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DISCRETE APPOXIMATION IN THE INNOVATION THEORY

OF SECOND-ORDER CONTINUOUS PROCESSES

Zoran Ivkovi�c

Abstract. A simple test for the multiplicity of a given process is proposed. The consistency
of a discrete approximation of this test is proved. A statistical approach is also proposed.

Introduction. Let fX(t); 0 � t � 1g be a real second-order continuous
process, EX(t) = 0 and let L2(X ; t) be the linear closure (in the mean square
convergence) of fX(u); u � tg. L2(X) = Cl

�S
t L2(X ; t)

�
is the separable Hilbert

space with the inner product hX;Y i = EXY . Assume that fX(t)g is purely-
-nondeterministic process, i.e.,

T
t L2(X ; t) = 0.

The Cramer representation of fX(t)g, [1], is

X(t) =

NX
k=1

Z t

0

gk(t; u) dYk(u); N � 1; (1)

where: 1. The so-called innovation processes fYk(t); 0 � t � 1g, k =
1; . . . ; N , are mutually orthogonal wide-sense martingales for which L2(X ; t) =

�
PN

k=1 L2(Yk ; t); 2. The measures dF (t) = dkYk(t)k
2; k = 1; . . . ; N , are ordered

by the absolute continuity dF1 � dF2 � � � � � dFN . Let �k be the class of all
measures equivalent (by the absolute continuity) to dFk: The chain

�1 � �2 � � � � � �N (2)

is called the spectral type of fX(t)g and N is the multiplicity of fX(t)g. The
multiplicity function N(t), 0 � t � 1 is the number of Fk(s), 0 � s � 1 having
s = t as the increasing point, N = suptN(t). The representation (1) is not unique,
but the spectral type (2) is uniquely determined by the correlation function 
(s; t) =
EX(s)X(t). It was shown in [1] that for any chain (2) there exists a continuous
process having (2) as its spectral type. We may suppose that fX(t)g is a Gaussian
process, because we are in the frame of the correlation theory.
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Let Pt be the projection operator onto L2(X ; t). Consider the process

fZ1(t); 0 � t � 1g de�ned by Z1(t) = PtX(1) =
PN

k=1

R t
0 gk(1; u)dYk(u). It

is evident that fZ1(t)g is the wide-sense martingale and that L2(Z1; t) reduces
fPs; 0 � s � 1g. Also the measure dG1 generated by G1(t) = kZ1(t)k

2 =PN
k=1

R t
0 g

2(1; u) dFk(u) belongs to the maximal class �1 in (2). Using fZ1(t)g
as one innovation process we rewrite the Cramer representation of fX(t)g by

X(t) =
PN

k=1

R t
0 hk(t; n) dZk(n). Let Qt be the projection operator onto L2(Z1; t).

Consider

Æ(t) = X(t)�QtX(t) =

NX
k=2

Z t

0

hk(t; n)dZk(n) and

d2(t) = kÆ(t)k2 =

NX
k=2

Z t

0

h2k(t; n)dGk(n); Gk(t) = kZk(t)k
2:

Evidently: If d2(t) > 0 for some 0 < t < 1, than N � 2. If d2(t) = 0 for

some 0 < t < 1 then the spectral function N(s) = 1 for 0 � s � t. If N(0) = N
then the condition d2(t) > 0 for all 0 � t � 1, is also necessary for N � 2.

Discrete approximation and its consistency. In this section we �nd one
discrete approximation Æ(t; n) of Æ(t) such that kÆ(t;n) � Æ(t)k2 ! 0, n ! 1 for
each t > 0. In [2, x8], we �nd the motivation for such approximation.

Consider for n = 1; 2; . . . ; the partition of [0; 1] by the points k2�n, k =
1; . . . ; 2n. Let L2(X ; t;n) be the linear closure over fX(j2�n); j2�n � tg. We
conclude that L2(X ; t) = Cl

�S
n L2(X ; t;n)

�
by the separability of L2(X) and

L2(X ; t; 1) � L2(X ; t; 2) � . . . . Denote by Ptn the projection operator onto
L2(X ; t;n) and consider the process fZ1n(t); 0�t�1g de�ned by Z1n(t) = PtnX(1).
Evidently, kZ1n(t)� Z1(t)k

2 ! 0, n!1 for �xed t.

Example. Let �(t), 0 � t � 1, �(1) = 1 be a non-constant continuous function
such that at t = t0, 0 < t0 < 1, �(t0) 6= 1

[�(t0)� �(t0 � h)]2=h!1; h # 0: (3)

Let fX(t); 0 � t � 1g be de�ned by

X(t) =W1(t) + �(t)W2(t); (4)

where fWi(t); 0 � t � 1g, i = 1; 2; are independent standard Wiener processes.

The multiplicity of more general processes of this form was studied in [3].
Consider the projection Z1n(t0) of X(1) onto L2(X ; t0;n), t0 = k02

�n. It is easy
to see that, (h = 2�n)

hX(1)� [aX(t0) + bX(t0 � h)]; X(u)i = 0



198 Ivkovi�c

for all u � t0 � h if

a =
�
1� �(t0 � h)

�
=��0; b =

�
�(t0)� 1

�
=��0; ��0 = �(t0)� �(t0 � h):

Rewrite

Z1n(t0) = aX(t0) + bX(t0 � h) = X(t0) + [1� �(t0)][X(t0)�X(t0 � h)]=��0:

There exists, under the assumption (3), the mean-square limit

[X(t0)�X(t0 � h)]=��0 ! X 0

�(t0); h # 0 and X 0

�(t0) =Wz(t0): (5)

Indeed,

k[X(t0)�X(t0 � h)]=��0 �W2(t0)k
2

= 1=(��0)
2 � kW1(t0)�W1(t0 � h) + �0(t0 � h)[W2(t0)�W2(t0 � h)]k2

= h=(��0)
2 � [1� �2(t0 � h)]! 0; h # 0:

So the innovation process fZ1(t)g at t = t0 is

Z1(t0) = lim
n!1

Z1n(t) = X(t0) + [1� �(t0)]X
0

�(t0) =W1(t0) +W2(t0): (6)

We conclude, from (5) and (6), that W1(t0) and W2(t0) belong to L2(X ; t0). If
we state Z2(t0) =W1(t0)�W2(t0) we have Z2(t0) 2 L2(X ; t0) and Z1(t0)?Z2(t0).
From (4) we obtain

X(t0) = [1 + �(t0)]=2 � Z1(t0) + [1� �(t0)]=2 � Z2(t0): (7)

Finally, we have from Q(t0)X(t0) = [1 + �(t0)]=2 � Z2(t0) that

d2(t0) = kÆ(t0)k
2 = k[1� �(t0)]=2 � Z2(t0)k

2 = [1� �(t0)]
2=2 � t0 > 0:

We conclude that the multiplicity N of fX(t)g is greater than one. Actually (7) is
the Cramer representation of fX(t)g at the point t = t0, but we may not conclude
that fZ1(t)g and fZ2(t)g, Z2(t) = W1(t) �W2(t) are the innovation processes of
fX(t)g. We do not even know whether G1(t) is continuous.

We assume in the rest of the paper that G1(t) = kZ1(t)k
2, 0 � t � 1, is a con-

tinuous function. Under this assumption the satement that pointwise convergence
kZ1n(t)� Z1(t)k ! 0, n!1 becomes uniform, is easily proved.

Let Qtn be the projection operator onto L2(Z1n; t).

PROPOSITION. For �xed t kQtnX(t)�QtX(t)k ! 0, n!1.

Proof. For arbitrary " > 0 there exists a �nite partition f�i : i =
1; . . . ;M(t)g of [0; t], such that kQtX(t)�Q�

t X(t)k < ", where Q�
t is the
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projection operator onto fZ1(�i) : i = 1; . . . ;M(t)g, (� = [�; �], Z(�) =
Z(�) � Z(�)). Denote a = mini kZ1(�i)k > 0, �i = Z1(�i)=kZ1(�i)k, �in =
Z1n(�)=kZ1n(�)k. From Z1n(t) � Z1(t) follows that for each "0 > 0 and all
n � n0("): kZ1(�i)� Z1n(�i)k < "0 or



 kZ1(�i)k�i � kZ1n(�i)k�in


 < "0. So

kZ1n(�i)k = kZ1(�i)k+ �i; j�ij � "0; and

 kZ1(�i)k(�i � �in)� �i�in


 � "0:

Finally, k�i � �ink < 2"0=kZ1(�i)k � 2"0=a for all n � n("0). Since, Q�
t X(t) =PM(t)

i=1 hX(t); �ii�i and QtnX(t) =
PM(t)

i=1 hX(t); �ini�in we have

kQ�
t X(t)�QtX(t)k

�

M(t)X
i=1

h

(hX(t); �ii � hX(t); �ini)�in


+ 

hX(t); �ini(�i � �in)



 i

�

M(t)X
i=1

2kX(t)kk�i � �ink � 4�X(t)(M(t)=a) � "0:

This way kQtX(t)�QtnX(t)k � " + 4kX(t)k(M(t)=a) � "0. For any "0 > 0 we
choose, say, " = "0=2 and we �nd f�ig;M(t); a. Then we have for suÆciently
small "0 = "0("0;M(t); a), that 4kX(t)k(M(t)=a) � "0 � "0=2 for all n � n1("

0).
Finally kQtX(t)�QtnX(t)k � "0 for all n � n2("0).

One statistical approach. Let t, 0 � t � 1, be �xed, say, t = 1=2.

Consider d2 = d2(1=2) and d2n = kX(t)�Q1=2;nX(1=2)k2. Then e2n = d2n � d2 =

kQ1=2;nX(1=2)�Q1=2X(1=2)k2 is the square error of the approximation.

We consider the following admissible family X of the processes fX(t)g: The
multiplicity function satis�es N(0) = N . If the multipliplicity N = 1 (i.e. d2 = 0)
for fX(t)g 2 X then e2n0 < e2n, n

0 > n � n0. If N � 2 (i.e. d2 > 0) then the error
e2n is considerably smaller than d2 i.e. d2n=d

2 � 1 for n � n0.

Starting from one sample X(i)(2�n); X(i)(2 � 2�n); . . . ; X(i)(s); . . . ; X(i)(1),
i = 1; . . . ;m, m > 2n, n � n0, we estimate Z1n(s) as the linear regression of X(1)
on X(2�n); . . . ; X(s) for s = 2�n; . . . ; 1. Let Z�1n(s) be this estimation. Then,
considering Z�in(2

�n); . . . ; Z�in(2
�1), i = 1; . . . ;m, as the sample of fZ1n(t)g we es-

timate Q1=2;nX(1=2) as the linear regression of X(1=2) on Z1n(2
�n); . . . ; Z1n(2

�1).

Let S2n be the estimation of the mean square error d2n of this regression. Then
mS2n=d

2
n has �2-distribution with m� 2n�1 � 1 degrees of freedom.

Let the null hypothesis be H0(N � 2) and the alternative hypothesis be
H1(N = 1). Consider two partitions n(2) and n(1), n(2) > n(1) � n0. In our case
of the admissible family X testing H0(N � 2) against H1(N = 1) becomes testing
H0(dn(2) = dn(1)) against H1(dn(2) < dn(1)). Using two independent samples of the

sizes m(2) > 2n(2) and m(1) > 2n(1), we proceed with the standard Fisher F -test.
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