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SEMIPRIME IDEALS OF SKEW POLYNOMIAL RINGS

M. G. Voskoglou

Abstract. We study relations among the semiprime ideals of a ring R and those of a
skew polynomial ring Sn over R, in connection with results obtained in [11] for prime ideals of R
and Sn.

Notice that results on the prime ideal sructure of a skew polynomial ring
R[x; f; d] have been obtained only under additional assumptions; Goldie and Mich-
ler [1] assume that R is right Noetherian and d = 0, Jordan [4] assumes that R is
right Noetherian and f is the identity map of R, while Irving [2 and 3] assumes
that R is a commutative ring. In [11] we have studied what happens when f is a
non trivial automorphism of R and d is a non zero f -derivation of R and we have
extended these results for skew polynomial rings in �nitely many variables over R.

1. Preliminaries

All the rings considered in this paper are with identities. Let R be a ring, let
H = ff1; . . . ; fng be a �nite set of automorphisms of R and let D = fd1; . . . ; dng
be a �nite set of mappings from R to R, such that di is a fi-derivation of R, for
all i = 1; . . . ; n (i.e. di(a + b) = di(a) + di(b) and di(ab) = adi(b) + di(a)fi(b),
for all a; b in R). Then an ideal I of R is called an H-ideal if fi(I) = I for each
i. Also I is called a D-ideal if di(I) � I , for each i. An ideal I of R which is
both an H-ideal and a D-ideal is called for brevity an (H;D)-ideal of R. In the
special case where H = ffg and D = fdg, I is called an (f; d)-ideal of R. We recall
that an ideal P of R is called a semiprime ideal if, given any ideal A of R such
that Ak � P for some non negative integer k, one has A � P . A ring is called
semiprime if 0 is a semiprime ideal. From the previous de�nition it becomes clear
that R is a semiprime ring if and only if R has no non zero nilpotent ideals. Now
an (H;D)-ideal of R is called an (H;D)-semiprime ideal if, given any (H;D)-ideal
A of R such that Ak � I for some non negative integer k, one has A � I ; and R is
called an (H;D)-semiprime ring if 0 is an (H;D)-semiprime ideal of R. The notions
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of an H-semiprime and a D-semiprime ideal of R can be also de�ned in the obvious
way. Assume next that di Æ dj = dj Æ di, fi Æ fj = fj Æ fi and di Æ fj = fj Æ di for
all i; j = 1; . . . ; n and consider the set Sn all polynomials in n variables x1; . . . ; xn
over R. De�ne in Sn addition in the usual way and multiplication by the relations
xir = fi(r)xi + di(r) and xixj = xjxi, for all r in R and all i; j = 1; . . . ; n. Then
Si is an Ore extension over Si�1 (cf. [7]) for all i = 1; . . . ; n, where S0 = R (cf.
Theorem 2.4 of [9]). We call the ring Sn a skew polynomial ring in n variables
over R and we denote it by Sn = R[x1; f1; d1] . . . [xn; fn; dn]. Notice that under
these conditions one can extend fi to an automorphism and di to an fi-derivation
of Sn by putting fi(xj) = xj and di(xj) = 0 for all i; j = 1; . . . ; n (cf. Theorems
2.2 and 2.3 of [9]). In the special case where fi is the identity for all fi in H we
get the skew polynomial ring S�

n = R[x1; d1] . . . [xn; dn], while if di = 0 for all di
in D we get the skew polynomial ring S0

n = R[x1; f1] . . . [xn; fn]. When R is right
Noetherian the usual proof of the Hilbert's Basis Theorem adapts easily to show,
together with induction on n, that Sn is a right Noetherian ring too (this is not
true if we take H to be any set of monomorphisms of R, (cf. [6]).

2. Main results

2.1. THEOREM. Let P be an H-semiprime ideal of Sn; then P \R is a (H;D)-
semiprime ideal of R.

Proof . Since P is a H-ideal of Sn, P \ R is an H-ideal of R. On the other
hand, for all r in P \ R and each i, di(r) = xir � fi(r)xi, is in P \ R, therefore
P \ R is an (H;D)-ideal of R. Now, let A be any (H;D)-ideal of R, such that
Ak � P \R for some non negative integer k. Then ASn is an ideal of Sn, because
xiA � fi(A)xi + di(A) � Axi + A � ASn for each i. It is also clear that ASn
is an H-ideal of Sn. But (ASn)

2 = A(SnASn) � A2Sn and therefore an easy
induction shows that (ASn)

k � AkSn. Thus (ASn)
k � (P \ R)Sn � P . Then, by

our hypothesis, ASn � P and therefore A � ASn \ R � P \ R, and this �nishes
the proof.

We record two obvious corollaries.

2.2. COROLLARY. Let P be a semiprime ideal of S�

n, then P \ R is a D-

semiprime ideal of R.

2.3. COROLLARY. Let P be an H-semiprime ideal of S0

n, then P \ R is an

H-semiprime ideal of R.

2.4. THEOREM. Let R be a right Noetherian ring and let P be a semiprime

ideal of S0

n none of whose minimal primes contains xi, for each i. Then P \ R is

an H-semiprime ideal of R.

Proof . It is enough to show that that P is an H-ideal of S0

n and then to apply
Corollary 2.3.
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For this, since S0

n is right Noetherian, there exist �nitely many prime ideals
of S0

n, say P1; . . . ; Pk, such that P1 . . .Pk � P and P1; . . . ; Pk � P . Thus P1 \
P2 \ . . . \ Pk � P . But, (P1 \ P2 \ . . . \ Pk)

k � P1P2 . . .Pk � P , therefore
P1 \ P2 \ . . . \ Pk � P and so P1 \ P2 \ . . . \ Pk = P .

Choose P 0 to be any of the above mentioned prime ideals of S0

n and let g be
in P . Then g is also in P 0 and therefore fi(g)xi = xig, is in P 0, for each i. Thus
fi(g)S

0

nxi = fi(g)xiS
0

n � P 0. But xi is not in P 0, therefore fi(g) is in P 0 and so
fi(g) is in P . Thus fi(P ) � P .

Now we have the ascending chain of ideals P � f�1i (P ) � f�2i (P ) � . . . ,
which by the Noetherian property becomes stable after a �nite number of steps,
say m. Then f�m

i (P ) = f�m�1
i (P ), therefore fi(P ) = P and this �nishes the

proof.

Jordan [5] has shown that if I is a d-prime ideal of R, then IS�

1 is a prime
ideal of S�

1 . The following theorem shows that the same result holds if we replace
the term \prime" with the term \semiprime" in the more general situation of the
skew polynomial ring S1.

2.5. THEOREM. Let I be a (f1; d1)-semiprime ideal of R, then IS1 is an f1-

semiprime ideal of S1.

Proof . It is easy to check that IS1 is an f1-ideal of S1 (cf. the proof of Theorem
2.1 for the ideal ASn). Next let A be an f1-ideal of S1 such that Ak � IS1 for
some non negative integer k. Denote by T (A) the set of all leading coeÆcients of
the elements of A, which are polynomials in x1 with coeÆcients in R. We are going
to show that T (A) is an (f1; d1)-ideal of R. For this let g and h be any elements
of A with degrees m and l and leading coe�cients a and b respectively. Without
loss of the generality we may assume that m � l. Then a� b is either zero or the
leading coeÆcient of g�hxm�1

1 which is in A, therefore a� b is in T (A). Moreover,
for any r in R, ra is either zero or the leading coeÆcient of rg. On the other
hand gf�m

1 (r) = axm1 f
�m
1 (r) + terms of lower degree = arxm1 + terms of lower

degree, therefore ar is either zero or the leading coeÆcient of gf�m
1 (r). Thus ar

is in T (A) and therefore T (A) is an ideal of R. Furthermore f1(a) and f�11 (a) are

the leading coeÆcients of f1(g) and f�11 (g) respectively. Finally, if g =
Pm

i=0 aix
i
i,

with am = a, then

x1g � f1(g)x1 =

mX

i=0

[x1ai � f1(ai)x1]x
i
1 =

mX

i=0

d(ai)x
i
1;

therefore d(a) is either zero or the leading coeÆcient x1g � f1(g)x1 which is in A.
Thus T (A) is in fact an (f1; d1)-ideal of R. Also, since ax

m
1 f

�m
1 (b)xl1 = abxm+1

1 +
terms of lower degree, ab is either zero or the leading coeÆcient of gf�m

1 (h). Thus
ab is in T (A2) and therefore [T (A)]2 � T (A2). Then an easy induction shows that
[T (A)]k � T (Ak), for any non negative integer k. Thus [T (A)]k � T (IS1) = I and
therefore, by our hypothesis,

T (A) � I: (1)
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Now we may as well assume that A � IS1, otherwise we can use A + IS1 instead
of A. This, together with the relation (1), shows that if g =

Pm

i=0 aix
i
1 is in A,

then amx
m
1 is in A and therefore g � amx

m
1 =

Pm�1
i=0 aix1i is in A. Thus am�1

is in T (A) � I . Repeating this argument we �nally get that ai is in I for each
i = 0; 1; . . . ;m and therefore A � IS1, as required.

We are going now to show that an analogous result holds for the skew poly-
nomial ring Sn. For this we need the following lemma.

2.6. LEMMA. Let A be an H-ideal of Sn and let T (A) be the set of all leading

coeÆcients of the elements of A written as polynomials in xn with coeÆcients in

Sn�1. Put Ti(A) = T [Ti+1(A)] in Si, for each i = 0; 1; :::; n� 1, where S0 = R and

Tn(A) = A. Then T0(A) is an (H;D)-ideal of R and [T0(A)]
k � T0(A

k) for any

non negative integer k.

Proof . Since Tn�1(A) = T [Tn�1(A)] = T (A), Tn�1(A) is an (fn; dn)-ideal
of Sn�1 (cf. the proof of the previous theorem). Similarly Tn�2(A) = T [Tn�1(A)]
is an (fn�1; dn�1)-ideal of Sn�2. Now let r = r(x1; . . . ; xn�2) be any element of
Tn�2(A); then there exists s in Tn�1(A) with leading coeÆcient r with respect to
xn�1. Then fn(s), f

�1
n (s) and dn(s) are all in Tn�1(A), while fn(xn�1) = xn�1 and

dn(xn�1) = 0; therefore fn(r), f
�1
n (r) and dn(r) are all in Tn�2(A). Thus Tn�2(A)

is also an (fn; dn)-ideal of Sn�2. Repeating this procedure we shall eventually �nd
that T0(A) is a (H;D)-ideal of R, as required. In the proof of Theorem 2.5 we
have seen that [T (A)]k � T (Ak), therefore [Tn�1(A)]

k � Tn�1(A
k). Next, applying

induction on m, we assume that [Tn�m(A)]
k � Tn�m(A

k). Then

[Tn�m�1(A)]
k =

�
T [Tn�m(A)]

�k
�
�
[Tn�m(A)]

k
�
� T [Tn�m(A

k)] = Tn�m�1(A
k):

Thus, if we put m = n, we get that T0(A)
k � T0(A

k) and this �nishes the proof.

We are ready now to prove

2.7. THEOREM. Let I be an (H;D)-semiprime ideal of R; then ISn is an

H-semiprime ideal of Sn.

Proof . Proceeding as in the proof of Theorem 2.1 for the ideal ASn one
can show that ISn is an H-ideal of Sn. Next let A be an H-ideal of Sn such
that Ak � ISn. Then, by Lemma 2.6, T0(A) is an (H;D)-ideal of R and
[T0(A)]

k � T0(A
k) � T0(ISn) = I ; therefore T0(A) � I . Without loss of gen-

erality we may assume that A � ISn, otherwise we may use A + ISn instead
of A. Let g =

Pm1

i=0 aix
i
n be a polynomial of A with coeÆcients in Sn�1; then

am1
is in Tn�1(A). We write am1

=
Pm2

i=0 bix
i
n�1. Then bm2

is in Tn�2(A) and

am1
xm1

n = bm2
xm1

n xm2

n�2 +
Pm2�1

i=0 bixn�1x
m1

n . We proceed the same way until we
�nd some r in T0(A), such that h = rxm1

m xm2

n�1 . . .x
mn

1 is term of amx
m1

n . Then r is
in I , therefore h is in ISn � A. Thus g � h is in A. Repeating the same argument
for g � h and keeping going in the same way we eventually �nd that am1

xm1

n is in

ISn � A. Thus ~g = g � am1
xm1

n =
Pm1�1

i=0 aix
i
n is in A. If we apply the same
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argument for ~g and we keep going in the same way we �nally �nd that g is in ISn,
which was to be proved.

The following are straightforward corollaries of Theorems 2.1 and 2.7.

2.8. COROLLARY. The skew polynomial ring Sn is H-semiprime if and only if

R is an (H;D)-semiprime ring.

2.9. COROLLARY. If I is a D-semiprime ideal of R, then IS�

n is a semiprime

ideal of S�

n, therefore S�

n is a semiprime ring if and only if R is a D-semiprime

ring.

2.10. COROLLARY. If I is an H-semiprime ideal of R, then IS0

n is an H-

semiprime ideal of S0

n, therefore S
0

n is an H-semiprime ring if, and only if R is an

H-semiprime ring.

3. Remarks

(1) An (H;D)-ideal I of R is called an (H;D)-prime ideal if, given any two
(H;D)-ideals A and B of R such that AB � I , one has either A � I or B � I .
The notions of an H-prime and of a D-prime ideal of R can be also de�ned in the
obvious way.

The statements of all results obtained in the previous section remain true if
we replace the term \semiprime", whenever it appears, with the term \prime" (cf.
[11]).

(2) The statement of Theorem 2.4 shoud be restated as follows: \Let P be a
prime ideal of S0

n such that xi is not in P , for each i. Then P \ R is an H-prime
ideal of R ".

That is, the ring R need not be right Noetherian in this case. But the hy-
pothesis that xi is not in P for each i is not superous (cf. [1, Example 3]).

(3) If R is a right Noetherian ring and I is an H-prime ideal of R, then IS0

n

is a prime ideal of S0

n (cf. [11, Theorem 2.9]). Attempts to prove that the above
mentioned result remains true for the ring R which is not right Noetherian, i.e. that
we can replace the term \prime" with the term \semiprime" and thus to produce
a result stronger than Corollary 2.10, have proved unsuccessful.
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