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DISCRETE APPOXIMATION IN THE INNOVATION THEORY
OF SECOND-ORDER CONTINUOUS PROCESSES

Zoran Ivkovié

Abstract. A simple test for the multiplicity of a given process is proposed. The consistency
of a discrete approximation of this test is proved. A statistical approach is also proposed.

Introduction. Let {X(t),0 < t < 1} be a real second-order continuous
process, EX(t) = 0 and let £2(X;t) be the linear closure (in the mean square
convergence) of {X (u),u < t}. Ly(X) = Cl(U, £2(X;t)) is the separable Hilbert
space with the inner product (X,Y) = EXY. Assume that {X(¢)} is purely-
-nondeterministic process, i.e., ), L2(X;t) = 0.

The Cramer representation of {X (¢)}, [1], is

N t
X(t) = Z/ ge(t,u) dYi(u), N < oo, (1)
k=1 0

where: 1. The so-called innovation processes {Yi(t),0 < t < 1}, k =
1,..., N, are mutually orthogonal wide-sense martingales for which Ly(X;t) =
O, Lo(Vi;t); 2. The measures dF (t) = d||Y(t)|]%, k= 1,...,N, are ordered
by the absolute continuity dF; > dFs > --- > dFN. Let pg be the class of all
measures equivalent (by the absolute continuity) to dFy: The chain

pL = p2 > 2PN (2)

is called the spectral type of {X(¢)} and N is the multiplicity of {X(¢)}. The
multiplicity function N(t), 0 < t < 1 is the number of Fi(s), 0 < s < 1 having
s =t as the increasing point, N = sup, N(¢). The representation (1) is not unique,
but the spectral type (2) is uniquely determined by the correlation function (s, t) =
EX(s)X(t). It was shown in [1] that for any chain (2) there exists a continuous
process having (2) as its spectral type. We may suppose that {X (¢)} is a Gaussian
process, because we are in the frame of the correlation theory.
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Let P; be the projection operator onto L2(X;t). Consider the process
{Z:(t), 0 <t < 1} defined by Zi(t) = PX(1) = S, fo gr(L,u)dVi(u). It
is evident that {Z1(t)} is the wide-sense martingale and that L£2(Z;;t) reduces
{P;, 0 < s < 1}. Also the measure dG; generated by Gi(t) = [|Z:(t)]|*> =
Zgil f[f g*(1,u) dFy(u) belongs to the maximal class p; in (2). Using {Z;(¢)}
as one innovation process we rewrite the Cramer representation of {X(t)} by
X(t) = Zszl fOt hi(t,n) dZ,(n). Let @+ be the projection operator onto L£2(Z1;t).
Consider

N .t
5(t) = X(1) — QX(H) =Y / hi(t,n)dZ(n) and
k=20
N t
d*(t) = [|6(t)])* = Z/ hi(t,n)dGr(n), Gi(t) = ||Ze(t)]*.
k=2 0

Evidently: If d*(t) > 0 for some 0 < t < 1, than N > 2. If d*(t) = 0 for
some 0 < t < 1 then the spectral function N(s) =1 for 0 < s <t. If N0) =N
then the condition d*(t) > 0 for all 0 < t < 1, is also necessary for N > 2.

Discrete approximation and its consistency. In this section we find one
discrete approximation §(¢,n) of §(t) such that ||§(t;n) — §(¢)||> = 0, n — oo for
each ¢t > 0. In [2, §8], we find the motivation for such approximation.

Consider for n = 1,2,..., the partition of [0,1] by the points k27", k =
1,...,2" Let L£3(X;t;n) be the linear closure over {X(j27"),j27" < t}. We
conclude that £»(X;t) = Cl(U, L£2(X;t;n)) by the separability of £2(X) and
Lo(X5t;1) C Lo(X;¢;2) C ... Denote by Py, the projection operator onto
L2(X;t;n) and consider the process {Z1,(t), 0<t<1} defined by Z1,(t) = P X(1).
Evidently, || Z1,(t) — Z1(t)||> = 0, n — oo for fixed t.

Ezample. Let ¢(t), 0 <t <1, ¢(1) = 1 be a non-constant continuous function
such that at t =t, 0 <o < 1, ¢(to) # 1

[#(t0) = $(to = h)]*/h = 00, h 10, (3)
Let {X(¢), 0 <t <1} be defined by
X(t) = Wi(t) + o) Wa(1), (4)

where {W;(t), 0 <t <1},i=1,2, are independent standard Wiener processes.

The multiplicity of more general processes of this form was studied in [3].
Consider the projection Z1,(tg) of X (1) onto L2(X;to;n), to = ko2~ ™. It is easy
to see that, (h =27")

(X(1) = [aX(to) + bX (to — h)], X (u)) = 0
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for all u < to — h if

a= (1-¢(to—h))/Ado, b= ((to) —1)/A¢o, Ado = ¢(to) — ¢(to — h).
Rewrite

Zyn(to) = aX (to) + bX (to — h) = X (to) + [1 — ¢(t0)][X (o) — X (to — h)]/Ado.
There exists, under the assumption (3), the mean-square limit

[X (o) — X (to — h)]/Ado = X}y(to), h 0 and X'y(to) = Wa(to).  (5)

Indeed,

11X (t0) — X (to — h)]/ Ao — Wa(to)||®
1/ )? - [Wi(to) = Wi(to — h) + ¢o(to — h)[Wa(to) — Wa(to — h)]II?
h/ )2 [1—¢*(to—h)] =0, hlO.

(Ago
(Ago

So the innovation process {Z(t)} at t = tq is
Zi(to) = lim Zin(t) = X (to) + [1 = 6(t0)] X" (t0) = Wi(to) + Wa(to).  (6)

We conclude, from (5) and (6), that Wi (tp) and Wa(to) belong to Lo(X;t). If
we state ZQ(t()) =W (t()) — Wg(to) we have ZQ(t()) S EQ(X; to) and Zl(tO)J_ZQ(tO).
From (4) we obtain

X(to) = [1+ ¢(t0)]/2 - Z1(to) + [1 — B(t0)]/2 - Z2(to)- (7)

Finally, we have from Q(to)X(to) = [1 + ¢(t0)]/2 A (to) that

d*(to) = 118(to)|I* = lI[1 = ¢(t0)]/2 - Za(to)|I* = [1 = ¢(t0)]*/2 - to > 0.

We conclude that the multiplicity N of {X (¢)} is greater than one. Actually (7) is
the Cramer representation of {X (t)} at the point ¢ = t¢, but we may not conclude
that {Z1(¢t)} and {Z(t)}, Z2(t) = Wi(t) — Wa(t) are the innovation processes of
{X(t)}. We do not even know whether G (t) is continuous.

We assume in the rest of the paper that G (t) = [|Z1(¢)]|?,0 < t < 1, is a con-
tinuous function. Under this assumption the satement that pointwise convergence
[|Z1n(t) — Z1(t)|| = 0, n — oo becomes uniform, is easily proved.

Let Q¢ be the projection operator onto L2 (Z1y;t).
PROPOSITION. For fized t ||QuX(t) — Q: X (t)]] = 0, n — oo.

Proof. For arbitrary € > 0 there exists a finite partition {A; : i =

1,...,M(t)} of [0,#], such that ||Q:X(t) — Q2X(t)]] < &, where Q2 is the
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projection operator onto {Z1(4A;) : i = 1,... , M)}, (A = [a,f], Z(A) =
Z(a) — Z(f)). Denote a = min; [[Zy(A)[| > 0, i = Z1(A:)/1Z1(Ad)l; min =
Z1in (D) /|| Z1n(A)||. From Zi,(t) = Zi(t) follows that for each ¢’ > 0 and all
n>n'(e): |Z1(A:) = Zin(A) <& or [ 120 (A = [|Z1n(Ad)|Inin || < €. So

1Z1n (Al = [|1Z0(A))l| +0;,  |0:] <&, and

[N Z2 (A1 = 1in) — Bimin || < €

Finally, ||n; — ninll < 2¢'/1|Z1(Ay)]| < 2¢'/a for all n > n(e"). Since, QA X (t) =
S (X (0), midms and Qun X (1) = 2 (X (8), min)min we have

Q7 X (t) — QX (1)

M(t)
< 3 [IEE@. 1) = O min) |+ X 0 in) i = i)
- M(t)
< 32X s = il < 49X OO (B)/a) <"

This way ||Q:X (t) — Qtn X (t)]] < € + 4||X(#)||(M(t)/a) - €. For any g9 > 0 we
choose, say, € = g9/2 and we find {A;}, M(t),a. Then we have for sufficiently
small €' = €'(g9, M (t),a), that 4]| X (¢)||(M(t)/a) - €' < eo/2 for all n > ny(g).
Finally ||Q: X () — QX (t)]] < o for all n > na(ep).

One statistical approach. Let ¢, 0 < t < 1, be fixed, say, t = 1/2.
Consider &> = d?(1/2) and d2 = ||X(t) — Q1/2,,X(1/2)|]°. Then €2 = d2 — d* =
1Q1/2,n X (1/2) — Q1/2X(1/2)||2 is the square error of the approximation.

We consider the following admissible family X of the processes {X (¢)}: The
multiplicity function satisfies N (0) = N. If the multipliplicity N = 1 (i.e. d*> = 0)
for {X(t)} € X then €2, < €2, n' >n >ng. If N > 2 (i.e. d*> > 0) then the error

e2 is considerably smaller than d? i.e. d2/d? =~ 1 for n > no.

n

Starting from one sample X (277), X (2.2-7) ... X0 (s),..., X0 (1),
i=1,...,m,m>2" n > ng, we estimate Z1,(s) as the linear regression of X (1)
on X(27™),...,X(s) for s = 27",...,1. Let Z;,(s) be this estimation. Then,
considering Z}, (27"),...,Z%,(271), i =1,... ,m, as the sample of {Z1,(t)} we es-
timate @y /2, X (1/2) as the linear regression of X (1/2) on Z1,(27"),... , Z1n(271).
Let S2 be the estimation of the mean square error d2 of this regression. Then
mS2 /d? has y>-distribution with m — 2"~! — 1 degrees of freedom.

Let the null hypothesis be Ho(N > 2) and the alternative hypothesis be
H{(N =1). Consider two partitions n(2) and n(1), n(2) > n(1) > ne. In our case
of the admissible family X testing Ho(N > 2) against H; (N = 1) becomes testing
Ho(dy(2) = dp(1)) against Hi(dy(2) < dp(1))- Using two independent samples of the
sizes m(2) > 2™ and m(1) > 2"V we proceed with the standard Fisher F-test.
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