DISCRETE APPOXIMATION IN THE INNOVATION THEORY OF SECOND-ORDER CONTINUOUS PROCESSES

Zoran Ivković

Abstract

A simple test for the multiplicity of a given process is proposed. The consistency of a discrete approximation of this test is proved. A statistical approach is also proposed.

Introduction. Let $\{X(t), 0 \leq t \leq 1\}$ be a real second-order continuous process, $\mathbf{E} X(t)=0$ and let $\mathcal{L}_{2}(X ; t)$ be the linear closure (in the mean square convergence) of $\{X(u), u \leq t\} . \mathcal{L}_{2}(X)=\mathrm{Cl}\left(\bigcup_{t} \mathcal{L}_{2}(X ; t)\right)$ is the separable Hilbert space with the inner product $\langle X, Y\rangle=\mathbf{E} X Y$. Assume that $\{X(t)\}$ is purely--nondeterministic process, i.e., $\bigcap_{t} \mathcal{L}_{2}(X ; t)=0$.

The Cramer representation of $\{X(t)\},[\mathbf{1}]$, is

$$
\begin{equation*}
X(t)=\sum_{k=1}^{N} \int_{0}^{t} g_{k}(t, u) d Y_{k}(u), N \leq \infty \tag{1}
\end{equation*}
$$

where: 1. The so-called innovation processes $\left\{Y_{k}(t), 0 \leq t \leq 1\right\}, k=$ $1, \ldots, N$, are mutually orthogonal wide-sense martingales for which $\mathcal{L}_{2}(X ; t)=$ $\oplus \sum_{k=1}^{N} \mathcal{L}_{2}\left(Y_{k} ; t\right) ; 2$. The measures $d F(t)=d\left\|Y_{k}(t)\right\|^{2}, k=1, \ldots, N$, are ordered by the absolute continuity $d F_{1} \geq d F_{2} \geq \cdots \geq d F_{N}$. Let ρ_{k} be the class of all measures equivalent (by the absolute continuity) to $d F_{k}$: The chain

$$
\begin{equation*}
\rho_{1} \geq \rho_{2} \geq \cdots \geq \rho_{N} \tag{2}
\end{equation*}
$$

is called the spectral type of $\{X(t)\}$ and N is the multiplicity of $\{X(t)\}$. The multiplicity function $N(t), 0 \leq t \leq 1$ is the number of $F_{k}(s), 0 \leq s \leq 1$ having $s=t$ as the increasing point, $N=\sup _{t} N(t)$. The representation (1) is not unique, but the spectral type (2) is uniquely determined by the correlation function $\gamma(s, t)=$ $\mathbf{E} X(s) X(t)$. It was shown in [1] that for any chain (2) there exists a continuous process having (2) as its spectral type. We may suppose that $\{X(t)\}$ is a Gaussian process, because we are in the frame of the correlation theory.

Let P_{t} be the projection operator onto $\mathcal{L}_{2}(X ; t)$. Consider the process $\left\{Z_{1}(t), 0 \leq t \leq 1\right\}$ defined by $Z_{1}(t)=P_{t} X(1)=\sum_{k=1}^{N} \int_{0}^{t} g_{k}(1, u) d Y_{k}(u)$. It is evident that $\left\{Z_{1}(t)\right\}$ is the wide-sense martingale and that $\mathcal{L}_{2}\left(Z_{1} ; t\right)$ reduces $\left\{P_{s}, 0 \leq s \leq 1\right\}$. Also the measure $d G_{1}$ generated by $G_{1}(t)=\left\|Z_{1}(t)\right\|^{2}=$ $\sum_{k=1}^{N} \int_{0}^{t} g^{2}(1, u) d F_{k}(u)$ belongs to the maximal class ρ_{1} in (2). Using $\left\{Z_{1}(t)\right\}$ as one innovation process we rewrite the Cramer representation of $\{X(t)\}$ by $X(t)=\sum_{k=1}^{N} \int_{0}^{t} h_{k}(t, n) d Z_{k}(n)$. Let Q_{t} be the projection operator onto $\mathcal{L}_{2}\left(Z_{1} ; t\right)$. Consider

$$
\begin{gathered}
\delta(t)=X(t)-Q_{t} X(t)=\sum_{k=2}^{N} \int_{0}^{t} h_{k}(t, n) d Z_{k}(n) \quad \text { and } \\
d^{2}(t)=\|\delta(t)\|^{2}=\sum_{k=2}^{N} \int_{0}^{t} h_{k}^{2}(t, n) d G_{k}(n), \quad G_{k}(t)=\left\|Z_{k}(t)\right\|^{2}
\end{gathered}
$$

Evidently: If $d^{2}(t)>0$ for some $0<t<1$, than $N \geq 2$. If $d^{2}(t)=0$ for some $0<t<1$ then the spectral function $N(s)=1$ for $0 \leq s \leq t$. If $N(0)=N$ then the condition $d^{2}(t)>0$ for all $0 \leq t \leq 1$, is also necessary for $N \geq 2$.

Discrete approximation and its consistency. In this section we find one discrete approximation $\delta(t, n)$ of $\delta(t)$ such that $\|\delta(t ; n)-\delta(t)\|^{2} \rightarrow 0, n \rightarrow \infty$ for each $t>0$. In [2, §8], we find the motivation for such approximation.

Consider for $n=1,2, \ldots$, the partition of $[0,1]$ by the points $k 2^{-n}, k=$ $1, \ldots, 2^{n}$. Let $\mathcal{L}_{2}(X ; t ; n)$ be the linear closure over $\left\{X\left(j 2^{-n}\right), j 2^{-n} \leq t\right\}$. We conclude that $\mathcal{L}_{2}(X ; t)=\mathrm{Cl}\left(\bigcup_{n} \mathcal{L}_{2}(X ; t ; n)\right)$ by the separability of $\mathcal{L}_{2}(X)$ and $\mathcal{L}_{2}(X ; t ; 1) \subset \mathcal{L}_{2}(X ; t ; 2) \subset \ldots$ Denote by $P_{t n}$ the projection operator onto $\mathcal{L}_{2}(X ; t ; n)$ and consider the process $\left\{Z_{1 n}(t), 0 \leq t \leq 1\right\}$ defined by $Z_{1 n}(t)=P_{t n} X(1)$. Evidently, $\left\|Z_{1 n}(t)-Z_{1}(t)\right\|^{2} \rightarrow 0, n \rightarrow \infty$ for fixed t.

Example. Let $\phi(t), 0 \leq t \leq 1, \phi(1)=1$ be a non-constant continuous function such that at $t=t_{0}, 0<t_{0}<1, \phi\left(t_{0}\right) \neq 1$

$$
\begin{equation*}
\left[\phi\left(t_{0}\right)-\phi\left(t_{0}-h\right)\right]^{2} / h \rightarrow \infty, \quad h \downarrow 0 \tag{3}
\end{equation*}
$$

Let $\{X(t), 0 \leq t \leq 1\}$ be defined by

$$
\begin{equation*}
X(t)=W_{1}(t)+\phi(t) W_{2}(t) \tag{4}
\end{equation*}
$$

where $\left\{W_{i}(t), 0 \leq t \leq 1\right\}, i=1,2$, are independent standard Wiener processes.
The multiplicity of more general processes of this form was studied in [3]. Consider the projection $Z_{1 n}\left(t_{0}\right)$ of $X(1)$ onto $\mathcal{L}_{2}\left(X ; t_{0} ; n\right), t_{0}=k_{0} 2^{-n}$. It is easy to see that, $\left(h=2^{-n}\right)$

$$
\left\langle X(1)-\left[a X\left(t_{0}\right)+b X\left(t_{0}-h\right)\right], X(u)\right\rangle=0
$$

for all $u \leq t_{0}-h$ if

$$
a=\left(1-\phi\left(t_{0}-h\right)\right) / \Delta \phi_{0}, \quad b=\left(\phi\left(t_{0}\right)-1\right) / \Delta \phi_{0}, \quad \Delta \phi_{0}=\phi\left(t_{0}\right)-\phi\left(t_{0}-h\right)
$$

Rewrite

$$
Z_{1 n}\left(t_{0}\right)=a X\left(t_{0}\right)+b X\left(t_{0}-h\right)=X\left(t_{0}\right)+\left[1-\phi\left(t_{0}\right)\right]\left[X\left(t_{0}\right)-X\left(t_{0}-h\right)\right] / \Delta \phi_{0}
$$

There exists, under the assumption (3), the mean-square limit

$$
\begin{equation*}
\left[X\left(t_{0}\right)-X\left(t_{0}-h\right)\right] / \Delta \phi_{0} \rightarrow X_{\phi}^{\prime}\left(t_{0}\right), h \downarrow 0 \text { and } X_{\phi}^{\prime}\left(t_{0}\right)=W_{z}\left(t_{0}\right) \tag{5}
\end{equation*}
$$

Indeed,

$$
\begin{aligned}
& \left\|\left[X\left(t_{0}\right)-X\left(t_{0}-h\right)\right] / \Delta \phi_{0}-W_{2}\left(t_{0}\right)\right\|^{2} \\
& \quad=1 /\left(\Delta \phi_{0}\right)^{2} \cdot\left\|W_{1}\left(t_{0}\right)-W_{1}\left(t_{0}-h\right)+\phi_{0}\left(t_{0}-h\right)\left[W_{2}\left(t_{0}\right)-W_{2}\left(t_{0}-h\right)\right]\right\|^{2} \\
& \quad=h /\left(\Delta \phi_{0}\right)^{2} \cdot\left[1-\phi^{2}\left(t_{0}-h\right)\right] \rightarrow 0, \quad h \downarrow 0 .
\end{aligned}
$$

So the innovation process $\left\{Z_{1}(t)\right\}$ at $t=t_{0}$ is

$$
\begin{equation*}
Z_{1}\left(t_{0}\right)=\lim _{n \rightarrow \infty} Z_{1 n}(t)=X\left(t_{0}\right)+\left[1-\phi\left(t_{0}\right)\right] X_{\phi}^{\prime}\left(t_{0}\right)=W_{1}\left(t_{0}\right)+W_{2}\left(t_{0}\right) \tag{6}
\end{equation*}
$$

We conclude, from (5) and (6), that $W_{1}\left(t_{0}\right)$ and $W_{2}\left(t_{0}\right)$ belong to $\mathcal{L}_{2}\left(X ; t_{0}\right)$. If we state $Z_{2}\left(t_{0}\right)=W_{1}\left(t_{0}\right)-W_{2}\left(t_{0}\right)$ we have $Z_{2}\left(t_{0}\right) \in \mathcal{L}_{2}\left(X ; t_{0}\right)$ and $Z_{1}\left(t_{0}\right) \perp Z_{2}\left(t_{0}\right)$. From (4) we obtain

$$
\begin{equation*}
X\left(t_{0}\right)=\left[1+\phi\left(t_{0}\right)\right] / 2 \cdot Z_{1}\left(t_{0}\right)+\left[1-\phi\left(t_{0}\right)\right] / 2 \cdot Z_{2}\left(t_{0}\right) \tag{7}
\end{equation*}
$$

Finally, we have from $Q\left(t_{0}\right) X\left(t_{0}\right)=\left[1+\phi\left(t_{0}\right)\right] / 2 \cdot Z_{2}\left(t_{0}\right)$ that

$$
d^{2}\left(t_{0}\right)=\left\|\delta\left(t_{0}\right)\right\|^{2}=\left\|\left[1-\phi\left(t_{0}\right)\right] / 2 \cdot Z_{2}\left(t_{0}\right)\right\|^{2}=\left[1-\phi\left(t_{0}\right)\right]^{2} / 2 \cdot t_{0}>0
$$

We conclude that the multiplicity N of $\{X(t)\}$ is greater than one. Actually (7) is the Cramer representation of $\{X(t)\}$ at the point $t=t_{0}$, but we may not conclude that $\left\{Z_{1}(t)\right\}$ and $\left\{Z_{2}(t)\right\}, Z_{2}(t)=W_{1}(t)-W_{2}(t)$ are the innovation processes of $\{X(t)\}$. We do not even know whether $G_{1}(t)$ is continuous.

We assume in the rest of the paper that $G_{1}(t)=\left\|Z_{1}(t)\right\|^{2}, 0 \leq t \leq 1$, is a continuous function. Under this assumption the satement that pointwise convergence $\left\|Z_{1 n}(t)-Z_{1}(t)\right\| \rightarrow 0, n \rightarrow \infty$ becomes uniform, is easily proved.

Let $Q_{t n}$ be the projection operator onto $\mathcal{L}_{2}\left(Z_{1 n} ; t\right)$.
Proposition. For fixed $t\left\|Q_{t n} X(t)-Q_{t} X(t)\right\| \rightarrow 0, n \rightarrow \infty$.
Proof. For arbitrary $\varepsilon>0$ there exists a finite partition $\left\{\Delta_{i}: i=\right.$ $1, \ldots, M(t)\}$ of $[0, t]$, such that $\left\|Q_{t} X(t)-Q_{t}^{\Delta} X(t)\right\|<\varepsilon$, where Q_{t}^{Δ} is the
projection operator onto $\left\{Z_{1}\left(\Delta_{i}\right): i=1, \ldots, M(t)\right\},(\Delta=[\alpha, \beta], Z(\Delta)=$ $Z(\alpha)-Z(\beta))$. Denote $a=\min _{i}\left\|Z_{1}\left(\Delta_{i}\right)\right\|>0, \eta_{i}=Z_{1}\left(\Delta_{i}\right) /\left\|Z_{1}\left(\Delta_{i}\right)\right\|, \eta_{\text {in }}=$ $Z_{1 n}(\Delta) /\left\|Z_{1 n}(\Delta)\right\|$. From $Z_{1 n}(t) \rightrightarrows Z_{1}(t)$ follows that for each $\varepsilon^{\prime}>0$ and all $n \geq n^{\prime}(\varepsilon):\left\|Z_{1}\left(\Delta_{i}\right)-Z_{1 n}\left(\Delta_{i}\right)\right\|<\varepsilon^{\prime}$ or $\left\|\left\|Z_{1}\left(\Delta_{i}\right)\right\| \eta_{i}-\right\| Z_{1 n}\left(\Delta_{i}\right)\left\|\eta_{i n}\right\|<\varepsilon^{\prime}$. So

$$
\begin{gathered}
\left\|Z_{1 n}\left(\Delta_{i}\right)\right\|=\left\|Z_{1}\left(\Delta_{i}\right)\right\|+\theta_{i}, \quad\left|\theta_{i}\right| \leq \varepsilon^{\prime}, \quad \text { and } \\
\left\|\left\|Z_{1}\left(\Delta_{i}\right)\right\|\left(\eta_{i}-\eta_{i n}\right)-\theta_{i} \eta_{i n}\right\| \leq \varepsilon^{\prime}
\end{gathered}
$$

Finally, $\left\|\eta_{i}-\eta_{i n}\right\|<2 \varepsilon^{\prime} /\left\|Z_{1}\left(\Delta_{i}\right)\right\| \leq 2 \varepsilon^{\prime} / a$ for all $n \geq n\left(\varepsilon^{\prime}\right)$. Since, $Q_{t}^{\Delta} X(t)=$ $\sum_{i=1}^{M(t)}\left\langle X(t), \eta_{i}\right\rangle \eta_{i}$ and $Q_{t n} X(t)=\sum_{i=1}^{M(t)}\left\langle X(t), \eta_{i n}\right\rangle \eta_{i n}$ we have

$$
\begin{gathered}
\left\|Q_{t}^{\Delta} X(t)-Q_{t} X(t)\right\| \\
\leq \sum_{i=1}^{M(t)}\left[\left\|\left(\left\langle X(t), \eta_{i}\right\rangle-\left\langle X(t), \eta_{i n}\right\rangle\right) \eta_{i n}\right\|+\left\|\left\langle X(t), \eta_{i n}\right\rangle\left(\eta_{i}-\eta_{i n}\right)\right\|\right] \\
\leq \sum_{i=1}^{M(t)} 2\|X(t)\|\left\|\eta_{i}-\eta_{i n}\right\| \leq 4 \eta X(t)(M(t) / a) \cdot \varepsilon^{\prime}
\end{gathered}
$$

This way $\left\|Q_{t} X(t)-Q_{t n} X(t)\right\| \leq \varepsilon+4\|X(t)\|(M(t) / a) \cdot \varepsilon^{\prime}$. For any $\varepsilon_{0}>0$ we choose, say, $\varepsilon=\varepsilon_{0} / 2$ and we find $\left\{\Delta_{i}\right\}, M(t)$, a. Then we have for sufficiently small $\varepsilon^{\prime}=\varepsilon^{\prime}\left(\varepsilon_{0}, M(t), a\right)$, that $4\|X(t)\|(M(t) / a) \cdot \varepsilon^{\prime} \leq \varepsilon_{0} / 2$ for all $n \geq n_{1}\left(\varepsilon^{\prime}\right)$. Finally $\left\|Q_{t} X(t)-Q_{t n} X(t)\right\| \leq \varepsilon_{0}$ for all $n \geq n_{2}\left(\varepsilon_{0}\right)$.

One statistical approach. Let $t, 0 \leq t \leq 1$, be fixed, say, $t=1 / 2$. Consider $d^{2}=d^{2}(1 / 2)$ and $d_{n}^{2}=\left\|X(t)-Q_{1 / 2, n} X(1 / 2)\right\|^{2}$. Then $e_{n}^{2}=d_{n}^{2}-d^{2}=$ $\left\|Q_{1 / 2, n} X(1 / 2)-Q_{1 / 2} X(1 / 2)\right\|^{2}$ is the square error of the approximation.

We consider the following admissible family \mathcal{X} of the processes $\{X(t)\}$: The multiplicity function satisfies $N(0)=N$. If the multipliplicity $N=1$ (i.e. $d^{2}=0$) for $\{X(t)\} \in \mathcal{X}$ then $e_{n^{\prime}}^{2}<e_{n}^{2}, n^{\prime}>n \geq n_{0}$. If $N \geq 2$ (i.e. $d^{2}>0$) then the error e_{n}^{2} is considerably smaller than d^{2} i.e. $\bar{d}_{n}^{2} / d^{2} \approx 1$ for $n \geq n_{0}$.

Starting from one sample $X^{(i)}\left(2^{-n}\right), X^{(i)}\left(2 \cdot 2^{-n}\right), \ldots, X^{(i)}(s), \ldots, X^{(i)}(1)$, $i=1, \ldots, m, m>2^{n}, n \geq n_{0}$, we estimate $Z_{1 n}(s)$ as the linear regression of $X(1)$ on $X\left(2^{-n}\right), \ldots, X(s)$ for $s=2^{-n}, \ldots, 1$. Let $Z_{1 n}^{*}(s)$ be this estimation. Then, considering $Z_{i n}^{*}\left(2^{-n}\right), \ldots, Z_{i n}^{*}\left(2^{-1}\right), i=1, \ldots, m$, as the sample of $\left\{Z_{1 n}(t)\right\}$ we estimate $Q_{1 / 2, n} X(1 / 2)$ as the linear regression of $X(1 / 2)$ on $Z_{1 n}\left(2^{-n}\right), \ldots, Z_{1 n}\left(2^{-1}\right)$. Let S_{n}^{2} be the estimation of the mean square error d_{n}^{2} of this regression. Then $m S_{n}^{2} / d_{n}^{2}$ has χ^{2}-distribution with $m-2^{n-1}-1$ degrees of freedom.

Let the null hypothesis be $H_{0}(N \geq 2)$ and the alternative hypothesis be $H_{1}(N=1)$. Consider two partitions $n(2)$ and $n(1), n(2)>n(1) \geq n_{0}$. In our case of the admissible family \mathcal{X} testing $H_{0}(N \geq 2)$ against $H_{1}(N=1)$ becomes testing $H_{0}\left(d_{n(2)}=d_{n(1)}\right)$ against $H_{1}\left(d_{n(2)}<d_{n(1)}\right)$. Using two independent samples of the sizes $m(2)>2^{n(2)}$ and $m(1)>2^{n(1)}$, we proceed with the standard Fisher F-test.

REFERENCES

[1] H. Cramer, Stochastic processes as curves in Hilbert space, Probab. Th. Appl. 9 (1964), 195204.
[2] H. Cramer, Structural and Statistical Problems for a Class of Stochastic Processes, Princeton University Press, Princeton, New Jersey, 1971.
[3] L. D. Pitt, Hida-Cramer multiplicity theory for multiple Markov processes and Goursat representation, Nagoya Math. J. 57 (1975), 199-228.
Matematički fakultet
11000 Beograd, Jugoslavija \quad (Received 0901 1989)

