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MODAL TRANSLATIONS

OF HEYTING AND PEANO ARITHMETIC

Kosta Do�sen

Abstract. First-order Heyting arithmetic is embedded by various modal translations in
modal extensions of �rst-order Peano arithmetic which are included in Peano S4. Peano arithmetic
is embedded by analogous modal translations in an S5-like extension of Heyting arithmetic. This
last system is included in the modal extension of Heyting arithmetic where the necessity operator is
equivalent to double negation and where Peano arithmetic can be embedded by a modal translation
which amounts to a usual double-negation translation.

To embed a system S1 in a system S2 by a translation, i.e. one-one mapping, t
from the language of S1 into the language of S2 means to show that for every formula
A of the language of S1 we have that A is provable in S1 i� t(A) is provable in S2. It
has been known for a long time that Heyting �rst-order logic H can be embedded in
the �rst-order modal logic S4 by modal translations, i.e. translations which pre�x
the necessity operator � to certain subformulae. However, it was only in the last
decade that it was shown that by analogous translations one can embed �rst-order
Heyting arithmetic HA in �rst-order Peano arithmetic based on S4, which we shall
denote by PAS4 (see [12]). An elegant proof of this last embedding may be found
in [9].

When one considers the embedding of H in �rst-order modal logics, only S4
is usually mentioned, and this might leave the wrong impression that only S4 does
the job. As a matter of fact, one can embed H in other �rst-order modal logics in
the neighbourhood of S4 which are based on normal propositional modal logics (a
propositional modal logic is normal i� it includes the classical propositional calculus
and all instances of the schema �(A ! B) ! (�A ! �B), and is closed under
modus ponens , substitution for propositional variables and necessitation, i.e. the
rule from A infer �A. The class of normal propositional modal logics in which the
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Heyting propositional calculus can be embedded is investigated in [8] and [7]. In
[6] and [7] the embedding of H in �rst-order modal systems di�erent from S4 is
considered too.

It is natural to ask whether HA can be embedded in �rst-order Peano arith-
metic based on the other modal logics in the neighbourhood of S4, and not only in
PAS4. We shall show here that this question can easily be answered aÆrmatively
for some modal extensions of Peano arithmetic included in PAS4.

In [15] a considerable philosophical signi�cance is given to S4 modal principles
as a clue to an intuitionistic notion of provability. (In [15], and in papers referring
to [15], systems based on S4 are called \epistemic", thus replacing a denomination
rather well established among logicians by a term which seems to mean various
things in philosophical logic.) The results which we shall present show that S4 is
not sacrosanct and that modal notions which can help us to translate intuitionistic
notions in classical terms need not be exactly those of S4.

This is what we mean to accomplish in the �rst part of this paper. In the
second part we consider the converse modal translations from nonmodal systems
based on classical logic into modal systems based on H. We show that classical �rst-
order Peano arithmetic PA can be embedded by a modal translation into an S5-like
extension of �rst-order Heyting arithmetic which we shall call HA5. Again, HA5
is not the only modal system based on HA for which we have such an embedding.
Among the systems in the neighbourhood of HA5 in which we can embed PA we
�nd in particular a system based on HA where �A$ ::A holds. The embedding
of PA by a modal translation into this last system will be essentially the same as
the embedding of PA into HA by a double-negation translation, i.e. a translation
which pre�xes :: to certain subformulae.

The results which we shall present are based essentially on the underlying
logics and in principle do not involve any purely arithmetical properties of HA
and PA. So, we may reasonably expect that these results could be extended to
some other systems based on Heyting and classical logic. However, for the sake of
de�niteness we have preferred to stick to the particular systems HA and PA.

1. Modal translations of Heyting arithmetic

Let L be the language of �rst-order arithmetic with the logical constants
!, ^, _, :, 8, 9 and =, the nonlogical constants 0, 0, + and �, and denumerably
many individual variables, for which we use the schematic letters x; y; z; . . . ; x1; . . . .
As schematic letters for terms of L we use t; t1; . . . , and as schematic letters for
formulae of L we use A;B;C; . . . ; A1; . . . . A schema of the form Axt will stand
for the formula obtained from A by substituting t for every free occurrence of
x provided the usual proviso for substitution is satis�ed. As usual, A $ B is
de�ned as (A ! B) ^ (B ! A). The language L� is L extended with the unary
propositional operator �. For L� we use the same schematic letters as for L.

The system HA in L has the following axiom-schemata and rules:
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(I) (A! (B ! C))! ((A! B)! (A! C)), A! (B ! A),
A! (B ! (A ^B)), (A ^ B)! A, (A ^ B)! B,
A! (A _ B), B ! (A _ B), (A! C)! ((B ! C)! ((A _ B)! C)),

(A! :B)! (B ! :A), :A! (A! B),
A A! B

B
,

(II) 8xA! Axt , A
x
t ! 9xA, x = x, x = y ! (Azx ! Azy),

B ! A

B ! 8xA
,

A! B

9xA! B
,

provided x is not free in B in these two rules,

(III) :x0 = 0, x0 = y0 ! x = y, 8x (A! Axx0)! (Ax0 ! A),
x+ 0 = x, x+ y0 = (x + y)0, x � 0 = 0, x � y0 = (x � y) + x.

The system PA in L is HA extended with A _ (A! B).

Consider now the following modal axiom-schemata and rules for systems in
the language L�:

(�1) �(A! B)! (�A! �B),

(�2)
A

�A
,

(�3) �A! ��A,
(�4) ��A! �A,

(�5) :�:(A! A),
(�6) �(�A _�B)! (�A _�B),
(�7) �9x�A! 9x�A,
(�8) �A! A,
(�9) �(�(A! �A)! A)! A.

We shall introduce a number of modal systems in L� obtained by extending
the axiom-schemata and rules of HA and PA (now understood as axiom-schemata
and rules for L�) with some of these modal postulates:

HA4 = HA + �1, �2, �3, �4, �5;

HA4N = HA4 + �6, �7 (�4 is superuous in HA4N);

HAS4 = HA4N + �8 (�4{�7 are superuous in HAS4);

HAGrz = HAS4 + �9 (�4{�8 are superuous in HAGrz).

The systems PA4, PA4N, PAS4 and PAGrz are obtained from the respective
HA systems by adding A _ (A ! B). In PAGrz the schema �3 is superuous, as
well as �4{�8 (see [1]). A variant of PAGrz was recently considered in [10].

It is easy to show that all these modal systems in L� based on HA or PA are
conservative extensions of respectively HA or PA in L. In a proof of a formula A
of L in one of these modal systems just delete every �; the result is a proof of A
in HA or PA.

The modal translation m is the one-one mapping from L into L� de�ned by
the following recursive clauses:

m(t1 = t2) is �(t1 = t2),

m(A � B) is �(m(A) � m(B)), where � is !, ^ or _,

m(�A) is ��m(A), where � is :, 8x or 9x.

In other words, in m(A) the necessity operator � is pre�xed to every subfor-
mula of A.
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By an easy induction on the lenght of proof of A we can establish the following
lemma:

LEMMA 1. If A is provable in HA, then m(A) is provable in HA4.

Since HA4 and all its extensions are closed under replacement of equivalents,
and since �(�B ^ �C) $ (�B ^ �C) is provable in HA4, the formula obtained
from m(A) by omitting � in front of conjunctions will be equivalent in HA4 to
m(A). This would enable us to achieve a certain economy in our translation.

Consider now the translation m0 from L into L� where m0(A) is obtained by
pre�xing � to every proper subformula of A, i.e. by omitting from m(A) the main
necessity operator. We can prove the following lemma:

LEMMA 2. If A is provable in HA, then m0(A) is provable in HA4.

Proof . In HA4 we can prove:

�(�B ! �C)! (�B ! �C);

�(�B ^�C)! (�B ^�C);

�:�B ! :�B;

�8x�B ! 8x�B:

Now suppose �(t1 = t2) is provable in HA4. By deleting every � in the proof of
�(t1 = t2) we obtain a proof of t1 = t2 in HA, and hence in HA4. Suppose our
theorem A of HA is of the form B _C. Then either B or C is provable in HA. Let
this be B (with C we proceed analogously). Then m(B) is provable in HA4, and
hence m(B) _ m(C), i.e. m0(A), is too. Suppose our theorem A of HA is of the
form 9xB. Then for some term t (indeed, for some numeral t) we have that Bx

t is
provable in HA, and hence m(Bx

t ) is provable in HA4. So, 9xm(B), i.e. m0(A), is
provable in HA4. q.e.d.

For the system HA4N and its extensions we can obtain even more economical
translations. Let p and p0 be the translations from L into L� such that p(A) pre�xes
� to every subformula of A save conjunctions, disjunctions and subformulae with
and initial existential quanti�er, and p0(A) does the same to proper subformulae of
A. Then we can prove the following lemma:

LEMMA 3. In HA4N and its extensions we have that :

m(A) is provable i� p(A) is provable,

m0(A) is provable i� p0(A) is provable.

This is because in HA4N we can prove:

�(�B ^�C)$ (�B ^�C);

�(�B _�C)$ (�B _�C);

�9x�B $ 9x�B:
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As a corollary of Lemmata 1, 2 and 3 we obtain immediately that if A is
provable in HA, then p(A) and p0(A) are provable in HA4N.

A further economy in our translations may be achieved for HAS4 and its
extensions, since in these systems we can prove �(t1 = t2)$ t1 = t2. For the right
to left direction of this equivalence we use t1 = t2 ! (�(t1 = t1)! �(t1 = t2)). If
we were to take weaker versions of our modal systems where x = y ! (Azx ! Azy)
is assumed with the proviso that A is in L (i.e. no � occurs in A), then t1 =
t2 ! �(t1 = t2) would not be available, but we could still prove our embeddings of
HA below (we prove �(x = y) ! (m(Azx) ! m(Azy)) in these weaker versions by
induction on the complexity of A). To these weaker versions of our modal systems
we may also add �(x = y)! (Azx ! Azy) for arbitrary A in L�, and still have our
embeddings (cf. [14]).

The advantage of such more economical translations is only relative, because
they are less uniform than m and, hence, more diÆcult to memorize.

Next, we shall use the method of [9] in a slightly di�erent version to establish
that if m(A) is provable in PAS4, then A is provable in HA.

Let :CA be an abbreviation for A ! C, and c�A an abbreviation for (A !
C) ! C i.e. for :C:CA. Next, let X be a �nite nonempty set of formulae of L.
Then for C 2 X , the one-one mapping ( )CX from L� into L is de�ned by the
following recursive clauses:

(t1 = t2)
C
X is c�(t1 = t2);

(A � B)CX is c�((A)CX � (B)CX ); where � is !, ^ or _,

(:A)CX is c�:C(A)
C
X ;

(�A)CX is c��(A)CX ; where � is 8x or 9x,

(�A)CX is c�
VV

B2X(A)
B
X ;

where if X = fB1; . . . ; Bng, the abbreviation
VV

B2X(A)
B
X stands for (A)B1

X ^ � � � ^

(A)BnX .

It is easy to see that c� behaves like a necessity operator, in the sense that in
HA we have �1{�4 with � replaced by c�, as well as the following S5-like principle
c�( c�A_ c�( c�A! c�B)) which is like a modal translation of A_(A ! B). Moreover,
we have in HA the following theorems:

c�( c�A! c�B)$ ( c�A! c�B);

c�( c�A ^ c�B)$ ( c�A ^ c�B);

c�:CB $ :CB;

c�8x c�B $ 8x c�B;

which show that we could make some economies in the translation ( )CX . (Such an
economical version of ( )CX is in [9], which also di�ers from our approach by having
? primitive in L and L� instead of :; see the �nal part of the second section
below).
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Then, as in [9], by induction on the length of proof of A in PAS4, we can
prove the following lemma:

LEMMA 4. If A is provable in PAS4, then for every X and every C 2 X we

have that (A)CX is provable in HA.

As in [9, Lemmata 1.10 and 2.5], by induction on the complexity of A, we
can prove the following lemma:

LEMMA 5. If X contains all the subformulae of A, then in HA we can prove

A$
VV

C2X(m(A))CX .

This is enough to establish the following lemma, whose analogue we can �nd
in [9]:

LEMMA 6. If m(A) is provable in PAS4, then A is provable in HA.

Proof . Supposem(A) is provable in PAS4, and letX be the set of subformulae
of A. By Lemma 4, for every C 2 X , in HA we can prove (m(A))CX . Hence, in HA
we have

VV
C2X(m(A))CX . But then by Lemma 5 in HA we can prove A. q.e.d.

We sum up the results of this section in the following theorem:

THEOREM 1. (i) If HA4 � S � PAS4, then

A is provable in HAi� m(A) is provable in S,

i� m0(A) is provable in S.

(ii) If HA4N � S � PAS4, then

A is provable in HAi� m(A) is provable in S,

i� m0(A) is provable in S,

i� p(A) is provable in S,

i� p0(A) is provable in S.

The embeddings of this theorem are more interesting when the underlying
nonmodal arithmetic of S is classical rather than intuitionistic, because then they
indicate how a classical mathematician may translate intuitionism to himself. This
is why we should single out the possibility of embedding HA by m and m0 into
every system between PA4 and PAS4, and also the possibility of embedding HA by
m, m0, p and p0 into every system between PA4N and PAS4.

Theorem 1 leaves open the question whether we can embed HA by our modal
translations into a system which, like PAGrz, is stronger than PAS4. This question
is interesting because of the following fact, which should be compared with the
embedding of HA by p0 into systems between PA4N and PAS4, mentioned in Theo-
rem 1 (ii). Let K4N and S4Grz be the modal propositional calculi corresponding to
PA4N and PAGrz respectively, i.e. these propositional calculi have the respective
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modal postulates added to classical propositional logic, omitting �7. Next let t be
the modal translation, from the language of the Heyting propositional calculus into
this language extended with �, analogous to p0; i.e. t pre�xes � to every proper
subformula save conjunctions and disjunctions. Then it may be shown that the
Heyting propositional calculus can be embedded by t in a normal propositional
modal logic S i� K4N � S � S4Grz (see [7]).

2. Modal translations of Peano arithmetic

Consider now the modal axiom-schema:

(�10) �(�A _�(�A! �B)),

which is a modal translation of A _ (A! B). Using this schema we introduce the
following systems in L�:

HA5 = HA4 + �10; HAS5 = HAS4 + �10.

In HAS5 we can prove �A _ �(�A ! B), which is a characteristic S5 princi-
ple. (The logics corresponding to HA5 and HAS5 are considered in [6] and [5]
respectively.)

The system PA5 is obtained from HA5 by adding A_ (A! B). However, by
adding A_ (A! B) to HAS5 we do not obtain anything new, as witnessed by the
following lemma:

LEMMA 7. In HAS5 we can prove �A$ A.

Proof . We proceed by induction the complexity of A.

If A is of the form t1 = t2, we have �(t1 = t2) $ t1 = t2, which is provable
in all extensions of HAS4.

If A is of the form B ! C, we use �(�B ! �C) $ (�B ! �C), which
from right to left we prove as follows:

�C ! �(�B ! �C)

(�B ! �C)! (�B ! �(�B ! �C))

(�B ! �C)! ((�B _�(�B ! �C))! �(�B ! �C))

(�B ! �C)! �(�B ! �C):

If A is of the form B ^ C, B _ C and 8xB, we use the theorems of HA4N
mentioned after Lemma 3.

If A is of the form :B, we use �:�B $ :�B, which from right to left
follows immediately from �B _�(�B ! :(C ! C)).

Finally, if A is of the form 8xB, we use �8x�B $ 8x�B, which from right to
left follows from the following instance of the Barcan formula 8x��B ! �8x�B
(a proof of the Barcan formula in HAS5 may be found in [5], p. 11). q.e.d.

From this lemma it follows immediately that HAS5, PAS5 = HAS5 + A _
(A ! B) and PAtriv = PA + �A $ A are one and the same system. This is a
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consequence of the facts that all atomic formulae of L� are of the form t1 = t2,
that for these formulae we have �(t1 = t2) $ t1 = t2, and that only necessity
operators in front of atomic formulae are essential in the presence of S5 principles.

With weaker versions of our modal systems where x = y ! (Azx ! Azy) is
taken with the proviso that A is in L, and where we may also have �(x = y) !
(Azx ! Azy) for arbitrary A in L�, the systems HAS5 and PAS5 would not collapse
into PAtriv, and the embedding of PA with m which we prove below would still
obtain.

Next, consider the following system in L�:

HA:: = HA + �A$ ::A.

(The logic corresponding to HA:: is investigated model-theoretically in [11] and
in [4], which contains some of the results of [11] in a di�erent garb; see also [6].)
It is not diÆcult to show that in HA:: we can derive �1{�5 and �10; so, HA5 is
included in HA::. Of course, both HA:: and PA5 are included in PAtriv.

That HA5 and HA:: are conservative extensions of HA in L is shown by
replacing every � by :: in the proof of a formula A of L in one of these modal
systems; the result is a proof of A in HA. This entails that HA5 and HA:: are
properly included in PA5 and PAtriv respectively. We can also easily show that
PA5 and PAtriv are conservative extensions of PA in L. (Note that the version
of HA:: with x = y ! (Azx ! Azy) restricted to A in L would have the same
theorems as HA::.)

By an easy induction on the length of proof of A we can establish the following
lemma:

LEMMA 8. If A is provable in PA, then m(A) is provable in HA5.

The induction needed for this lemma di�ers from the induction needed for
Lemma 1 only in having an additional case which is taken care of by �10.

Since HA5 is an extension of HA4, we could achieve a certain economy in
our translation m(A) by omitting � in front of conjunctions (see the remark after
Lemma 1). However, the argument of the proof of Lemma 2 would not go through,
and the translation m0 is now not available. (Otherwise, since HA5 is contained in
HA::, in HA we could prove ::A _ :A.)

As an immediate corollary of Lemma 8 we obtain that if A is provable in
PA, then m(A) is provable in HA::. This fact does not di�er essentially from the
well-known fact that if A is provable in PA, then the formula obtained from A by
pre�xing :: to every subformula is provable in HA.

For HA:: and its extensions we can obtain a more economical translation
by noting that:

�(t1 = t2)$ t1 = t2;

�(�B ^�C)$ (�B ^�C);

�(�B ! �C)$ (�B ! �C);
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�:B $ :B;

�8x�B $ 8x�B

are provable in HA::. Of course, for PAtriv the economy can be total: we can
omit all necessity operators.

The other direction of our embedding is now immediately available (we have
nothing like the complications of the translation ( )CX):

LEMMA 9. If m(A) is provable in PAtriv, then A is provable in PA.

This follows from the fact that if m(A) is provable in PAtriv, then A is
provable in PAtriv, and from the conservativeness of PAtriv with respect to PA.

We sum up the results of this section in the following theorem:

THEOREM 2. If HA5 � S � PAtriv, then

A is provable in PA i� m(A) is provable in S.

The embeddings of this theorem are more interesting when the underlying
nonmodal arithmetic of S is intuitionistic rather than classical, because then they
indicate how an intuitionist may translate classical mathematics to himself. This is
why we should single out the possibility of embedding PA by m into every system
between HA5 and HA::.

The interesting modal embeddings we have considered in this paper are of
two types. In embeddings of the �rst type we have a nonmodal system S0 which
can be embedded in a modal system whose nonmodal base is a system S00 which is
a proper extension of S0. In embeddings of the second type, S00 can be embedded
in a modal extension of S0. Embeddings of HA into modal systems based on PA
are of the �rst type, whereas embedings of PA into modal systems based on HA
are of the second type. For both types, one direction of our embeddings, that one
which from the provability of A in the nonmodal system infers the provability of the
modal translation of A in the modal system, is usually proved by a straightforward
induction on the length of proof. The other direction is in principle more diÆcult to
prove for the �rst type, because for the second type we usually have the following
simple procedure. Suppose the modal translation of A is provable in the modal
extension based on S0. This modal extension will contain among other modal
postulates the modal translations of theorems of S00 missing from S0. Usually, this
guarantees that the modal translation of A is provable in S00 plus �A $ A. Then
we infer that A is provable in S00 plus �A$ A (using replacement of equivalents),
and since this last system is a conservative extension of S00, we have that A is
provable in S00. This simple procedure is not available for embeddings of the �rst
type.

Some other systems interesting for intuitionism are also covered by Theorem
2; for example, systems based on intermediate logics. However, not all systems
interesting for intuitionism in which we can embed PA by a modal translation are
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covered by this theorem, as witnessed by the following. Let Johansson's arithmetic
JA be the system in L obtained from HA by rejecting :A ! (A ! B). It is not
diÆcult to show that if A is provable in PA, then m(A) is provable in the modal
system JA5 obtained by extending JA with �1{�5, �10 and �:�A ! (�A !
�B). Since JA5 is included in HA5, it easily follows that PA may be embedded
by m in JA5. This is connected with the fact that PA may be embedded by m in
JA+�A$ ::A, which includes JA5 and is included in HA:: (cf. [13]).

Next we shall make some comments on a version of our modal translations
induced by taking as primitive in L and L� the absurd constant proposition ?
instead of negation. So, let L and L� have ? primitive instead of :, and as
usual let :A be de�ned as A ! ?. Nothing changes essentially in the results
presented above if we stipulate that in all our translations, and in particular m,
the necessity operator � is not to be pre�xed to the subformula ?. (This is the
course followed in [9]). However, if for the modal translation m we stipulate that �
is to be pre�xed to every subformula, including ?, then a di�erence arises, because
with : primitive and ? de�ned as :(B ! B) we had that m(:A), i.e. �:m(A),
is equivalent to �(m(A) ! ?), whereas with ? primitive and : de�ned we have
m(:A) = �(m(A)! �?).

With this new version of m the schema �5, i.e. :�:(A! A) (which amounts
to �? ! ?), is not needed any more for our embeddings. Namely, we can show
that A is provable in HA i� m(A) is provable in HA4 minus �5 (as before, from
left to right we proceed by induction on the length of proof of A; from right to
left we use the fact that HA4 minus �5 is contained in HA4, and in HA4 we have
�?$ ?). Something similar happens with the new m and the embedding of PA.
It can be shown that A is probable in PA i� m(A) is provable in HA5 minus �5.
(Note that, as we have indicated in the �rst section, all the modal postulates of
HA5 minus �5 are provable in HA when we replace � by c�, whereas �5 is not; if
�5 were provable with this replacement, we would have ((? ! C) ! C) ! ? in
HA).

The intuitively unsatisfactory feature of this new version of m is that it may
\abolish" negation in the translation; namely, the : of :A is not present anymore
in �(m(A) ! �?) in HA4 minus �5. On the other hand, negation, as well as all
the other logical constants of L, are present in this sense in the old version of m.

To conclude, we may say that a classical mathematician might translate the
arithmetic, and presumably other theories, of an intuitionist by introducing a modal
operator in his language, and vice versa for the intuitionist translating classical
arithmetic. The modal logics in question are not uniquely determined and it would
be interesting to characterize exactly the classes of those logics which could be used.

Now, when the intuitionist wants to translate classical mathematics he need
not add anything new to his language, since in his basic language L he already has
at least one modal operator which could serve for the translation; namely, double
negation. Is the same true for the classical mathematician translating intuitionism?
Does he already have in his basic language L a modal operator which would do the
job?
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It is well known that the necessity operator of the propositional logic S4Grz
has an interpretation in PA in terms of G�odel's Bew predicate, where �A means
roughly Bew (pAq)^A (see [2], Chapter 13, and [3]). It is also known that S4Grz
is maximal for PAGrz, in the sense that for every nontheorem A of S4Grz there is
an instance A0 of A obtained by replacing propositional variables by sentences of L
such that A0 is not a theorem of PAGrz (see [10]). However, even if we could embed
HA in PAGrz, this would not yet mean that we have in PA a necessity operator
which we could use for embedding HA, and we leave open the question whether
there is such an operator.

We conjecture that the inclusion of PA4 in PA4N, of PA4N in PAS4, and of
HA5 in HA::, is proper, but we shall not try to prove this here. That the inclusion
of PAS4 in PAGrz is proper follows from the maximality of the propositional logics
S4 and S4Grz with respect to these systems (see [10]) and from the fact that S4 is
properly included in S4Grz.
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