SEMIPRIME IDEALS OF SKEW POLYNOMIAL RINGS

M. G. Voskoglou

Abstract

We study relations among the semiprime ideals of a ring R and those of a skew polynomial ring S_{n} over R, in connection with results obtained in [11] for prime ideals of R and S_{n}.

Notice that results on the prime ideal sructure of a skew polynomial ring $R[x, f, d]$ have been obtained only under additional assumptions; Goldie and Michler [1] assume that R is right Noetherian and $d=0$, Jordan [4] assumes that R is right Noetherian and f is the identity map of R, while Irving [2 and 3] assumes that R is a commutative ring. In [11] we have studied what happens when f is a non trivial automorphism of R and d is a non zero f-derivation of R and we have extended these results for skew polynomial rings in finitely many variables over R.

1. Preliminaries

All the rings considered in this paper are with identities. Let R be a ring, let $H=\left\{f_{1}, \ldots, f_{n}\right\}$ be a finite set of automorphisms of R and let $D=\left\{d_{1}, \ldots, d_{n}\right\}$ be a finite set of mappings from R to R, such that d_{i} is a f_{i}-derivation of R, for all $i=1, \ldots, n$ (i.e. $d_{i}(a+b)=d_{i}(a)+d_{i}(b)$ and $d_{i}(a b)=a d_{i}(b)+d_{i}(a) f_{i}(b)$, for all a, b in R). Then an ideal I of R is called an H-ideal if $f_{i}(I)=I$ for each i. Also I is called a D-ideal if $d_{i}(I) \subseteq I$, for each i. An ideal I of R which is both an H-ideal and a D-ideal is called for brevity an (H, D)-ideal of R. In the special case where $H=\{f\}$ and $D=\{d\}, I$ is called an (f, d)-ideal of R. We recall that an ideal P of R is called a semiprime ideal if, given any ideal A of R such that $A^{k} \subseteq P$ for some non negative integer k, one has $A \subseteq P$. A ring is called semiprime if 0 is a semiprime ideal. From the previous definition it becomes clear that R is a semiprime ring if and only if R has no non zero nilpotent ideals. Now an (H, D)-ideal of R is called an (H, D)-semiprime ideal if, given any (H, D)-ideal A of R such that $A^{k} \subseteq I$ for some non negative integer k, one has $A \subseteq I$; and R is called an (H, D)-semiprime ring if 0 is an (H, D)-semiprime ideal of R. The notions
of an H-semiprime and a D-semiprime ideal of R can be also defined in the obvious way. Assume next that $d_{i} \circ d_{j}=d_{j} \circ d_{i}, f_{i} \circ f_{j}=f_{j} \circ f_{i}$ and $d_{i} \circ f_{j}=f_{j} \circ d_{i}$ for all $i, j=1, \ldots, n$ and consider the set S_{n} all polynomials in n variables x_{1}, \ldots, x_{n} over R. Define in S_{n} addition in the usual way and multiplication by the relations $x_{i} r=f_{i}(r) x_{i}+d_{i}(r)$ and $x_{i} x_{j}=x_{j} x_{i}$, for all r in R and all $i, j=1, \ldots, n$. Then S_{i} is an Ore extension over $S_{i-1}(c f .[7])$ for all $i=1, \ldots, n$, where $S_{0}=R$ (cf. Theorem 2.4 of [9]). We call the ring S_{n} a skew polynomial ring in n variables over R and we denote it by $S_{n}=R\left[x_{1}, f_{1}, d_{1}\right] \ldots\left[x_{n}, f_{n}, d_{n}\right]$. Notice that under these conditions one can extend f_{i} to an automorphism and d_{i} to an f_{i}-derivation of S_{n} by putting $f_{i}\left(x_{j}\right)=x_{j}$ and $d_{i}\left(x_{j}\right)=0$ for all $i, j=1, \ldots, n$ (cf. Theorems 2.2 and 2.3 of [9]). In the special case where f_{i} is the identity for all f_{i} in H we get the skew polynomial ring $S_{n}^{*}=R\left[x_{1}, d_{1}\right] \ldots\left[x_{n}, d_{n}\right]$, while if $d_{i}=0$ for all d_{i} in D we get the skew polynomial ring $S_{n}^{\prime}=R\left[x_{1}, f_{1}\right] \ldots\left[x_{n}, f_{n}\right]$. When R is right Noetherian the usual proof of the Hilbert's Basis Theorem adapts easily to show, together with induction on n, that S_{n} is a right Noetherian ring too (this is not true if we take H to be any set of monomorphisms of R, (cf. [6]).

2. Main results

2.1. Theorem. Let P be an H-semiprime ideal of S_{n}; then $P \cap R$ is a (H, D) semiprime ideal of R.

Proof. Since P is a H-ideal of $S_{n}, P \cap R$ is an H-ideal of R. On the other hand, for all r in $P \cap R$ and each $i, d_{i}(r)=x_{i} r-f_{i}(r) x_{i}$, is in $P \cap R$, therefore $P \cap R$ is an (H, D)-ideal of R. Now, let A be any (H, D)-ideal of R, such that $A^{k} \subseteq P \cap R$ for some non negative integer k. Then $A S_{n}$ is an ideal of S_{n}, because $x_{i} A \subseteq f_{i}(A) x_{i}+d_{i}(A) \subseteq A x_{i}+A \subseteq A S_{n}$ for each i. It is also clear that $A S_{n}$ is an H-ideal of S_{n}. But $\left(A S_{n}\right)^{2}=A\left(S_{n} A S_{n}\right) \subseteq A^{2} S_{n}$ and therefore an easy induction shows that $\left(A S_{n}\right)^{k} \subseteq A^{k} S_{n}$. Thus $\left(A S_{n}\right)^{k} \subseteq(P \cap R) S_{n} \subseteq P$. Then, by our hypothesis, $A S_{n} \subseteq P$ and therefore $A \subseteq A S_{n} \cap R \subseteq P \cap R$, and this finishes the proof.

We record two obvious corollaries.
2.2. Corollary. Let P be a semiprime ideal of S_{n}^{*}, then $P \cap R$ is a D semiprime ideal of R.
2.3. Corollary. Let P be an H-semiprime ideal of S_{n}^{\prime}, then $P \cap R$ is an H-semiprime ideal of R.
2.4. Theorem. Let R be a right Noetherian ring and let P be a semiprime ideal of S_{n}^{\prime} none of whose minimal primes contains x_{i}, for each i. Then $P \cap R$ is an H-semiprime ideal of R.

Proof. It is enough to show that that P is an H-ideal of S_{n}^{\prime} and then to apply Corollary 2.3.

For this, since S_{n}^{\prime} is right Noetherian, there exist finitely many prime ideals of S_{n}^{\prime}, say P_{1}, \ldots, P_{k}, such that $P_{1} \ldots P_{k} \subseteq P$ and $P_{1}, \ldots, P_{k} \supseteq P$. Thus $P_{1} \cap$ $P_{2} \cap \ldots \cap P_{k} \supseteq P$. But, $\left(P_{1} \cap P_{2} \cap \ldots \cap P_{k}\right)^{k} \subseteq P_{1} P_{2} \ldots P_{k} \subseteq P$, therefore $P_{1} \cap P_{2} \cap \ldots \cap P_{k} \subseteq P$ and so $P_{1} \cap P_{2} \cap \ldots \cap P_{k}=P$.

Choose P^{\prime} to be any of the above mentioned prime ideals of S_{n}^{\prime} and let g be in P. Then g is also in P^{\prime} and therefore $f_{i}(g) x_{i}=x_{i} g$, is in P^{\prime}, for each i. Thus $f_{i}(g) S_{n}^{\prime} x_{i}=f_{i}(g) x_{i} S_{n}^{\prime} \subseteq P^{\prime}$. But x_{i} is not in P^{\prime}, therefore $f_{i}(g)$ is in P^{\prime} and so $f_{i}(g)$ is in P. Thus $f_{i}(P) \subseteq P$.

Now we have the ascending chain of ideals $P \subseteq f_{i}^{-1}(P) \subseteq f_{i}^{-2}(P) \subseteq \ldots$, which by the Noetherian property becomes stable after a finite number of steps, say m. Then $f_{i}^{-m}(P)=f_{i}^{-m-1}(P)$, therefore $f_{i}(P)=P$ and this finishes the proof.

Jordan [5] has shown that if I is a d-prime ideal of R, then $I S_{1}^{*}$ is a prime ideal of S_{1}^{*}. The following theorem shows that the same result holds if we replace the term "prime" with the term "semiprime" in the more general situation of the skew polynomial ring S_{1}.
2.5. Theorem. Let I be $a\left(f_{1}, d_{1}\right)$-semiprime ideal of R, then $I S_{1}$ is an f_{1} semiprime ideal of S_{1}.

Proof. It is easy to check that $I S_{1}$ is an f_{1}-ideal of S_{1} (cf. the proof of Theorem 2.1 for the ideal $A S_{n}$). Next let A be an f_{1}-ideal of S_{1} such that $A^{k} \subseteq I S_{1}$ for some non negative integer k. Denote by $T(A)$ the set of all leading coefficients of the elements of A, which are polynomials in x_{1} with coefficients in R. We are going to show that $T(A)$ is an $\left(f_{1}, d_{1}\right)$-ideal of R. For this let g and h be any elements of A with degrees m and l and leading coeficients a and b respectively. Without loss of the generality we may assume that $m \geq l$. Then $a \pm b$ is either zero or the leading coefficient of $g \pm h x_{1}^{m-1}$ which is in A, therefore $a \pm b$ is in $T(A)$. Moreover, for any r in R, $r a$ is either zero or the leading coefficient of $r g$. On the other hand $g f_{1}^{-m}(r)=a x_{1}^{m} f_{1}^{-m}(r)+$ terms of lower degree $=a r x_{1}^{m}+$ terms of lower degree, therefore ar is either zero or the leading coefficient of $g f_{1}^{-m}(r)$. Thus ar is in $T(A)$ and therefore $T(A)$ is an ideal of R. Furthermore $f_{1}(a)$ and $f_{1}^{-1}(a)$ are the leading coefficients of $f_{1}(g)$ and $f_{1}^{-1}(g)$ respectively. Finally, if $g=\sum_{i=0}^{m} a_{i} x_{i}^{i}$, with $a_{m}=a$, then

$$
x_{1} g-f_{1}(g) x_{1}=\sum_{i=0}^{m}\left[x_{1} a_{i}-f_{1}\left(a_{i}\right) x_{1}\right] x_{1}^{i}=\sum_{i=0}^{m} d\left(a_{i}\right) x_{1}^{i}
$$

therefore $d(a)$ is either zero or the leading coefficient $x_{1} g-f_{1}(g) x_{1}$ which is in A. Thus $T(A)$ is in fact an $\left(f_{1}, d_{1}\right)$-ideal of R. Also, since $a x_{1}^{m} f_{1}^{-m}(b) x_{1}^{l}=a b x_{1}^{m+1}+$ terms of lower degree, $a b$ is either zero or the leading coefficient of $g f_{1}^{-m}(h)$. Thus $a b$ is in $T\left(A^{2}\right)$ and therefore $[T(A)]^{2} \subseteq T\left(A^{2}\right)$. Then an easy induction shows that $[T(A)]^{k} \subseteq T\left(A^{k}\right)$, for any non negative integer k. Thus $[T(A)]^{k} \subseteq T\left(I S_{1}\right)=I$ and therefore, by our hypothesis,

$$
\begin{equation*}
T(A) \subseteq I \tag{1}
\end{equation*}
$$

Now we may as well assume that $A \supseteq I S_{1}$, otherwise we can use $A+I S_{1}$ instead of A. This, together with the relation (1), shows that if $g=\sum_{i=0}^{m} a_{i} x_{1}^{i}$ is in A, then $a_{m} x_{1}^{m}$ is in A and therefore $g-a_{m} x_{1}^{m}=\sum_{i=0}^{m-1} a_{i} x_{1} i$ is in A. Thus a_{m-1} is in $T(A) \subseteq I$. Repeating this argument we finally get that a_{i} is in I for each $i=0,1, \ldots, m$ and therefore $A \subseteq I S_{1}$, as required.

We are going now to show that an analogous result holds for the skew polynomial ring S_{n}. For this we need the following lemma.
2.6. Lemma. Let A be an H-ideal of S_{n} and let $T(A)$ be the set of all leading coefficients of the elements of A written as polynomials in x_{n} with coefficients in S_{n-1}. Put $T_{i}(A)=T\left[T_{i+1}(A)\right]$ in S_{i}, for each $i=0,1, \ldots, n-1$, where $S_{0}=R$ and $T_{n}(A)=A$. Then $T_{0}(A)$ is an (H, D)-ideal of R and $\left[T_{0}(A)\right]^{k} \subseteq T_{0}\left(A^{k}\right)$ for any non negative integer k.

Proof. Since $T_{n-1}(A)=T\left[T_{n-1}(A)\right]=T(A), T_{n-1}(A)$ is an $\left(f_{n}, d_{n}\right)$-ideal of S_{n-1} (cf. the proof of the previous theorem). Similarly $T_{n-2}(A)=T\left[T_{n-1}(A)\right]$ is an $\left(f_{n-1}, d_{n-1}\right)$-ideal of S_{n-2}. Now let $r=r\left(x_{1}, \ldots, x_{n-2}\right)$ be any element of $T_{n-2}(A)$; then there exists s in $T_{n-1}(A)$ with leading coefficient r with respect to x_{n-1}. Then $f_{n}(s), f_{n}^{-1}(s)$ and $d_{n}(s)$ are all in $T_{n-1}(A)$, while $f_{n}\left(x_{n-1}\right)=x_{n-1}$ and $d_{n}\left(x_{n-1}\right)=0$; therefore $f_{n}(r), f_{n}^{-1}(r)$ and $d_{n}(r)$ are all in $T_{n-2}(A)$. Thus $T_{n-2}(A)$ is also an $\left(f_{n}, d_{n}\right)$-ideal of S_{n-2}. Repeating this procedure we shall eventually find that $T_{0}(A)$ is a (H, D)-ideal of R, as required. In the proof of Theorem 2.5 we have seen that $[T(A)]^{k} \subseteq T\left(A^{k}\right)$, therefore $\left[T_{n-1}(A)\right]^{k} \subseteq T_{n-1}\left(A^{k}\right)$. Next, applying induction on m, we assume that $\left[T_{n-m}(A)\right]^{k} \subseteq T_{n-m}\left(A^{k}\right)$. Then

$$
\left[T_{n-m-1}(A)\right]^{k}=\left[T\left[T_{n-m}(A)\right]\right]^{k} \subseteq\left[\left[T_{n-m}(A)\right]^{k}\right] \subseteq T\left[T_{n-m}\left(A^{k}\right)\right]=T_{n-m-1}\left(A^{k}\right)
$$

Thus, if we put $m=n$, we get that $T_{0}(A)^{k} \subseteq T_{0}\left(A^{k}\right)$ and this finishes the proof.
We are ready now to prove
2.7. Theorem. Let I be an (H, D)-semiprime ideal of R; then $I S_{n}$ is an H-semiprime ideal of S_{n}.

Proof. Proceeding as in the proof of Theorem 2.1 for the ideal $A S_{n}$ one can show that $I S_{n}$ is an H-ideal of S_{n}. Next let A be an H-ideal of S_{n} such that $A^{k} \subseteq I S_{n}$. Then, by Lemma 2.6, $T_{0}(A)$ is an (H, D)-ideal of R and $\left[T_{0}(A)\right]^{k} \subseteq T_{0}\left(A^{k}\right) \subseteq T_{0}\left(I S_{n}\right)=I$; therefore $T_{0}(A) \subseteq I$. Without loss of generality we may assume that $A \supseteq I S_{n}$, otherwise we may use $A+I S_{n}$ instead of A. Let $g=\sum_{i=0}^{m_{1}} a_{i} x_{n}^{i}$ be a polynomial of A with coefficients in S_{n-1}; then $a_{m_{1}}$ is in $T_{n-1}(A)$. We write $a_{m_{1}}=\sum_{i=0}^{m_{2}} b_{i} x_{n-1}^{i}$. Then $b_{m_{2}}$ is in $T_{n-2}(A)$ and $a_{m_{1}} x_{n}^{m_{1}}=b_{m_{2}} x_{n}^{m_{1}} x_{n-2}^{m_{2}}+\sum_{i=0}^{m_{2}-1} b_{i} x_{n-1} x_{n}^{m_{1}}$. We proceed the same way until we find some r in $T_{0}(A)$, such that $h=r x_{m}^{m_{1}} x_{n-1}^{m_{2}} \ldots x_{1}^{m_{n}}$ is term of $a_{m} x_{n}^{m_{1}}$. Then r is in I, therefore h is in $I S_{n} \subseteq A$. Thus $g-h$ is in A. Repeating the same argument for $g-h$ and keeping going in the same way we eventually find that $a_{m_{1}} x_{n}^{m_{1}}$ is in $I S_{n} \subseteq A$. Thus $\tilde{g}=g-a_{m_{1}} x_{n}^{m_{1}}=\sum_{i=0}^{m_{1}-1} a_{i} x_{n}^{i}$ is in A. If we apply the same
argument for \tilde{g} and we keep going in the same way we finally find that g is in $I S_{n}$, which was to be proved.

The following are straightforward corollaries of Theorems 2.1 and 2.7.
2.8. Corollary. The skew polynomial ring S_{n} is H-semiprime if and only if R is an (H,D)-semiprime ring.
2.9. Corollary. If I is a D-semiprime ideal of R, then $I S_{n}^{*}$ is a semiprime ideal of S_{n}^{*}, therefore S_{n}^{*} is a semiprime ring if and only if R is a D-semiprime ring.
2.10. Corollary. If I is an H-semiprime ideal of R, then $I S_{n}^{\prime}$ is an H semiprime ideal of S_{n}^{\prime}, therefore S_{n}^{\prime} is an H-semiprime ring if, and only if R is an H-semiprime ring.

3. Remarks

(1) An (H, D)-ideal I of R is called an (H, D)-prime ideal if, given any two (H, D)-ideals A and B of R such that $A B \subseteq I$, one has either $A \subseteq I$ or $B \subseteq I$. The notions of an H-prime and of a D-prime ideal of R can be also defined in the obvious way.

The statements of all results obtained in the previous section remain true if we replace the term "semiprime", whenever it appears, with the term "prime" (cf. [11]).
(2) The statement of Theorem 2.4 shoud be restated as follows: "Let P be a prime ideal of S_{n}^{\prime} such that x_{i} is not in P, for each i. Then $P \cap R$ is an H-prime ideal of R ".

That is, the ring R need not be right Noetherian in this case. But the hypothesis that x_{i} is not in P for each i is not superflous (cf. [1, Example 3]).
(3) If R is a right Noetherian ring and I is an H-prime ideal of R, then $I S_{n}^{\prime}$ is a prime ideal of S_{n}^{\prime} (cf. [11, Theorem 2.9]). Attempts to prove that the above mentioned result remains true for the ring R which is not right Noetherian, i.e. that we can replace the term "prime" with the term "semiprime" and thus to produce a result stronger than Corollary 2.10, have proved unsuccessful.

REFERENCES

[1] A. W. Goldie, G. Michler, Ore extensions and polycyclic groups rings, J. London Math. Soc. (2) 9 (1974), 337-345.
[2] R. S. Irving, Prime ideals of Ore extensions over commutative rings, J. Algebra 56 (1979), 315-342.
[3] R. S. Irving, Prime ideals of Ore extensions over commutative rings II, J. Algrebra 58, (1979), 399-423.
[4] D. Jordan, Noetherian Ore extensions and Jacobson rings, J. London Math. Soc. 10 (1975), 281-291.
[5] D. Jordan, Ore Extensions and Jacobson Rings, Ph. D. Thesis, Leeds, 1975.
[6] L. Lesieur, Conditions noethériennes dans l'anneau de polynômes de Ore $A[x, \sigma, \delta]$, Springer Lecture Notes 641, 220-234.
[7] O. Ore, Theory of non commutative polynomials, Ann. of Math. 34 (1933), 480-508.
[8] M. G. Voskoglou, Simple skew polynomial rings, Publ. Inst. Math. (Beograd) $\mathbf{3 7}$ (51) (1985), 37-41.
[9] M. G. Voskoglou, Extending derivations and endomorphism to skew polynomial rings, Publ. Inst. Math. (Beograd) 39 (53) (1986), 79-82.
[10] M. G. Voskoglou, Simple skew Laurent polynomial rings, Boll. U.M.I. (7), 1-A (1987), 255260.
[11] M. G. Voskoglou, Prime ideals of skew polynomial rings, Riv. Mat. Univ. Parma (Italy), 1989.

Technological and Educational Institute, (Received 1909 1989) 30200 Mesolongi, Greece

