)^{n} \mathcal{A}_{Y^{-1\tau},I},$$

$$||f'(X)^{+} n(X)|| = ||X^{-1}Y^{-1}|| / ||X^{-1}||.$$

Let $\lambda(X)$ be the density of the Haar measure with respect to h. Then by Theorem 3 we have

$$\int_{SL^*(n,\mathbf{R})} f(X)\lambda(X) dh(X) = \int_{SL^*(n,\mathbf{R})} F(YX)\lambda(X) dh(X)$$
$$= \int_{SL^*(n,\mathbf{R})} f(X)\lambda(Y^{-1}X) ||X^{-1}Y|| dh(X) / ||X^{-1}||.$$

Therefore $\lambda(X) = \lambda(Y^{-1}X)\|X^{-1}Y\|/\|X^{-1}\|$, $X, Y \in SL^*(n, \mathbf{R})$, h-a.e. For X = I we get $\lambda(Y^{-1}) = \sqrt{n}\lambda(I)/\|Y\|$ or $\lambda(Y) = \sqrt{n}\lambda(I)/\|Y^{-1}\|$, where $\lambda(I)$ is a positive number. Taking $\lambda(I) = \sqrt{n}$ we finish the proof.

9. Corollary. For any integrable function F on $GL(n, \mathbf{R})$ we have

$$\int_{GL(n,\mathbf{R})} F(X) \frac{dX}{|\det X|^n} = n \int_0^\infty \int_{SL^*(n,\mathbf{R})} F(tX) \frac{dt}{t} \frac{dh(X)}{||X^{-1}||}.$$

Proof. Let $\varphi \in H(n^2)$, $\varphi(X) = |\det X|^{1/n}$. Then $S_{\varphi} = SL^*(n, \mathbf{R})$ and by the polar formula we have

$$\int_{gl(n,\mathbf{R})} F(X) dX = \int_{0}^{\infty} \int_{SL^{*}(n,\mathbf{R})} F(tX) t^{n^{2}-1} \frac{dt dh(X)}{\|\varphi'(X)\|}$$
$$= \int_{0}^{\infty} \int_{SL^{*}(n,\mathbf{R})} F(tX) n t^{n^{2}-1} \frac{dt dh(X)}{\|X^{-1}\|}$$

60 Dedić

$$= n \int_0^\infty \int_{SL^*(n,\mathbf{R})} F(tX) t^{n^2-1} \frac{dt \, dh(X)}{\|X^{-1}\|}.$$

If we take $F(X)/|\det X|^n$ in place of F(X) we obtain the formula.

This formula represents desintegration of the Haar measure on $GL(n, \mathbf{R})$ with respect to the Haar measure on $SL^*(n, \mathbf{R})$, according to the action of \mathbf{R}_+ on $GL(n, \mathbf{R})$ defined by $(t, X) \mapsto tX$.

REFERENCES

- $[\mathbf{1}]\,$ E. Hewitt, K. A. Ross, Abstract Harmonic Analysis, I, Springer-Verlag, 1963.
- [2] S. Helgason, Groups and Geometric Analysis, Academic Press, 1984.
- [3] N. Bourbaki, Integration, livre VI, Hermann, Paris, 1970.
- [4] H. Federer, Geometric Measure Theory, Nauka, Moscow, 1987.
- [5] L. Santalo, Integral Geometry and Geometric Probabilities, Nauka, Moscow, 1985.

Filozofski fakultet Sveučilišta u Splitu 58000 Split, Yugoslavia (Received 20 08 1988) (Revised 11 06 1989)