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ON SOME FORMULAS INVOLVING !n AND THE VERIFICATION

OF THE !n-HYPOTHESIS BY USE OF COMPUTERS

�Z. Mijajlovi�c

Abstract. Kurepa's hypothesis for !n is veri�ed for all n < 311009. Some new equivalents
to the hypothesis are also found.

0. Introduction

Kurepa introduced in [2] the notion of the left factorial in the following way:

!n =

n�1X
i=0

i!; n 2 N;

where N is the set of nonnegative integers. In the same paper Kurepa asked if

8n 2 N (!n; n!) = 2 (KH)

Here (a; b) denotes the greatest common divisor of integers a and b. This conjecture
is still an open problem in number theory. There are several results which may speak
in the behalf of the hypothesis. For example, Kurepa showed in [3] that there are
in�nitely many n 2 N for which KH is true. Also, the conjecture is veri�ed by
use of computers (Slavi�c for n � 1000, and Wagsta� extended the calculation for
n � 50000). Finally there are several statements equivalent to the hypothesis ([2],
[5], [6]). One of the most interesting is the following statement, which also belongs
to Kurepa (see [2]):

8n > 2 !n 6= 0 mod n

We shall call this statement also KH. This formulation of KH appears as the
open problem B44 in [1]. The aim of this paper is to state some new propositions
equivalent to KH, and to exhibit a method for the veri�cation of KH for reasonable
large n. Implementing this method on computers we veri�ed KH for all n < 311009.
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1. Some new equivalents

In [2] it was shown that KH can be reduced to primes, i.e. that KH is equiv-
alent to

8p 2 P (p > 2) (!p; p) = 1) (PH)

where P is the set of all primes. If p is a prime and PH is true for all primes � p
then KH is true for all integers n � p. This statement easily follows from the fact
that all primes which divide n! are � n. This observation is the key point in our
approach to the veri�cation of KH by means of computers.

If p is a prime, let GF(p) be the Galois �eld of p elements.

LEMMA 1.1. If p is a prime � 3 then in GF(p) we have

!p =

p�1X
k=0

(�1)k+1=k! (1-1)

!p =

p�1X
k=0

(�1)k(k + 1)(k + 2) . . . (p� 1) (1-2)

Proof . All operations in this proof are the operations of the �eld GF(p). By
Wilson Theorem we have

(p� 1)! = �1: (1-3)

Further, for 0 � k � p� 1,

(p� 1)! = (p� k � 1)!(p� k)(p� (k � 1)) . . . (p� 1): (1-4)

Observing that in GF(p) p = 0, we have

(p� 1)! = (p� k � 1)!k!(�1)k: (1-5)

Therefore,

!p =

p�1X
k=0

k!

=

p�1X
k=0

(�1)k+1=(p� k � 1)!; using the substitution j = p� k;

=

pX
j=1

(�1)p�j+1=(j � 1)!

=

p�1X
j=0

(�1)j+1=j!:
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Thus (1-1) holds. Further, by this identity we have

!p =

p�1X
k=0

(�1)k+1=k!

=

p�1X
k=0

(�1)k+1
(p� 1)!

(k + 1)(k + 2) . . . (p� 1); by Wilson Theorem;

=

p�1X
k=0

(�1)k(k + 1)(k + 2) . . . (p� 1)

= 1 � 2 � 3 . . . (p� 1)� 2 � 3 . . . (p� 1) + . . . + (�1)p�2(p� 1) + (�1)p�1;

and this proves (1-2). }
COROLLARY 1.2. KH is equivalent to :

For all primes p, GF(p) veri�es
Pp�1

k=0(�1)k+1=k! 6= 0.

COROLLARY 1.3. KH is equivalent to any of the following statements

1. For all primes p, GF(p) veri�es
Pp�1

k=0(�1)k(k + 1)(k + 2) . . . (p� 1) 6= 0.

2. For all primes p,
Pp�1

k=0(�1)k(k + 1)(k + 2) . . . (p� 1) 6= 0 mod p.

COROLLARY 1.4. KH is equivalent to any of the following statements

1. For all primes p, GF(p) veri�es
Pp�1

k=0

�
p�1
k

�
(k + 1)(k + 2) . . . (p� 1) 6= 0

2. For all primes p,
Pp�1

k=0

�
p�1
k

�
(k + 1)(k + 2) . . . (p� 1) 6= 0 mod p.

The last corollary follows from the Corollary 1.3. and the well-known relation�
p�1
k

�
= (�1)k mod p for all primes p (which is in fact an immediate consequence

of (1-5)).

2. Recurrent formulas

First we introduce some notation. If m, n are integers, then by r = rest(m;n)
we shall denote the reminder obtained from division of m by n. Further, by Zn
we denote the ring (Zn;+n; �n; 0; 1), where Zn = f0; 1; 2; . . . ; n� 1g. Let rn be the
sequence de�ned by rn = rest(!n; n), n 2 N . In this section we shall derive some
recurrent relations in Zn which shall enable us to compute rn.

LEMMA 2.1. If q is a prime and si is a sequence de�ned in GF(q) by regressive

induction

sq�1 = 0 (2-1)

si = 1 + isi+1; i = q � 2; q � 3; . . . ; 1

then rq = s1.
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Proof . We have

!q = 1 + 1 � (1 + 2(1 + 3(1 + . . . + (1 + (q � 3)(1 + (q � 2)q)) . . . )

Therefore, taking ui = 1+ i(1+ (i+1)(1+ . . . (1+ (q� 2)q)) . . . ), i = q� 2; . . . ; 1,
uq�1 = q, we obtain ui = 1 + iui+1, i = q � 2; q � 3; . . . ; 1, and !q = u1. If we take
si = rest(ui; q), then si satis�es (2-1) in GF(q). }

LEMMA 2.2. If q is a prime, and ti is a sequence de�ned in GF(q) by induction

in the following way :

t1 = 0 (2-2)

ti = (�1)i + iti�1; i = 2; 3; . . . ; q � 1

then rq = tq�1.

Proof . By Lemma 1.1 we have in GF(q)

!q =

q�1X
k=0

(�1)k(k + 1)(k + 2) . . . (q � 1)

= 1 � 2 � 3 . . . (q � 1)� 2 � 3 � . . . (q � 1) + . . . (�1)q�2 + (�1)q�1
= (. . . (1� 1)2 + 1)3� 1)4 + 1) . . . )(q � 2) + (�1)q�2(q � 1) + (�1)q�1

Thus taking

ti = (. . . (((1� 1)2 + 1)3� 1)4 + 1) . . . )i+ (�1)i; i = 1; 2; . . . ; q � 2;

we obtain (2-2). }
LEMMA 2.3. If q is a prime, and vi is a sequence de�ned in GF(q) by

v1 = 0

vj = 1� jvj+1; j = 1; 2; . . . ; q � 2;

then rq = vq�1.

Proof . For the sequence si in Lemma 2.1. we have

sq�i = 1 + (q � i)sq�i+1;

so for vi = sq�i we have (observe that q = 0 in GF(q):

v1 = 0

vj = 1� jvj+1; j = 1; 2; 3; . . . q � 1;

vq�1 = s1 = rq :
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}
Now we shall consider some other relations for rn.

LEMMA 2.4. mjn) rn = rm mod m.

Proof . Suppose mjn. First we have !n = rn mod n, so as mjn, !n = rn
mod m. As rest(!n;m) = rest(!m;m) = rm, and !n = rest(!n;m) mod m it follows
rn = rm mod m. }

COROLLARY 2.5. If mjn and rn � m then rn = rm.

Suppose n = n1n2 . . .nk where (ni; nj) = 1 for 1 � i < j � k. Then
by Lemma 2.4, rn = rni mod ni, 1 � i � k. Therefore, as rn < n, by Chinese
Reminder Theorem rn is the least nonnegative solution of the sistem of congruences
x = rni mod ni, 1 � i � k.

Further, if rn = 0 and p is a prime dividing n then by Lemma 2.4 rp = 0.
This yields a proof of the equivalence KH , PH.

By the above remarks, the number rn is uniquely determined by the prime
decomposition n = p�11 p�22 . . . p�33 . Namely, in this case there is an isomorphism

� : Zp�1
1

�Zp�2
2

� . . .Zp�k
k

�! Zn;

where for x 2 Zn, xi 2 Zp�i
i

, 1 � i � k,

x = �(x1; x2; . . . ; xk) i� for all 1 � i � k; x = xi mod p�ii :

Thus rn can be computed by

rn = �(rp�1
1

; . . . ; rp�k
k

):

3. The Second Kurepa hypothesis

In [2] Kurepa also conjectured the following hypothesis:

(KH2) The relation m2j!n, except 22j!3, does not have solutions in integers

greater than 1.

Obviously KH2 is equivalent to to the statement that !n is square-free. Thus
we shall consider KH2 only for primes m. If p is a prime and n � p then p2j!p
implies pj!p, therefore we have immediately:

PROPOSITION 3.1. KH implies that for any m there are at most �nitely many

n such that m2jn.
Let KH(m) denote the Kurepa hypothesis for all integers bellowm i.e. KH(m)

is the formula
8n � m (n > 2)!n 6= 0 mod n)
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Therefore, KH , 8m KH(m). Further, let KH2(m) denote the formula

8k < m8n < k (1 < k ^ 3 < n) rest(!n; k2) 6= 0):

By above remarks we have immediately the following statement:

PROPOSITION 3.2. KH ^ 8m KH2(m)) KH2.

As an re�nement of the last proposition we have the following. Assuming KH
is true it suÆces to check if for r2n = rest(!n; p2)

r2n 6= 0; for n < p (3-1)

to conclude that there is no n such that p2j!n. Also, if (3-1) is veri�ed for all
primes p � m0 then for all m � m0 there is no n such that m2j!n. Kurepa stated
in [2] that, except 22j!3, for m = 2; 3; 4; 5; 6; 7; 8 for no n, m2j!n. Using the above
observation we approved this statement for �rst 200 primes, so KH2(m) is true for
m � 1223. In this computation we can use similar recurrent formulas as in Lemma
2.1. Namely it is easy to see that for the sequence si de�ned in Zp2 by regressive
induction

sn�1 = n (3-2)

si = 1 + i � si+1; i = n� 2; n� 3; . . . ; 1;

we have r2n = s1.

4. Program implementation

Using formulas developed in previous sections, we implemented computer
programs for verifying KH and KH2. All programs are written in FORTRAN 77
for transputer station based on three transputers T800. Some of the routines were
implemented in parallel version of FORTRAN 77 (3L Parallel FORTRAN) using
the advantage of parallel computing abilities of processors T800.

4.1. Computer veri�cation of KH. In fact we were verifying KH(m) for
m � m0, where m0 is the given bound. The �rst part of the program is used to
generate the sequence of �rst i0 primes pi, 1 � i � i0. In the main part of the
program KH(pi) is checked for i � i0. As for i0 = 26880, for which pi0 = 311009,
for no i � i0 rpi = 0, it follows (see the beginning of Section 1) that KH(n) is true
for all n � 311009; thus in our case m0 = 311009.

In the computation of rp we were using recurrent formulas (2-1), therefore
the program code of this part of the program looks as

This facility belongs to the Mathematical Faculty of the Faculties of Sciences, University
of Belgrade
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DO 1001 J=IP,L

Q=P(J)

KNOD=Q

QD=Q

DO 1002 IL=Q-2,1,-1

1002 KNOD=DMOD(DBLE(1+IL*KNOD),QD)

WRITE(2,405) J,Q,KNOD

IF (KNOD.EQ.0) THEN

STOP

ENDIF

1001 CONTINUE

C P(J) is the sequence of primes

C KNOD and QD are DOUBLE PRECISION variables

C The value of KNOD after the loop 1002 is rQ

Some re�nements are used in the program. In order to make possible com-
putation in several sessions, the program is written so that KH(pi) can be veri�ed
in an interval i1 � i � i2 (in the above program i1 = IP, and i2 = L). If i � 4792
then pi � 46337 so 1+IL*KNOD in the above listing does not exceed the INTEGER

bound in FORTRAN 77, and DBLE can be omitted in the line 1001 of the listing,
and variables KNOD, QD can be replaced by the INTEGER variable Q. Therefore, for
small values of pi (pi � 46337) only INTEGER varaibles can be used, thus the pro-
gram can be speeded up for several times (and then it takes only several minutes
to check KH(46337)).

Further, the whole program is written as a transputer application divided
into k tasks (in our case k = 3) so that each processor of the transputer station can
execute in parallel a task. The task Tj is used to verify KH(pi) for i = j mod k,
i � i0. From the program code we see that the number of arithmetical operations
needed for the computation of rp is 4p. Thus the total number of arithmetical
operations used in the veri�cation of KH(x) is

A =
X
p�x

4p (4-2)

where p in the sum runs over primes. Using Stieltjes integral, we obtain

A = 4

Z x

2

xd�(x) = 4x�(x)jx2 � 4

Z x

2

�(x)dx � 4x�(x) � 4x2

lnx
;

where �(x) is the number of primes � x. Hence, we have the following asymptotic
formula

A � 4x2

lnx
(4-3)

If k transputers are used (we call a such con�guration a k-farm), and if � is
an average execution time interval of an arithmetical operation, then

Ak(x) =
4x2�

k � lnx (4-4)
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is the total time used for the above computation. In order to �nd the eÆciency of
k-farms in respect to one-transputer station, we compare Ak(x) and A1(y) for the
same time interval, i.e. for given y we determine x from

4x2�

k � lnx =
4y2�

ln y
:

Therefore, x =
p
k
p
lnx /ln y � y. From this equation it follows that the

eÆciency of a k-farm in the veri�cation of KH(y) is e(y) =
p
k
p
lnx /ln y >

p
k.

For �xed k it is easy to see that limy!1

p
lnx /ln y = 1, so for large intervals

the eÆciency of a k-farm is asymptotically equal to
p
k. This means that if one

transputer in a given time interval veri�es KH(x), then a k-farm in the same time

interval veri�es KH(x
p
k).

Prime factorization table of !n

n !n Factorization

1 1 1
2 2 2
3 4 2 � 2
4 10 2 � 5
5 34 2 � 17
6 154 2 � 7 � 11
7 874 2 � 19 � 23
8 5914 2 � 2957
9 46234 2 � 23117
10 409114 2 � 204557
11 4037914 2 � 2018957
12 43954714 2 � 19 � 31 � 37313
13 522956314 2 � 881 � 296797
14 6749977114 2 � 227 � 379 � 39229
15 93928268314 2 � 75437 � 622561
16 1401602636314 2 � 19 � 41 � 491 � 1832213
17 223243922524314 2 � 127399 � 87616043
�18 378011820620314 2 � 76753 � 2462521469
19 6780385526348314 2 � 197 � 17209100320681
20 128425485935180314 2 � 27067 � 455599 � 5207129
21 2561327494111820314 2 � 500473 � 2558906768309
22 53652269665821260314 2 � 37 � 317 � 16823 � 135954526571
23 1177652997443428940314 2 � 6893917 � 85412472868721
24 27029669736328405580314 2 � 31 � 89 � 991 � 1607 � 3075880875779
4.2. Computer veri�cation of KH2. According to Section 3 it suÆces to

verify KH2(m). Using formulas (3-2) we checked KH2(m) for m � 1223, so m2jn
has no solutions for m � 1223 and arbitrary n.
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We also computed the prime decomposition of !n for n � 24, see the table.
As it is seen, !n is squarefree for n � 24. For the prime decomposition of these
numbers we used the tabulation of !n in [7], and algorithms presented in [4]. These
algorithms are implemented in FORTRAN 77 by M. Dra�zi�c.
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