DISCRETE APPOXIMATION IN THE INNOVATION THEORY OF SECOND-ORDER CONTINUOUS PROCESSES

Zoran Ivković

Abstract. A simple test for the multiplicity of a given process is proposed. The consistency of a discrete approximation of this test is proved. A statistical approach is also proposed.

Introduction. Let $\{X(t), 0 \leq t \leq 1\}$ be a real second-order continuous process, $\mathbf{E}X(t) = 0$ and let $\mathcal{L}_2(X;t)$ be the linear closure (in the mean square convergence) of $\{X(u), u \leq t\}$. $\mathcal{L}_2(X) = \operatorname{Cl}(\bigcup_t \mathcal{L}_2(X;t))$ is the separable Hilbert space with the inner product $\langle X, Y \rangle = \mathbf{E}XY$. Assume that $\{X(t)\}$ is purely-nondeterministic process, i.e., $\bigcap_t \mathcal{L}_2(X;t) = 0$.

The Cramer representation of $\{X(t)\}, [1], is$

$$X(t) = \sum_{k=1}^{N} \int_{0}^{t} g_{k}(t, u) \, dY_{k}(u), \ N \le \infty,$$
(1)

where: 1. The so-called innovation processes $\{Y_k(t), 0 \leq t \leq 1\}, k = 1, \ldots, N$, are mutually orthogonal wide-sense martingales for which $\mathcal{L}_2(X; t) = \bigoplus \sum_{k=1}^{N} \mathcal{L}_2(Y_k; t)$; 2. The measures $dF(t) = d ||Y_k(t)||^2$, $k = 1, \ldots, N$, are ordered by the absolute continuity $dF_1 \geq dF_2 \geq \cdots \geq dF_N$. Let ρ_k be the class of all measures equivalent (by the absolute continuity) to dF_k : The chain

$$\rho_1 \ge \rho_2 \ge \dots \ge \rho_N \tag{2}$$

is called the spectral type of $\{X(t)\}$ and N is the multiplicity of $\{X(t)\}$. The multiplicity function N(t), $0 \le t \le 1$ is the number of $F_k(s)$, $0 \le s \le 1$ having s = t as the increasing point, $N = \sup_t N(t)$. The representation (1) is not unique, but the spectral type (2) is uniquely determined by the correlation function $\gamma(s, t) =$ $\mathbf{E}X(s)X(t)$. It was shown in [1] that for any chain (2) there exists a continuous process having (2) as its spectral type. We may suppose that $\{X(t)\}$ is a Gaussian process, because we are in the frame of the correlation theory.

AMS Subject Classification (1980): Primary 60 G 12

Let P_t be the projection operator onto $\mathcal{L}_2(X;t)$. Consider the process $\{Z_1(t), 0 \leq t \leq 1\}$ defined by $Z_1(t) = P_t X(1) = \sum_{k=1}^N \int_0^t g_k(1,u) dY_k(u)$. It is evident that $\{Z_1(t)\}$ is the wide-sense martingale and that $\mathcal{L}_2(Z_1;t)$ reduces $\{P_s, 0 \leq s \leq 1\}$. Also the measure dG_1 generated by $G_1(t) = ||Z_1(t)||^2 = \sum_{k=1}^N \int_0^t g^2(1,u) dF_k(u)$ belongs to the maximal class ρ_1 in (2). Using $\{Z_1(t)\}$ as one innovation process we rewrite the Cramer representation of $\{X(t)\}$ by $X(t) = \sum_{k=1}^N \int_0^t h_k(t,n) dZ_k(n)$. Let Q_t be the projection operator onto $\mathcal{L}_2(Z_1;t)$. Consider

$$\delta(t) = X(t) - Q_t X(t) = \sum_{k=2}^N \int_0^t h_k(t, n) dZ_k(n) \text{ and}$$
$$d^2(t) = \|\delta(t)\|^2 = \sum_{k=2}^N \int_0^t h_k^2(t, n) dG_k(n), \quad G_k(t) = \|Z_k(t)\|^2.$$

Evidently: If $d^2(t) > 0$ for some 0 < t < 1, than $N \ge 2$. If $d^2(t) = 0$ for some 0 < t < 1 then the spectral function N(s) = 1 for $0 \le s \le t$. If N(0) = N then the condition $d^2(t) > 0$ for all $0 \le t \le 1$, is also necessary for $N \ge 2$.

Discrete approximation and its consistency. In this section we find one discrete approximation $\delta(t, n)$ of $\delta(t)$ such that $\|\delta(t; n) - \delta(t)\|^2 \to 0$, $n \to \infty$ for each t > 0. In [2, §8], we find the motivation for such approximation.

Consider for n = 1, 2, ..., the partition of [0, 1] by the points $k2^{-n}$, $k = 1, ..., 2^n$. Let $\mathcal{L}_2(X; t; n)$ be the linear closure over $\{X(j2^{-n}), j2^{-n} \leq t\}$. We conclude that $\mathcal{L}_2(X; t; n) = \operatorname{Cl}(\bigcup_n \mathcal{L}_2(X; t; n))$ by the separability of $\mathcal{L}_2(X)$ and $\mathcal{L}_2(X; t; 1) \subset \mathcal{L}_2(X; t; 2) \subset \ldots$. Denote by P_{tn} the projection operator onto $\mathcal{L}_2(X; t; n)$ and consider the process $\{Z_{1n}(t), 0 \leq t \leq 1\}$ defined by $Z_{1n}(t) = P_{tn}X(1)$. Evidently, $\|Z_{1n}(t) - Z_1(t)\|^2 \to 0, n \to \infty$ for fixed t.

Example. Let $\phi(t)$, $0 \le t \le 1$, $\phi(1) = 1$ be a non-constant continuous function such that at $t = t_0$, $0 < t_0 < 1$, $\phi(t_0) \ne 1$

$$[\phi(t_0) - \phi(t_0 - h)]^2 / h \to \infty, \quad h \downarrow 0.$$
(3)

Let $\{X(t), 0 \le t \le 1\}$ be defined by

$$X(t) = W_1(t) + \phi(t)W_2(t),$$
(4)

where $\{W_i(t), 0 \le t \le 1\}, i = 1, 2$, are independent standard Wiener processes.

The multiplicity of more general processes of this form was studied in [3]. Consider the projection $Z_{1n}(t_0)$ of X(1) onto $\mathcal{L}_2(X; t_0; n)$, $t_0 = k_0 2^{-n}$. It is easy to see that, $(h = 2^{-n})$

$$\langle X(1) - [aX(t_0) + bX(t_0 - h)], X(u) \rangle = 0$$

for all $u \leq t_0 - h$ if

$$a = (1 - \phi(t_0 - h)) / \Delta \phi_0, \quad b = (\phi(t_0) - 1) / \Delta \phi_0, \quad \Delta \phi_0 = \phi(t_0) - \phi(t_0 - h).$$

Rewrite

$$Z_{1n}(t_0) = aX(t_0) + bX(t_0 - h) = X(t_0) + [1 - \phi(t_0)][X(t_0) - X(t_0 - h)]/\Delta\phi_0.$$

There exists, under the assumption (3), the mean-square limit

$$[X(t_0) - X(t_0 - h)] / \Delta \phi_0 \to X'_{\phi}(t_0), \ h \downarrow 0 \text{ and } X'_{\phi}(t_0) = W_z(t_0).$$
(5)

Indeed,

$$\begin{split} \| [X(t_0) - X(t_0 - h)] / \Delta \phi_0 - W_2(t_0) \|^2 \\ &= 1 / (\Delta \phi_0)^2 \cdot \| W_1(t_0) - W_1(t_0 - h) + \phi_0(t_0 - h) [W_2(t_0) - W_2(t_0 - h)] \|^2 \\ &= h / (\Delta \phi_0)^2 \cdot [1 - \phi^2(t_0 - h)] \to 0, \quad h \downarrow 0. \end{split}$$

So the innovation process $\{Z_1(t)\}$ at $t = t_0$ is

$$Z_1(t_0) = \lim_{n \to \infty} Z_{1n}(t) = X(t_0) + [1 - \phi(t_0)] X'_{\phi}(t_0) = W_1(t_0) + W_2(t_0).$$
(6)

We conclude, from (5) and (6), that $W_1(t_0)$ and $W_2(t_0)$ belong to $\mathcal{L}_2(X; t_0)$. If we state $Z_2(t_0) = W_1(t_0) - W_2(t_0)$ we have $Z_2(t_0) \in \mathcal{L}_2(X; t_0)$ and $Z_1(t_0) \perp Z_2(t_0)$. From (4) we obtain

$$X(t_0) = [1 + \phi(t_0)]/2 \cdot Z_1(t_0) + [1 - \phi(t_0)]/2 \cdot Z_2(t_0).$$
(7)

Finally, we have from $Q(t_0)X(t_0) = [1 + \phi(t_0)]/2 \cdot Z_2(t_0)$ that

$$d^{2}(t_{0}) = \|\delta(t_{0})\|^{2} = \|[1 - \phi(t_{0})]/2 \cdot Z_{2}(t_{0})\|^{2} = [1 - \phi(t_{0})]^{2}/2 \cdot t_{0} > 0.$$

We conclude that the multiplicity N of $\{X(t)\}$ is greater than one. Actually (7) is the Cramer representation of $\{X(t)\}$ at the point $t = t_0$, but we may not conclude that $\{Z_1(t)\}$ and $\{Z_2(t)\}$, $Z_2(t) = W_1(t) - W_2(t)$ are the innovation processes of $\{X(t)\}$. We do not even know whether $G_1(t)$ is continuous.

We assume in the rest of the paper that $G_1(t) = ||Z_1(t)||^2$, $0 \le t \le 1$, is a continuous function. Under this assumption the satement that pointwise convergence $||Z_{1n}(t) - Z_1(t)|| \to 0$, $n \to \infty$ becomes uniform, is easily proved.

Let Q_{tn} be the projection operator onto $\mathcal{L}_2(Z_{1n}; t)$.

PROPOSITION. For fixed $t ||Q_{tn}X(t) - Q_tX(t)|| \to 0, n \to \infty$.

Proof. For arbitrary $\varepsilon > 0$ there exists a finite partition $\{\Delta_i : i = 1, \ldots, M(t)\}$ of [0, t], such that $\|Q_t X(t) - Q_t^{\Delta} X(t)\| < \varepsilon$, where Q_t^{Δ} is the

198

projection operator onto $\{Z_1(\Delta_i) : i = 1, \ldots, M(t)\}, (\Delta = [\alpha, \beta], Z(\Delta) = Z(\alpha) - Z(\beta)).$ Denote $a = \min_i ||Z_1(\Delta_i)|| > 0, \eta_i = Z_1(\Delta_i)/||Z_1(\Delta_i)||, \eta_{in} = Z_{1n}(\Delta)/||Z_{1n}(\Delta)||.$ From $Z_{1n}(t) \Rightarrow Z_1(t)$ follows that for each $\varepsilon' > 0$ and all $n \ge n'(\varepsilon): ||Z_1(\Delta_i) - Z_{1n}(\Delta_i)|| < \varepsilon'$ or $|||Z_1(\Delta_i)||\eta_i - ||Z_{1n}(\Delta_i)||\eta_{in}|| < \varepsilon'$. So

$$\begin{aligned} \|Z_{1n}(\Delta_i)\| &= \|Z_1(\Delta_i)\| + \theta_i, \quad |\theta_i| \le \varepsilon', \quad \text{and} \\ \|\|Z_1(\Delta_i)\|(\eta_i - \eta_{in}) - \theta_i \eta_{in}\| \le \varepsilon'. \end{aligned}$$

Finally, $\|\eta_i - \eta_{in}\| < 2\varepsilon'/\|Z_1(\Delta_i)\| \leq 2\varepsilon'/a$ for all $n \geq n(\varepsilon')$. Since, $Q_t^{\Delta}X(t) = \sum_{i=1}^{M(t)} \langle X(t), \eta_i \rangle \eta_i$ and $Q_{tn}X(t) = \sum_{i=1}^{M(t)} \langle X(t), \eta_{in} \rangle \eta_{in}$ we have

$$\|Q_t^{\Delta}X(t) - Q_tX(t)\|$$

$$\leq \sum_{i=1}^{M(t)} \left[\|(\langle X(t), \eta_i \rangle - \langle X(t), \eta_{in} \rangle)\eta_{in}\| + \|\langle X(t), \eta_{in} \rangle(\eta_i - \eta_{in})\| \right]$$

$$\leq \sum_{i=1}^{M(t)} 2\|X(t)\| \|\eta_i - \eta_{in}\| \leq 4\eta X(t)(M(t)/a) \cdot \varepsilon'.$$

This way $||Q_tX(t) - Q_{tn}X(t)|| \leq \varepsilon + 4||X(t)||(M(t)/a) \cdot \varepsilon'$. For any $\varepsilon_0 > 0$ we choose, say, $\varepsilon = \varepsilon_0/2$ and we find $\{\Delta_i\}, M(t), a$. Then we have for sufficiently small $\varepsilon' = \varepsilon'(\varepsilon_0, M(t), a)$, that $4||X(t)||(M(t)/a) \cdot \varepsilon' \leq \varepsilon_0/2$ for all $n \geq n_1(\varepsilon')$. Finally $||Q_tX(t) - Q_{tn}X(t)|| \leq \varepsilon_0$ for all $n \geq n_2(\varepsilon_0)$.

One statistical approach. Let $t, 0 \le t \le 1$, be fixed, say, t = 1/2. Consider $d^2 = d^2(1/2)$ and $d_n^2 = ||X(t) - Q_{1/2,n}X(1/2)||^2$. Then $e_n^2 = d_n^2 - d^2 = ||Q_{1/2,n}X(1/2) - Q_{1/2}X(1/2)||^2$ is the square error of the approximation.

We consider the following admissible family \mathcal{X} of the processes $\{X(t)\}$: The multiplicity function satisfies N(0) = N. If the multipliplicity N = 1 (i.e. $d^2 = 0$) for $\{X(t)\} \in \mathcal{X}$ then $e_{n'}^2 < e_n^2$, $n' > n \ge n_0$. If $N \ge 2$ (i.e. $d^2 > 0$) then the error e_n^2 is considerably smaller than d^2 i.e. $d_n^2/d^2 \approx 1$ for $n \ge n_0$.

Starting from one sample $X^{(i)}(2^{-n}), X^{(i)}(2 \cdot 2^{-n}), \ldots, X^{(i)}(s), \ldots, X^{(i)}(1), i = 1, \ldots, m, m > 2^n, n \ge n_0$, we estimate $Z_{1n}(s)$ as the linear regression of X(1) on $X(2^{-n}), \ldots, X(s)$ for $s = 2^{-n}, \ldots, 1$. Let $Z_{1n}^*(s)$ be this estimation. Then, considering $Z_{in}^*(2^{-n}), \ldots, Z_{in}^*(2^{-1}), i = 1, \ldots, m$, as the sample of $\{Z_{1n}(t)\}$ we estimate $Q_{1/2,n}X(1/2)$ as the linear regression of X(1/2) on $Z_{1n}(2^{-n}), \ldots, Z_{1n}(2^{-1})$. Let S_n^2 be the estimation of the mean square error d_n^2 of this regression. Then mS_n^2/d_n^2 has χ^2 -distribution with $m - 2^{n-1} - 1$ degrees of freedom.

Let the null hypothesis be $H_0(N \ge 2)$ and the alternative hypothesis be $H_1(N = 1)$. Consider two partitions n(2) and n(1), $n(2) > n(1) \ge n_0$. In our case of the admissible family \mathcal{X} testing $H_0(N \ge 2)$ against $H_1(N = 1)$ becomes testing $H_0(d_{n(2)} = d_{n(1)})$ against $H_1(d_{n(2)} < d_{n(1)})$. Using two independent samples of the sizes $m(2) > 2^{n(2)}$ and $m(1) > 2^{n(1)}$, we proceed with the standard Fisher F-test.

Ivković

REFERENCES

- H. Cramer, Stochastic processes as curves in Hilbert space, Probab. Th. Appl. 9 (1964), 195– 204.
- [2] H. Cramer, Structural and Statistical Problems for a Class of Stochastic Processes, Princeton University Press, Princeton, New Jersey, 1971.
- [3] L. D. Pitt, Hida-Cramer multiplicity theory for multiple Markov processes and Goursat representation, Nagoya Math. J. 57 (1975), 199–228.

Matematički fakultet 11000 Beograd, Jugoslavija (Received 09 01 1989)

200