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ON THE TOPOLOGY OF RIEMANN SPACES

OF QUASI-CONSTANT CURVATURE

Sorin Dragomir and Renata Grimaldi

Abstract. We compute Betti numbers of certain Riemann spaces of q-constant curva-
ture such as conformally 
at hypersurfaces of elliptic-space-forms, subprojective spaces and para-
Sasakian manifolds.

1. Harmonic forms on manifolds of quasi-constant curvature

Let (Mn; gij) be an n�dimensional space and V a unit vector �eld on Mn,
with (local) components vi. Let vi = gijv

j ; if (Mn; gij) is conformally 
at and for
some real valued smooth functions a; b 2 C1(Mn) the curvature of (Mn; gij) is
expressed by:

Rh
kji = afÆhkgji � Æhj gkig(1.1)

+ bf(Æhkvj � Æhj vk)vi + (vkgji � vjgki)v
hg

then (Mn; gij) is said to be a Riemann space of q-constant curvature, cf. [7], [8].
We suppose throughout that b 6= 0, (for b = 0, Mn falls into nothing but a real
space-form). Further contraction of indices in (1.1) gives the Ricci form:

(1.2) Rji = f(n� 1)a+ bggji + b(n� 2)vjvi:

If �i1...ip , �j1...jp are two p-forms on Mn, we put as usual

h�; �i = �(i1 ...ip)�(i1...ip) ;

j�j2 = h�; �i. We proceed by establishing the following:

THEOREM 1. Let (Mn; gij) be a compact orientable Riemann space of q-
constant curvature. The following relation holds :

(1.3)

Z
Mn

�
p[p!f(n� p)a+ bgj�j2+

+(p� 1)!(n� 2p)bji(V )�j2] +rj�i1...ipr
j�i1...ip

	
� 1 = 0
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for each harmonic p-form � on Mn.

Proof. Let (p!)�1�i1...ipdx
i1 ^ . . .^ dxip be a di�erential p-form on Mn. Note

that:

(1.4) vi�
ii2 ...ip = (i(V )�)i2...ip ;

where i(V ) denotes the interior product with V . Taking into account (1.4), (1.2)
one obtains:

(1.5) Rji�
ji2 ...ip�ii2...ip = p!f(n� 1)a+ bgj�j2 + (p� 1)!(n� 2)b ji(V )�j2:

Using Rijks = gihR
h
ksj and (1.1) one derives:

(1.6) Rijkh�
iji3 ...ip�khi3���ip = 2ap! j�j2 + 4b(p� 1)! ji(V )�j2

By (3.2.9) in [6, p. 88], if �� = 0 then

(1.7)

Z
Mn

fpFp(�) +rj�i1...ipr
j�i1 ...ipg � 1 = 0;

where the quadratic from Fp(�) is given by (3.2.10) in [6]. Finally (1.5){(1.6)
furnish:

(1.8) Fp(�) = p!f(n� p)a+ bgj�j2 + (p� 1)!(n� 2p)bji(V )�j2

and (1.7) leads to our (1.3), QED.

Betti numbers of conformally 
at (compact, orientable) Riemann spaces are
known to vanish (cf. Th. 3.9.1. in [6, p. 118]) provided that the Ricci curvature is
positive de�nite. Yet, if Mn is a space of q-constant curvature, by (1.2) one has
Rjiv

jvi = (n� 1)(a+ b), i.e. Rji is degenerate along the distribution generated by
V , provided b = �a. As an application of Theorem 1 we get

THEOREM 2. Let Mn be a compact orientable connected Riemann space of

q-constant curvature, n > 2. If a =const.> 0 and db = V (b)v then Mn has the

homology type of S1 � Sn�1.

Proof. By a result of Wang and Adati, i.e. Th. 2.3. in [8, p. 101], if a =const.
and bj = biv

ivj , bi = rib, then b = �a and V is parallel. Therefore, since a > 0, the
coeÆcients in (1.8) are subject to (n�p)a+b > 0, (n�2p)b � 0 i� n=2 � p < n�1.
If n is even, i.e. n = 2m, we have bp(M

n) = 0 for all m � p < 2m� 1. By Poincar�e
duality one obtains also bp(M

n) = 0, 1 < p � m. A similar argument for n odd
shows that all Betti numbers of Mn vanish except for b1(M

n) = bn�1(M
n). Since

vi is parallel, it is harmonic. Thus b1(M
n) � 1. Let � be any other harmonic l-form

on Mn. By applying the Hodge operator one obtains a harmonic (n� 1)-form ��.
At this point we may use (1.8) to get

(1.9) Fn�1(��) = (n� 1)!(a+ b)j � �j2 � (n� 2)!(n� 2)bji(V ) � �j2
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Since b = �a and �� is harmonic, (1.3) or (1.7) furnishes i(V ) � � = 0, which
by applying once more the Hodge operator gives v ^ � = 0 or � = fv for some
everywhere non-vanishing f 2 C1(Mn). Since � is harmonic it is closed, so that
df ^ v = 0 or df = �v for some � 2 C1(Mn). But � is coclosed, too, such
that (df; �) = (f; Æ�) = 0, by (2.9.3) in [6, p. 74], i.e. df and � are orthogonal.
Thus 0 = (df; �) = �fvol(Mn) yields � = 0; since Mn is connected one obtains
f =const., i.e. b1(M

n) = 1. Consequently, Mn has the same Betti numbers as the
product S1 � Sn�1, QED.

2. Conformally 
at real hypersurfaces

Let Mn+1(k) be a real space-form, i.e. a Riemann space of constant sectional
curvature k. Let Mn be a conformally 
at hypersurface of Mn+1(k). Let h be the
second fundamental form of the given immersion of Mn in Mn+1(k). By a classical
result of J. A. Schouten, h = �0g + �0v 
 v, for some �0, �0 2 C1(Mn) and some
unit tangent vector �eld V = ]v. Here ] means raising of indices with respect to the
induced metric g on Mn. Then, B. Y. Chen and K. Yano, [4], have shown (via the
Gauss equation, e.g. (2.6) in [3, p. 45]) that Mn is a space of q-constant curvature
with a = k + �20, b = �0�0 and unit vector (V ). This allows us to apply Theorem
1 to get

THEOREM 3. Let Mn be a conformally 
at compact orientable real hypersur-

face of the real projective space IRPn+1(k), k > 0. Then Mn is a real homology

sphere, provided �0�0 � 0.

Proof . Let � be a harmonic p-form on Mn. By (1.8) we obtain � = 0 if
(n � p)(k + �20) + �0�0 > 0, and (n � 2p)�0�0 � 0. Under the hypothesis of
Theorem 3, it is suÆcient to impose p � n=2. We �nally use Poincar�e duality to
prove that all Betti numbers of Mn vanish, QED.

3. Subprojective spaces

Cf. T. Adati, [1], if Mn, n � 3, is conformally 
at and the tensor �eld:

(3.1) Lji = �
1

n� 2
Rji +

R

2(n� 1)(n� 2)
gji

is expressed by:

(3.2) Lji = R�gji + �j�i;

where �j = rj�, �i = ri� and � is a function of �, � 6= 0, then Mn is said to be
a subprojective space. Here R denotes the scalar curvature of (Mn; gij) cf. [8, p.
96], Mn follows to be a manifold of q-constant curvature with a = �2, b = �K,
vi = 
�1�i, where 
 = jd�j. Also if � = f(�), for some C2-smooth function f of
one variable, then (3.2) gives K = 
2f 0(�). Using (1.3) we obtain:
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THEOREM 4. Let Mn; n � 3 be a compact orientable subprojective space with

� < 0 and � = f(�) for some C2-smooth decreasing function f : (�1; 0) ! R.

Then Mn is a real homology sphere.

Proof. Using (1.3) for the harmonic p-form � on Mn we note that

2(n� p)�+ 
2f 0(�) < 0; (2p� n)
2f 0(�) � 0;

provided that p � n=2. As in Th. 3, by separately analysing the cases n = odd and
n = even, and by Poincar�e duality one obtains bp(M

n) = 0, for all p, QED.

4. Special para-Sasakian manifolds with vanishing D-concircular tensor

Let (Mn; gij) be a Riemann space, n � 3, and �i a given unit vector �eld
with rj�

i = "(�Æij + �j�
i), �j = gji�

i, " = �1. Then Mn carries a para-contact

metric structure (�ij ; �
i; �j ; gij), �

i
j = rj�

i, [2]. On the other hand, cf. G. Chuman,
[5], one may consider the D-concircular tensor:

Uh
kji = Rh

kji +
R+ 2(n� 1)

(n� 1)(n� 2)
fgkiÆ

h
j � gjiÆ

h
kg�(4.1)

�
R+ n(n� 1)

(n� 1)(n� 2)
fgki�j�

h � gji�k�
h + �k�iÆ

h
j � �j�iÆ

h
kg:

Consequently, if Uh
kji = 0 then the curvature of Mn is expresed by (1.1) with

a =
R+ 2(n� 1)

(n� 1)(n� 2)
, b = �

R+ n(n� 1)

(n� 1)(n� 2)
, vi = �i. Using (1.3) one obtains:

THEOREM 5. Let Mn be a compact orientable special para-Sasakian manifold

with a vanishing D-concircular tensor. Then there exists R0 > 0 such that if

R � R0 then bp(M
n) = 0, 1 < p < n� 1.

Proof. Let � be a harmonic p-form on Mn. By (1.8) if (n � p)(R + 2(n �
1)) � (R + n(n � 1)) > 0; (2p � n)(R + n(n � 1)) � 0 then Fp(�) is positive

de�nite. Suppose R � 0. De�ne fn(R) = n �
R+ n(n� 1)

R+ 2(n� 1)
. Then fn is strictly

increasing, fn(0) = n=2, limR!+1 fn(R) = n � 1. This makes clear the contents
of the assumption on the scalar curvature in Theorem 5. Indeed, as R! +1, i.e.
if R � R0 for some constant R0 > 0, the condition n=2 � p < n � 1 is equivalent
to n=2 � p < fn(R), QED.

Note that Mn in Theorem 5 is not necessarily conformally 
at, but the form
(1.1) is suÆcient for our purpose; by [8, p. 98], the additional condition R =const.
implies Mn is a space of q-constant curvature.

If Mn is a space of q-constant curvature with R = const. 6= 0 and at the
same time an S-manifold (i.e. rmrsR

h
kji = rsrmRkji

h) then b1(M
n) � 1, since

from Theorem 3.3. in [8, p. 102] it follows that vi is parallel, and thus harmonic.
Nevertheless, this situation may not be used in our Theorem 5. Indeed, by a result
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of Wang, [7], a space of q-constant curvature is an S-manifold i� a+ b = 0 (while
any special para-Sasakian manifold with Uh

kji = 0 has a+ b = �1).
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