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GENERALIZED RANDOM PROCESSES

ON THE ZEMANIAN SPACE A

Z. Lozanov-Crvenkovi�c and S. Pilipovi�c

Abstract. We give several representation theorems for the generalized random processes
whose sample functions are generalized functions from Zemanian space A0. Using these repre-
sentations we give the characterizations of a sequence of generalized random processes on A that
converges almost surely (A0).

1. Introduction

The generalized random processes (g.r.p.) were studied by several authors
[1,3,4,5,7,8,10,11,12,13] and a variety of di�erent viewpoints have been taken
to de�ne g.r.p.. In this paper we follow the aproach of [1,4,7,10,12,13]. In
[1,3,7,8,12,13] spaces D and KfMpg were taken to be the spaces of test func-
tions and in [1,7,8,12,13] representation theorems for g.r.p. were given. In [7,8]
several types of convergences of g.r.p. were de�ned and investigated, and represen-
tation theorems for expectation and conditional expectation of g.r.p. were given as
well.

For a space of test functions we take the space A, whose elements have or-
thonormal expansions. The space A and its dual space A0 were introduced in [14].
Our construction of the spaces A and A0 is di�erent from [14], and details are given
in [11].

Since elements from A and A0 have orthonormal expansions we are able to
give several representation theorems for g.r.p. on A. In Theorem 3.1 we give the
representation of a g.r.p. as an in�nite series on a set of arbitrary large probability.
In Theorem 3.2 we give the conditions under which this representation is valid on
a set of probability one. In Theorems 3.3, 3.4, 3.5, we use generalized diferential
self-adjoint operator to represent a g.r.p..

In Section 4 we investigate almost sure convergence of g.r.p. on A. In Theo-
rem 4.1 we give the necessary and suÆcient conditions for almost sure convergence
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of a sequence of g.r.p., and in Theorems 4.2, 4.3 and 4.4 we give the characteriza-
tion of such convergence using the representations obtained in Theorems 3.1, 3.4
and 3.5.

Our approach to the notion of almost sure convergence is motivated by the
papers of Kitchens [7,8].

2. Spaces A and A0

We shall use the notation from [14]. Let I be an open interval of the real line
R and L2(I) be the space of the equivalence classes of square integrable functions
with values in the set of complex numbers C with the usual norm. Denote by
C1(I) the set of in�nitely di�erentiable (smooth) functions, byN the set f1; 2; . . .g
and let N0 = N [ f0g. Let R be a linear di�erential self-adjoint operator of the
form R = �0D

n1�1 . . .D
n��� where D = d=dx, nk 2 N0, k = 1; 2; . . . ; �; �k,

k = 0; 1; . . . ; �, are smooth functions without zeros on I . We suppose that there
exists a sequence of real numbers f�n; n 2 N0g, and a sequence of smooth functions
f n; n 2 N0g such that R n = �n n, n 2 N0. Furthermore, suppose that the
sequence fj�nj; n 2 N0g monotonically tends to in�nity and that f n; n 2 N0g
is a complete orthonormal system (o.n.s.). We can enumerate  n and �n so that

j�0j � j�1j � j�2j � . . . . Put e�n = �n if �n 6= 0, and e�n = 1 if �n = 0,

n 2 N0. The sequence fe�n; n 2 N0g is nondecreasing and je�nj ! 1, n!1. Let
Rk+1 = R(Rk), k 2 N0, R

0 = =, = is the identity operator. In [11] the scale of
spaces Ak , k 2 N0 is de�ned in the following way.

Ak =

�
' 2 L2(I) : ' =

1X
m=0

am m; k'kk =

1X
m=0

jamj
2e�2km <1

�
; k 2 N0:

Put

A =

1\
k=0

Ak =

�
' 2 L2(I) : ' =

1X
m=0

am m; 8k 2 N;

1X
m=0

jamj
2e�2km <1

�
:

The set Sr =
�
' =

Ps
m=0(am+ ibm) m : s 2 N0; am; bm 2 Q; m 2 N0

	
, (Q

is the set of rational numbers), is a countable dense set in each Ak, k 2 N0, and
hence in A.

Let A0, (A0k) be the dual space of the space A, (Ak). We have A0 =
S1
k=0A

0
k.

From [14, ch. 9.3. and 9.6.] it follows that (Rk m; ') = ( m;R
k'), n; k 2

N0, ' 2 A, where for ' 2 A, f 2 A
0, (f; ') = hf; 'i.

3. Generalized random processes on 
�A

Let (
;F ; P ) be a probability space and P a complete measure. Throughout
the paper we shall assume that (
;F ; P ) is �xed.



Generalized random processes on the Zemanian space A 203

De�nition 3.1. A generalized random process is a mapping � : 
 � A ! C

such that: (i) 8' 2 A, �( � ; ') is a random variable; (ii) 8! 2 
, �(!; � ) is an
element from A0.

THEOREM 3.1. Let � be a g.r.p. on 
 � A. Then for every " 2 (0; 1) there

exists a non-negative integer k = k("), a set B 2 F with P (B) � 1 � ", and a

sequence fcn; n 2 N0g of random variables, such that

�(!; ') =

1X
n=0

cn(!)( n; '); ! 2 B; ' 2 A

� 1X
n=0

jcn(!)j
2e��2kn

�1=2
< k; ! 2 B:

Proof . The proof is similar to the proof of Lemma 4 and Theorem 1 of [13].
See also [1,12,10]. For every !0 2 
 we have that �(!0; � ) 2 A0. So, there exist
C(!0) and k(!0) such that

j�(!0; ')j � C(!0)k'kk(!0)
; ' 2 A:

Put

BN (') =
�
! 2 
 : j�(!; ')j � Nk'kN ; N 2 N0; ' 2 A

	
;

BN =
\
'2A

BN ('); N 2 N0:

We have that

BN =
\
'2Sr

BN ('); N 2 N0:

Since Sr is a denumerable dense set in A it follows that BN is a measurable set.
Furthermore, BN � BN+1, N 2 N0 and 
 =

S1
N=0BN . Hence, for a given " > 0

there exists k 2 N0 such that P (Bk) � 1 � ". If we put B = Bk we obtain that
j�(!; ')j � kk'kk, ' 2 A, ! 2 B. For ' 2 A, de�ne

(3.1) �1(!; ') =

�
�(!; '); ! 2 B

0; ! =2 B:

Put, for ! 2 
,

R(!) = sup
�
j�1(!; ')j; ' 2 A; k'kk � 1

	
= sup

�
j�1(!; ')j; ' 2 Sr; k'kk � 1

	
:

We have that R( � ) is a measurable function, R( �) � k, and

j�1(!; ')j � R(!)k'kk; ' 2 A; ! 2 B:
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According to the probabilistic Hahn-Banach theorem, [4], �1 can be extended to

Ak. Denote this extension by e�1. It follows that je�1(!; ')j � R(!)k'kk, ' 2 Ak,
! 2 
. A mapping from 
�Ak to 
� l2 de�ned by

i : (!; ')! (!; fe�knang); ' =
1X
n=0

an n 2 A;

is an isometry of the spaces 
�Ak and � = i(
�Ak) � 
� l2. A g.r.p. �2 on �
is de�ned by

�2(!; fe�knang) = e�1(!; '); ! 2 
; ' 2 Ak;

where (!; fe�knang) = i(!; ') and

j�2(!; fe�knang)j � R(!)

� 1X
n=0

janj
2e�2kn �1=2

; ! 2 
:

According to the probabilistic Hahn-Banach theorem �2 can be extended to


� l2. Denote this extension by e�2. We have thate�2(!; fe�knang) = �2(!; fe�knang); (!; fe�knang) 2 �;

je�2(!; fbng)j � R(!)kfbngkl2 ; fbng 2 l
2; ! 2 
:

For every ! 2 
, e�2(!; �) is a continuous linear functional on l2. Therefore, there
exists a sequence fecn(!); n 2 N0g such that

1X
n=0

jecn(!)j2 <1; and e�2(!; fbng) = 1X
n=0

ecn(!)bn; fbng 2 l
2; ! 2 
:

In an obivous way we de�ne, and denote by the same letters,

e�2 : 
� L2(
)! C; e�2(!; ') = e�2(!; fbng); ' =
1P
n=0

bn n; fbng 2 l
2:

Since e�2( � ; ') is a random variable for every ' 2 L2(I), it follows, putting

' =  n, that ecn(!) = e�2(!;  n) are random variables. Moreover, for the dual norm
we have

je�2(!; �)j0L2(I) =

� 1X
n=0

jecn(!)j2�1=2 = R(!); ! 2 
:

We have for ! 2 B, ' 2 A,

�(!; ') = �1(!; ') = e�1(!; ') = �2(!; fe�knang) = e�2(!; fe�knang)
=

1X
n=0

ecn(!)e�knan =

1X
n=0

ecn(!)e�kn( n; '):
De�ne cn(!) = ecn(!)e�kn, n 2 N0 and the assertion follows.
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THEOREM 3.2. Let � be a g.r.p. on 
 � A. Suppose there exist a random

variable r, a set Z 2 F with P (Z) = 0, and a non-negative integer k, such that

j�(!; ')j � r(!)k'kk, for ! 2 
 n Z, ' 2 A. Then there exists a sequence fcn; n 2
N0g of random variables, such that

�(!; ') =
1X
n=0

cn(!)( n; ') ! 2 
 n Z; ' 2 A;

� 1X
n=0

jcn(!)j
2e��2kn

�1=2
< r(!); ! 2 
 n Z:

The proof is similar to the proof of Theorem 3.1, putting 
 n Z instead of B
in (3.1).

We de�ne the di�erential operator eRk , k 2 N0, on the set of g.r.p.'s by

eRk�(!; ') = �(!;Rk'); ! 2 
; ' 2 A;eRk+1 = eR( eRk); k 2 N0; eR0 = =:

We shall denote eR by R.

Next, we shall give representation theorems of a g.r.p. that are analogous to
the Theorem 9.6.2 from [14, Ch. 9.6]. Put � = fn 2 N0 : �n = 0g, �c = N0 n �.

THEOREM 3.3. Let � be a g.r.p. on 
 � A. For every " 2 (0; 1) there exist

B 2 F with P (B) � 1 � ", a non-negative integer k0 = k0("), a g.r.p. �0 on


� L2(I), and random variables cn, n 2 �, such that

�(!; ') = Rk0�0(!; ') +
X
n2�

cn(!)( n; '); ! 2 B; ' 2 A:

Proof . From Theorem 3.1 it follows that there exist B � 
 with P (B) � 1�",
and k0 = k0(") such that

�(!; ') =

1X
n=0

cn(!)( n; '); ! 2 B; ' 2 A;

where cn(!) are random variables with� 1X
n=0

jcn(!)j
2e��2k0n

�1=2
< k0; ! 2 B:

Put

bn(!) =

�
cn(!)=e�k0n ; ! 2 B

0; ! =2 B:
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We have that

�0(!; ') =

1X
n=0

bn(!)( n; ')

is a g.r.p. on 
 � L2(I). Namely �0 is determined by the function X0(!; t) =P1
n=0 bn(!) n(t), on 
� I , where, for �xed ! 2 
, X0 is in L

2(I). We have that,
for ! 2 
, ' 2 A,

Rk0�0(!; ') = �0(!;R
k0') =

1X
n=0

bn(!)�
k0
n ( n; ') =

X
n2�c

cn(!)( n; '):

So,

�(!; ') = Rk0�0(!; ') +
X
n2�

cn(!)( n; '): �

Remark 3.1. From the proof of Theorem 3.3 we can conclude that instead
of k0 and �0 Theorem 3.3 holds for every k � k0 and the corresponding g.r.p. on

� L2(I), �k .

Remark 3.2. The representation of �(!; ') in Theeorem 3.3 means that

�(!; ') =

Z
I

X0(!; t)R
k0'(t) dt +

X
n2�

cn(!)( n; '); ! 2 B; ' 2 A:

In the same way as in Theorems 3.2 and 3.3 we can prove the following

THEOREM 3.4. Let � be a g.r.p. on 
 � A. Suppose there exist a random

variable r such that E(r) < 1, a set Z 2 F such that P (Z) = 0, a non-negative

integer k0 such that j�(!; ')j � r(!)k'kk0 , ! 2 
 n Z, ' 2 A. Then for every

k � k0 there exist a g.r.p. on 
�L2(I), �k(!; '), and random variables cn, n 2 �,
idependent of k, such that

�(!; ') = Rk�k(!; ') +
X
n2�

cn(!)( n; ')

=

Z
I

Xk(!; t)R
k'(t) dt+

X
n2�

cn(!)( n; '); ! 2 
 n Z; ' 2 A;

where Xk is the function on 
� I which determines �k.

Next we shall give a similar representation where Xk is a continuous random
process. By continuous stohastic process on 
� I we shall mean the process which
for almost every ! 2 
 is a continuous function on I . In our next theorem we
shall suppose that sequences f n; n 2 N0g and f�n; n 2 N0g satisfy the following
conditions:

(�) there exist s0 2 N0 and a constant K, such that sup
�
j n(t)=e�snj : n 2 N0;

t 2 I
	
< K,
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(��) there exists p0 2 N0 such that for p � p0,
P

n2�c �
�2p
n <1.

Conditions (�) and (��) are not too restrictive. For example, Hermite, Fourier
and Laguerre complete orthonormal suystems satisfy these conditions. For other
o.n.s. which satisfy these conditions we refer to [14, ch. 9.8] and [2, ch. 10.18].

THEOREM 3.5. Let � be a g.r.p. on 
�A. Suppose that there exist a random

variable r such that E(r) < 1, a set Z 2 F , such that P (Z) = 0, a non-negative

integer k0, such that j�(!; ')j � r(!)k'kk0 , for ! 2 
 n Z, ' 2 A. Then, for

k � k0, there exist a continuous random process Xk(!; t) on 
 � I, and random

variables cn, n 2 �, such that

�(!; ') =

Z
I

Xk(!; t)R
k+p+s'(t) dt +

X
n2�

cn(!)( n; '); 8! 2 
 n Z; ' 2 A;

where s � s0, s0 is from (�), and p � p0, p0 is from (��).

Proof . From Theorem 3.2 it follows that there exists a sequence of random
variables fcn; n 2 N0g such that

�(!; ') =

1X
n=0

cn(!)( n; '); ! 2 
 nZ; ' 2 A;

� 1X
n=0

jcn(!)j
2e��2kn

�1=2
� r(!); ! 2 
 nZ:

Let k � k0. De�ne

Xk(!; t) =
X
n2�c

cn(!)�
�(k+p+s)
n  n(t); ! 2 
; t 2 I:

We have that for every ! 2 
 n Z, t 2 I ,X
n2�c

jcn(!)�
�(k+p+s)
n  n(t)j � K

X
n2�c

j(cn(!)�
�k
n )(��pn )j

� K

� X
n2�c

jcn(!)j
2��2kn

�1=2� X
n2�c

��2pn

�1=2
<1:

It follows that for every ! 2 
 n Z, Xk(!; �) is a continuous function. Since
Xk( � ; t), t 2 I , is measurable it follows that Xk is jointly measurable on 
� I . For
' =

P1
n=0 an n 2 A we have that

1X
n=0

janj
2e�2(k+p+s)n = C <1:

Also, �X
n2�c

jcn(!)j
2��2(k+p+s)n

�1=2
� r(!); ! 2 
:



208 Lozanov-Crvenkovi�c and Pilipovi�c

Hence, Z

nZ

Z
I

jXk(!; t)R
k+p+s'(t)j dtdP (!)

�

Z

nZ

��Z
I

jXk(!; t)j
2 dt

�1=2�Z
I

jRk+p+s'(t)j2 dt

�1=2�
dP (!)

�

Z

nZ

��X
n2�c

jcn(!)j
2��2(k+p+s)n

�1=2�X
n2�c

janj
2�2(k+p+s)n

�1=2�
dP (!)

� C

Z

nZ

jr(!)j dP (!) <1:

It follows from Fubini's theorem that Xk( � ; �)R
k+p+s'( � ) 2 L1((
 n Z)� I)

and, again, from the Fubini theorem that

�k( � ; ') =

Z
I

Xk( � ; t)R
k+p+s'(t) dt

is a random variable for every ' 2 A and hence a g.r.p. It is obvious that for every
! 2 
 n Z and every ' 2 A,

�k(!; ') =
X
n2�c

cn(!)�
�(k+p+s)
n ( n;R

k+p+s') =
X
n2�c

cn(!)( n; '):

So, �nally we have

�(!; ') = �k(!; ') +
X
n2�

cn(!)( n; ')

=

Z
I

Xk(!; t)R
k+p+s'(t) dt +

X
n2�

cn(!)( n; '); ! 2 
 n Z; ' 2 A:

4. Almost sure convergence of a sequence of g.r.p. on A

De�nition 4.1. A sequence f�n; n 2 Ng of g.r.p. on A
0 converges to a g.r.p. �

almost surely (A0) if there exists a set Z 2 F such that P (Z) = 0 and for ! 2 
nZ,
�n(!; � ) converges to �(!; � ) in A

0.

Since �n ! � i� �n � � ! 0 we shall consider the case �n ! 0.

THEOREM 4.1. Let f�n; n 2 Ng be a sequence of g.r.p. on A. The following

conditions are equivalent :

A. The sequence f�ng converges to zero almost surely (A0).

B. (i) For every ' 2 A, �n( � ; ')! 0 almost surely, n!1 ;

(ii) There exist a set Z 2 F such that P (Z) = 0, and for every ! 2 
 n Z,
f�n(!; �); n 2 Ng is bounded in A0.
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C. (i) For every ' 2 A, �n( � ; ')! 0 almost surely, n!1 ;

(ii) For every " 2 (0; 1) there exist a set B 2 F , a non-negative integer k,
both independent of n, such that P (B) � 1 � ", and for every ! 2 B,

' 2 A, j�n(!; ')j � kk'kk.

Proof . The proof is similar to the proof of Theorem 2.2 [7]. We shall prove
A =) C =) B =) A.

A =) C. Assume that �n ! 0 almost surely (A0), then C (i) follows
immediately. We have that for each ! 2 
nZ the sequence �n(!; �) is bounded, and
since A0 =

S1
k=0A

0
k, it follows that there exists a non-negative integer k = k(!),

independent of n, such that j�n(!; ')j � k(!)k'kk(!), ' 2 A. Now, as in Theorem
3.1, put

An(') =
�
! 2 
 : j�n(!; ')j � Nk'kN

	
; ' 2 A; N 2 N;

AN =
\
'2Sr

An('):

We have that AN 2 F , and that 
 n Z �
S1
N=1AN , AN � AN+1, N 2 N.

Thus, we obtain that for a given " 2 (0; 1) there exist k 2 N0 such that P (Ak) �
1� ". Put B = Ak and C (ii) follows.

C =) B. The conditions C (i) and B (i) are the same, and to show that
C (ii) =) B (ii), choose " = 1=p, p 2 N. Then there exist Bp and kp with P (Bp) �
1� 1=p such that for ! 2 Bp, j�n(!; ')j � kpk'kkp , ' 2 A. Let Z = 
 n

S1
p=1Bp.

Then P (Z) = 0 and B (ii) follows.

B =) A. From B (i) it follows that for each ' 2 Sr there exists a set
Z' 2 F such that P (Z') = 0 and for each ! 2 
 n Z', �n(!; ') ! 0. Let
Z 0 = Z [

�S
'2Sr

Z'
�
, (where Z is from B (ii)). Then P (Z 0) = 0. For each ' 2 Sr

and ! 2 
 n Z 0, �n(!; ') ! 0. Since from B (ii) we have that for each ! 2 
 n Z 0

f�n(!; �)g is bounded on A, it follows by the Banach-Steinhaus theorem that for
every ! 2 
 n Z 0, �n(!; �)! 0, that is, �n converges almost surely (A0). �

THEOREM 4.2. Let f�ng be a sequence of g.r.p.'s on A. Then �n ! 0 almost

surely (A0) i� for every " 2 (0; 1) there exist a set A 2 F , with P (A) � 1� ", and
a non-negative integer k0 such that for k > k0 and ! 2 A

(4.1) sup
k'k

k
�1

j�n(!; ')j ! 0; n!1:

Proof . From Theorem 4.1, part C (ii) it follows that for a given " 2 (0; 1)
there exist B 2 F , P (B) � 1 � ", and a non-negative integer k0 such that, for
! 2 B, ' 2 A, n 2 N, j�n(!; ')j � k0k'kk0 . Then, from Theorem 3.1 it follows
that for every n 2 N there exists a sequence of random variables fcm;n : m 2 N0g
such that for every ! 2 B, ' 2 A,

(4.2) �n(!; ') =
1X

m=0

cm;n(!)( m; ');
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and, for every n 2 N,

(4.3)

� 1X
m=0

jcm;n(!)j
2e��2km

�1=2
< C; k � k0; ! 2 
:

Since �n ! 0 almost surely (A0), there exists Z 2 F , P (Z) = 0, such that for
! 2 
 n Z, �n(!; ') ! 0, for every ' 2 A. Put A = B n Z. Then P (A) � 1 � "
since P ( � ) is a complete measure. Putting ' =  m, m 2 N0, in (4.2) we obtain for
! 2 


(4.4) �n(!;  m) = cm;n(!)! 0; n!1; m 2 N0:

Let k > k0 be �xed. We have
�
' =

P1
m=0 am m 2 A

�
j�n(!; ')j =

���� 1X
m=0

cm;n(!)( m; ')

����(4.5)

=

���� 1X
m=0

cm;n(!)je�mj�kje�mjkam���� � � 1X
m=0

jcm;n(!)j
2e��2km

�1=2
k'kk:

Further,

1X
m=0

jcm;n(!)j
2e��2km =

m0X
m=0

jcm;n(!)j
2e��2km + e��2m0+1

�
1X

m=m0+1

jcm;n(!)j
2e��2(k�1)m ;

where m0 is chosen so that for C from (4.3)e��2m0+1
� "2=2C2:

From (4.4) it follows that there exists n0 = n0(") such that

m0X
m=0

jcm;n(!)j
2e��2km < "2=2; n � n0:

Thus, we have that, ! 2 A, ' 2 A, k > k0,

j�n(!; ')j � "k'kk;

so (4.1) follows.

Conversely, C (ii) follows immediately. For each integer p choose " = 1=p.
There exist Ap and kp with P (Ap) � 1� 1=p, such that

sup
k'k

kp
�1

j�n(!; ')j ! 0; ! 2 Ap:

Let Z = 
 n
S1
p=1Ap, then P (Z) = 0 and for ! 2 
 nZ there exists p(!) such that

! 2 Ap(!) and there exists kp(!) such that

sup
k'kkp(!)�1

j�n(!; ')j ! 0
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Thus, for given ' 2 A, and for ! 2 
 n Z

j�n(!; ')j � sup
k'k

kp(!)
�1
j�n(!; ')j k'kkp(!) ! 0:

So C (i) follows.

THEOREM 4.3. Let f�ng be a sequence of g.r.p. on A. Then �n ! 0 almost

surely (A0) i� for every " 2 (0; 1) there exist a set B 2 F with P (B) � 1 � ",
an integer k0 2 N0, (where B and k0 are independent of n ), for each m 2 � a

sequence of random variables fcm;n; n 2 Ng, and for every k > k0 a sequence of

functions Xk;n on 
� I, n 2 N, such that, for n 2 N

�n(!; ') =

Z
I

Xk;n(!; t)R
k'(t) dt+

X
m2�

cm;n(!)( m; '); ! 2 B; ' 2 A;

(4.6)

kXk;n(!; �)kL2 < k; ! 2 
;(4.7)

kXk;n(!; �)kL2 ! 0; n!1; ! 2 
 n Z;(4.8) X
m2�

cm;n( � )! 0; n!1; ! 2 B n Z;(4.9)

where B is the set from De�nition 4.1.

Proof . Assume that �n ! 0 almost surely (A0) and let " 2 (0; 1) be given.
From C (ii) of Theorem 4.1 it follows that there exist a set B 2 F , with P (B) � 1�",
a positive integer k0, both independent of n, such that j�n(!; ')j � k0k'kk0 , ! 2 B,
' 2 A. Then, from Theorem 3.2 it follows that for every n 2 N and for k � k0
there exist a function Xk;n on 
� I , and random variables cm;n, m 2 �, such that
(4.6) and (4.7) hold.

Now, since

kXk;n(!; � )kL2 =

�
supk'k

k
�1 j�n(!; ')j; ! 2 B

0; ! =2 B;

from Theorem 4.2, (4.8) follows. �

As in Theorem 4.2 we obtain that cm;n( �)! 0, ! 2 B nZ, m 2 N0. Since �
is �nite, (4.9) follows. �

Suppose that the conditions (�) and (��) are satis�ed.

THEOREM 4.4. Let f�n; n 2 Ng be a sequence of g.r.p. on A. If �n ! 0 almost

surely (A0), then for every " 2 (0; 1) there exist a set B 2 F , with P (B) � 1 � ",
an integer k0 2 N0, (where B and n are independent of n ), for each m 2 � a

sequence of random variables fcm;n; n 2 Ng, and for every k > k0, a sequence of

continuous random processes Xk;n, on 
� I, such that for n 2 N
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�n(!; ') =

Z
I

Xk;n(!; t)R
k+p+s'(t) dt+

X
m2�

cm;n(!)( m; ');(4.10)

! 2 B; ' 2 A; where s � s0, p � p0;

kXk;n(!; �)kL2 � k; ! 2 
;(4.11)

for each ! 2 
 n Z, Xk;n(!; �)! 0 on I, n!1;(4.12)

fXk;n(!; �)g is equicontinuous on I, ! 2 
 n Z;(4.13)

for each t 2 I, Xk;n( � ; t)! 0 on 
 n Z, n!1;(4.14) X
m2�

cm;n( �)! 0, n!1, ! 2 B n Z,(4.15)

where Z is the set from De�nition 4.1.

Proof . Theorem 3.3 and C (ii) of Theorem 4.1 imply (4.10) and (4.11) where
for n 2 N0 and k � k0

Xk;n(!; t) =

( P1
m=0 cm;n(!)e��(k+p+s)m  m(t); ! 2 B; t 2 I

0; ! =2 B; t 2 I:

Now let t 2 I . For ! =2 B, Xk;n(!; t) = 0 and for ! 2 B n Z,

jXk;n(!; t)j =

���� 1X
m=0

cm;n(!)e��(k+p+s)m  m(t)

����
� K

1X
m=0

jcm;n(!)e��(k+p)m j < "; n � n0(");

in the same way as in Theorem 4.2, since k + p > k0, hence (4.12) follows. (4.15)
follows in the same way as in Theorem 4.3.

To establish (4.13) observe that from the condition (��) it follows that for

p > p0,
P1

m=0
e��2pm = A <1. We can choose l0 such that�

min
m�l0

e�2m��1 < "2=(4AK2k2):

fe�n; n 2 N0g is monotone sequence, hence e�2l0 = minm�l0
e�2m. Since  m(t), m 2

N0, are continuous functions, for every t; t
0 2 I and every " > 0 there exists Æ("; t)

such that
l0�1X
m=0

j m(t)�  m(t
0)j2e��2(s+p)m <

"2

2k2
;

if jt� t0j < Æ("; t). Now we have for t; t0 2 I , jt� t0j < Æ("; t), ! 2 B

jXk;n(!; t)�Xk;n(!; t
0)j �

1X
m=0

jcm;n(!)j je�mj�(k+p+s)j m(t)�  m(t
0)j
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�

� 1X
m=0

jcm;n(!)j
2je�mj�2k�1=2� 1X

m=0

j m(t)�  m(t
0)j2e��2(p+s)m

�1=2

� k

l0�1X
m=0

�
j m(t)�  m(t

0)j2e��2(p+s)m + 2K2
1X

m=l0

e��2pm

�1=2

� k

�
"2

2k2
+

2K2e�2l0
1X

m=l0

e��2(p�1)m

�1=2
� k

�
"2

2k2
+

"2

2k2

�1=2
= ":

So (4.13) follows. Further on, for t0 2 I

jXk;n( � ; t0)j = jXk;n( � ; t0)�Xk;n( � ; t) +Xk;n( � ; t)j

� jXk;n( � ; t0)�Xk;n( � ; t)j+ jXk;n( � ; t)j:

We have from (4.13) that jXk;n( � ; t0) � Xk;n( � ; t)j � "=2 when jt � t0j <
Æ("; t0), and, from (4.12) jXk;n( � ; t)j � "=2, for n � n0("); so (4.14) follows.
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