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THE GEOMETRY OF THE DUAL OF A VECTOR BUNDLE

Radu Miron, Stere Ianu�s and Mihai Anastasiei

The di�erential geometry of the total space of a vector bundle has bene�ted by
many interesting papers since the paper [9] by R. Miron has appeared. That paper
has led to a deep study of some remarkable geometric structures. The main results
from the geometry of the total space of vector bundle as well as some applications
of it to General Relativity were published in a recent monograph (R. Miron, M.
Anastasiei [14]).

Related to this geometry the geometry of the Lagrange spaces Ln = (M;L)
as well as the geometry of the generalized Lagrange spaces Mn = (M; gij(x; y)),
(see [11], [6], [1], [16]) has been extensively developed.

Important applications of the theory of the spacesMn in studying the e�ects
of the gravitational �eld were pointed out by A. K. Aringazin and G. S. Asanov
[4].

Let � = (E; �;M) be a vector bundle and �� = (E�; ��;M) its dual. In this
paper we study the di�erential geometry of the manifold E� generalizing the results
from the geometry of the total space T �M of the cotangent bundle (T �M; ��;M)
of a manifold, [15], [2], or of a Hamilton space, [12], [13].

Our theory is of interest for the Hamiltonian theory of physical �elds.

It is known that the main properties of T �M are analogous to those of the
total space TM of the tangent bundle (TM; �;M). But there exist properties which
are speci�c for T �M . For instance, E. Calabi has remarked that on the total space
of cotangent bundle of a complex projective space there exists a K�ahler metric
whose Ricci tensor identically vanishes.

The paper is organized as follows. In x1 the basic notations as well as the
concept of nonlinear connection on E� are introduced. In xx 2{4 d-tensor �elds
and d-connections on E� are considered. The main properties of the torsion and
curvature of a d-connection are described, too. The equations of structure of a
d-connections are derived in x5. In x6 h-metrics, v-metrics and (h; v)-metrics on

AMS Subject Classi�cation (1980): Primary 53C 05, 53C 99



146 Miron, Ianu�s and Anastasiei

E� are introduced and the d-connections compatible with them are studied. Also,
Hamilton function is introduced and it is shown that it determines a v-metric on
E�. The Legendre transformation as a map E ! E� is studied in x7.

The terminology and notation are those from the monograph [14].

1. The dual vector bundle

Let � = (E; �;M) be a real vector bundle, whose base M is an n-dimensional
manifold, the type �ber F is an m-dimensional real linear space and the projection
� is a di�erentiable map. We shall denote the dual of � by �� = (E�; ��;M). Its
type �ber is F �, the dual of F .

A trivialization of � induces a trivialization of ��. Let U �M be the domain
of a chart of M and e 2 ��1(U) � E. Let us denote by (xi; ya) the coordinates of
e such that (xi); 1 � i � n, are the coordinates of �(e) = x and (ya); 1 � a � m,
are the coordinates of the e in the �ber Ex = ��1(x). If a change of the bundle
chart is performed one obtains (see [14])

(1.1)
xi = xi(x1; � � � ; xn); rank

 @xi@xj

 = n;

ya =Ma
b (x)y

b; rank kM b
a(x)k = m:

Here the Einstein summation convention is used and will always be used in this
paper.

Let us consider u 2 ���1(U) � E� such that ��(u) = x and let (xi; pa) be
the canonical coordinates of u. If the local chart is changed these coordinates are
transformed as follows:

(1.2) xi = xi(x1; . . . ; xn); rank

 @xi@xj

 = n; pa = fM b
a(x)pb;

where the matrix
�fM b

a(x)
�
is the inverse of the matrix

�
M b

a(x)
�
. It follows imme-

diately that locally we have yapa = yapa because � and �� are dual.

Let us denote

(1.3) @i =
@

@xi
; _@a =

@

@pa
:

These vector �elds are transformed as follows:

@i =
@xk

@xi
@k +

@fMa
b (x)

@xk
@xk

@xi
pa _@

b

_@a = fMa
b (x)

_@b:(1.4)

By (1.4) we can de�ne a global vector �eld ep on E� such that in a system of

local coordinates ep = pa _@
a.
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De�nition 1.1. The vector �eld ep on E� is called the Liouville vector �eld .

Let ��T :TE� ! TM be the tangent map to ��. Its kernel, denoted by V E�,
will be thought of as a distribution u! VuE

� on E�, called the vertical distribution
of ��. It is easy to see that ��T ( _@a) = 0 for a = 1; . . . ;m, hence ( _@a) is a local
basis for the vertical distribution. By the Frobenius theorem this distribution is
integrable and its maximal integral submanifolds are exactly the �bers E�

x; x 2M .

De�nition 1.2. A nonlinear connection on E� is a di�erentiable distribution
N� on E� which is supplementary to the vertical distribution V E�, i.e. TuE

� =
N�
u � VuE

� holds for every u 2 E�.

PROPOSITION 1.1. If M is a paracompact manifold then there exist nonlinear
connections on E�.

Proof. One proceeds as in the case of the bundle (see [14]). Since the
submersion �� is di�erentiable we can associate to any vector �eld A 2 X (M)
a unique vector �eld Ah on E� such that for every u 2 E�, Ah

u 2 N�
u and

��T (Ah
u) = Ax; �

�(u) = x. The vector �eld Ah will be called the horizontal lift of
A with respect to the nonlinear connection N . Setting Æi = (@i)

h, i = 1; . . . ; n; it
is obvious that (Æ1; . . . ; Æn) is a local basis for the distribution N� and that there

exists a unique system of functions Nai:�
��1(U) ! R; (1 � i � n; 1 � a � m)

such that

(1.5) Æi = @i +Nai(x; p) _@
a:

The functions (Nai) are called the coeÆcients of the nonlinear connection
N�. Sometimes N� will be called the horizontal distribution on E�.

As in the case of the nonlinear connections on E (see [14]) on can prove:

PROPOSITION 1.2. If a change of bundle charts is performed the following
formulae hold :

Æi =
@xk

@xi
Æk;(1.6)

Nai(x; p) = fM b
a(x)

@xk

@xi
Nbk(x; p) + pb

@fM b
a

@xi
:(1.7)

PROPOSITION 1.3. If for a trivialization of �� on the domain of each local
chart on E� a system of functions (Nai) which are transformed by (1.7) is given,
then there exists an unique nonlinear connection N� on E� whose coeÆcients are
the given functions.

It is clear that (Æi; _@
a) is a local basis for X (E�), which is adapted to the

distribution N� and to the distribution V E�. If we set

(1.8) Æpa = dpa �Nai(x; p) dx
i;

then (dxi; Æpa) is the basis dual to (Æi; _@
a).
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It is easy to see that

(1.9) Æpa = fM b
a(x)Æpb:

Now we shall associate to N� a 2-form � on M which is V E�-valued:

(1.10) �(A;B) = [Ah; Bh]� [A;B]h:

It is V E�-valued because Ah, Bh and [A;B]h are ��-related to A;B and [A;B]
respectively, so that �(A;B) is just the vertical component of [Ah; Bh]. But we
know that N� is integrable i� the vertical component of [Ah; Bh] vanishes.

So we have:

THEOREM 1.1. The horizontal distribution N� is integrable if and only if the
2-form � identically vanishes.

Locally, we have:

(1.11) �(@i; @j) = [Æi; Æj ] = Raij
_@a;

where

(1.12) Raij = ÆiNaj � ÆjNai:

We also notice:

(1.13) [Æi; _@
a] = �( _@aNbi) _@

b; [ _@a; _@b] = 0:

2. ddd-tensor �elds on EEE�

For every vector �eld X on E� we shall denote by XH and XV its projections
on horizontal and vertical distribution, respectively. So we have

(2.1) X = XH +XV ;

where XH
u 2 N�

u and XV
u 2 VuE

� for every u 2 E�.

We shall say that XH is a horizontal vector �eld and XV is a vertical vector
�eld .

If we put

(2.2) XH = X i(x; p)Æi; XV = Xa(x; p) _@
a;

the following rules of transformation hold:

(2.2') X
i
(x; p) =

@xi

@xj
Xj ; Xa = fM b

a(x)Xb:

If ! is an 1-form on E�, we have the decomposition

(2.3) ! = !H + !V ;
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where !H and !V are 1-forms on E� de�ned by

!H(X) = !(XH); !H(XV ) = 0;(2.3')

!V (X) = !(XV ); !V (XH) = 0; 8X 2 X (E�):(2.3")

Locally, we have

(2.4) !H = !i(x; p) dx
i; !V = !a(x; p)Æpa

and following laws of transformation hold:

(2.4') !i(x; p) =
@xj

@xi
!j(x; p); !a(x; p) =Ma

b (x)!
b(x; p):

De�nition 2.1. A tensor �eld t 2 �rs (E
�) with the property

(2.5) t(
1

!; . . . ;
r

!;X
1
; . . . ; X

s

) = t(
1

!H ; . . . ;
r

!V ; X
1

H ; . . . ; X
s

V );

whereX
1
; . . . ; X

s

2 X (E�) and
1

!; . . . ;
n

! 2 X �(E�), we shall call distinguished tensor

�eld or d-tensor �eld , on E�. If we put

ti1...a1...j1...b1...
= t(dxi1 ; . . . ; Æj1 ; . . . ;

_@a1 ; . . . ; Æpb1 ; . . . )

by (1.6) and (1.9), it follows

(2.6) t
i1...a1...
j1...b1... =

@xi1

@xh1
� � �

@xk1

@xj1
� � �Ma1

c1
� � �fMd1

b1
� � � th1���c1���k1���d1���

:

As an example we mention that the functions Raij are the components of a
d-tensor �eld. By (1.11) it follows that this d-tensor �eld vanishes i� the horizontal
distribution N� is integrable.

3. ddd-connections on EEE�

When a nonlinear connection N� on E� is given, special linear connections
on E� can be considered.

De�nition 3.1. The distinguished connection or d-connection on E� is a linear
connection D on E� which preserves the distributions N� and V E� by parallelism.

Setting

(3.1) Dh
X = DXH ; Dv

X = DXV ; 8X 2 X (E�);

gives

(3.1') DX = Dh
X +Dv

X ; 8X 2 X (E�):

Furthermore, Dh determines an algorithm of an h-covariant derivation and Dv

determines an algorithm of a v-covariant derivation (cf. [14]).
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We note the following properties of Dh and Dv, respectively:(
(Dh

XY
H)V = 0; (Dh

XY
V )H = 0;

Dh
XY = (Dh

XY
H)H + (Dh

XY
V )V ; Dh

Xf = XHf;
(3.2) (

(Dv
XY

H)V = 0; (Dv
XY

V )H = 0;

Dv
XY = (Dv

XY
H)H + (Dv

XY
V )V ; Dv

Xf = XV f;
(3.3)

where f is an arbitrary function on E�.

If t 2 T r
s (E

�) is a d-tensor �eld on E� then its h- and v- covariant derivatives
are given by
(3.4)

(Dh
Xt)(

1

!; . . . ; X
s

) = XHt(
1

!; . . . ; X
s

)� t(Dh
X

1

!; . . . ; X
s

)� � � � � t(
1

!; . . . ; Dh
XX

s

);

(Dv
Xt)(

1

!; . . . ; X
s

) = XV t(
1

!; . . . ; X
s

)� t(Dv
X

1

!; . . . ; X
s

)� � � � � t(
1

!; . . . ; Dv
XX

s

);

The torsion � of a d-connection D is completely determined by the following
�ve d-tensor �elds of torsions.
(3.5)

TH(x; y) = [�(XH ; Y H)]H ; T V (X;Y ) = [�(XV ; Y V )]V

R0(X;Y ) = �[�(XH ; Y H)]V ; [�(XV ; Y H)]H ; P 1(X;Y ) = [�(XV ; Y H)]V

The curvature tensor �eld R of a d-connection D satis�es:

(3.6) [R(X;Y )ZH ]V = 0; [R(X;Y )ZV ]H = 0:

Hence it is completely determined by the following six d-tensor �elds of curvature:

R(X;Y )Z = R(XH ; Y H)ZH ; P (X;Y )Z = R(XV ; Y H)ZH ;

S(X;Y )Z = R(XV ; Y V )ZH ;(3.7) eR(X;Y )Z = R(XH ; Y H)ZV ; eP (X;Y )Z = R(XV ; Y H)ZV ;eS(X;Y )Z = R(XV ; Y V )ZV :

Every d-connection has a remarkable form with respect to the adapted basis,
its coeÆcients having simple laws of transformations and giving a new characteri-
sation of it.

THEOREM 3.1. A d-connection D has, with respect to the adapted basis
(Æi; _@

a), the following form:

(3.8)
Di
Æk
Æj = H i

jk(x; p)Æi; DÆk
_@a = � eHa

bk
_@b

D _@cÆi = Cjc
i (x; p)Æj ; D _@c

_@a = � eCac
b (x; p) _@b;

where the coeÆcients H i
jk and eHa

bk have the following laws of transformation

H
i

jk =
@xi

@xh
@xr

@xj
@xs

@xk
Hh
rs +

@xi

@xr
@2xr

@xj@xk
;(3.9)
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eHa
bk =Ma

c
fMd
b

@xj

@xk
eHc
dj +Ma

c

@fM c
b

@xk
(3.9')

and Cjc
i , eCac

b are d-tensor �elds.

Proof . Since the d-connection D preserves by parallelism the distributions
N� and V E�, the formulae (3.8) follow directly from (3.2) and (3.3) by using the

basis (Æi; _@
a). From (3.8) and (1.6), (1.9) one obtains (3.9) and (3.9') as well as

(3.9") C
jc

i =
@xj

@xr
@xs

@xi
M c

aC
ra
s ; eCac

b = fMd
bM

a
eM

c
f
eCef
d ;

which shows that Cjc
i and eCac

b are d-tensor �elds. QED.

THEOREM 3.2. If on the domain of each local chart on E� are given the func-

tions
�
H i
jk(x; p);

eHa
bk(x; p); C

ic
j (x; p);

eCac
b (x; p)

�
which transform by (3.9), (3.9')

and (3.9") when the local chart is changed, then there exists a unique d-connection
D on E� whose local coeÆcients are given functions and which has the properties:

Dh
Æi
f = Æif; Dv

_@a
f = _@af 8f 2 F(E�)

Proof . For each local chart we can write (3.8). Then de�ne the covariant

derivative with respect to X = X iÆi +Xa
_@a by

(3.10) DX = X iDÆi +XaD _@a :

By standard arguments it follows that D is a linear connection, globally de�ned
on E� having as local coeÆcients just the given functions. The uniqueness is
immediate.

THEOREM 3.3. If the base manifold of the bundle �� is paracompact, then
there exist d-connections on E�.

Proof . Let N� be a nonlinear connection on E� having as local coeÆcients
Nai(x; p) and let � be a linear connection onM , having as local coeÆcients �ijk(x).

Then the set of functions
�
�ijk(x);

_@aNbi; 0; 0
�
satis�es the hypothesis of the The-

orem 3.2 QED.

Next we shall give local expressions for the h-and v covariant derivatives of a
d-tensor �eld.

If a d-tensor �eld t is locally given by

(3.11) t = ti���a���j���b���Æi 
 � � � 
 dxj 
 Æpa 
 � � � 
 _@b 
 � � � ;

for X = XH = X iÆi we have

(3.12) Dh
X t = Xkti���a���j���b���jkÆi 
 � � � 
 dxj 
 Æpa 
 � � � 
 _@b 
 � � �

and for X = XV = Xa
_@a we have

(3.13) DV
X t = Xct

i���a���
j���b���j

cÆi 
 � � � 
 dxj 
 Æpa 
 � � � _@b 
 � � � ;
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where we have set

tj���b���
i���a���jk = Ækt

j���b���
i���a��� +Hj

hkt
h���b���
i���a��� + � � �+ eHb

ckt
j���c���
i���a���(3.14)

�Hh
ikt

j���b���
h���a��� � � � � � eHc

akt
i���b���
j���c���

ti���a���j���b���j
c = _@cti���a���j���b��� + Cic

h t
h���a���
j���b��� +

eCac
d ti���d���j���b���(3.15)

� Chc
j ti���a���h���b��� � � � � � eCdc

b ti���a���j���d��� :

For instance, the h- and v-covariant derivatives of a horizontal vector �eld
X = X iÆi are given by

(3.16) X i
jk = ÆkX

i +H i
jkX

j ; X ija = _@aX i + Cia
j X

j

and for a vertical vector �eld eX = Xa
_@a these derivatives are given by:

(3.17) Xajk = ÆkXa � eHb
akXb; Xaj

b = _@bXa � eCcb
a Xc:

Also we have

PROPOSITION 3.1. h- and v-covariant derivatives of the Liouville vector �eldep = pa _@
a are

(3.18) pajk = Dak; paj
b = Æba � eCob

a ;

where

(3.19) Dak = Nak � eHb
akpb

and o means the contraction by pa.

It is obvious that Dak are the local components of a d-tensor �eld. This will
be called the deection tensor �eld of the d-conection D.

4. Curvatures and torsion of a d-connection

The d-tensor �elds of torsion and curvature of a d-connection D on E� given
by (3.5) and (3.7), respectively, have interesting forms in the adapted basis (Æi; _@

a).
Putting:

TH(Æk; Æj) = T i
jkÆi; T v( _@c; _@b) = Sa

bc _@a; Ro(Æi; Æk) = eRajk
_@a

TH( _@b; Æj) = eCib
j Æi; P 1( _@b; Æj) = Paj

b _@a

and taking into account (3.5) and (3.8) one obtains:

PROPOSITION 4.1. In the adapted basis (Æi; _@
a) the d-tensor �elds of torsion

(3.5) have the coeÆcients :

(4.2)
T i
jk = H i

jk �H i
kj ; Sa

bc = �( eCbc
a � eCcb

a );

Paj
b = �( _@cNaj � eHc

aj); eRaij = Raij ; eCib
j = Cib

j :
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PROPOSITION 4.2. The d-connection D is without torsion i� the d-tensor �elds
T i

jk, Sa
bc, Paj

b, Raij , C
ib
j vanish.

Now, putting

R(Æh; Æk)Æj = Rj
i
khÆi; eR(Æh; Æk) _@b = � eRa

b
kh

_@a;

S( _@c; _@b)Æj = Sj
ibcÆi; eS( _@c; _@b) _@a = �eSdabc _@d;(4.3)

P ( _@c; Æk)Æj = Pj
i
k
cÆi; eP ( _@c; Æk) _@b = � ePabkc _@a;

a straightforward calculation leads to:

PROPOSITION 4.3. The d-tensor �elds of curvature (3.7) have in the adapted

basis (Æi; _@
a) the following coeÆcients :(

Rj
i
kh = ÆhH

i
jk � ÆkH

i
jh +Hr

jkH
i
rh �Hr

jhH
i
rk + Cib

j Rbkh;eRa
b
kh = Æh eHb

ak � Æk eHa
bk +

eHc
ak
eHb
ch �

eHc
ah
eHb
ck +

eCa
bcRckh:

(4:4)1 (
P j

i
k
c = _@cH i

jk � ÆkC
ic
j +Hr

jkC
ic
r � Crc

j H i
rk + Cia

j ( _@cNak);eP a
b
k
c = _@c eHb

ak � Æk eCbc
a + eHd

ak
eCbc
d � eCdc

a
eHd
bk + eCbd

a ( _@cNdk):
(4:4)2 (

Sj
abc = _@cCib

j � _@bCic
j + Crb

j Cic
r � Crc

j Cib
r ;eSdabc = _@c eCab

d � _@b eCac
d + eCfb

d
eCac
f � eCfc

d
eCab
f :

(4:4)3

We notice the following more interesting forms of P and eP :
(4.5)

P j
i
k
c = _@cH i

jk � Cj
ic
jk + Cj

iaPak
c

eP a
b
k
c = _@c eHb

ak � eCa
bc
jk + eCa

bdPdk
c:

The Ricci identity

[DX ; DY ]Z = R(X;Y )Z +D[X;Y ]Z; 8X;Y; Z 2 X (E�);

written in the adapted basis, leads to:

PROPOSITION 4.4. If XH = X iÆi is a horizontal vector �eld, then the following
Ricci identities hold :

X i
jkjh �X i

jhjk = XjRj
i
kh � T j

khX
i
jj �RakhX

ija;

X i
jkj

c �X ijcjk = XjP j
i
k
c � Cjc

k X i
jj � Pak

cX ija;(4.6)

X ijbjc �X ijcjb = XjSj
ibc � Sa

bcX ija:

PROPOSITION 4.5. If XV = Xa
_@a is a vertical vector �eld, then the following

Ricci identities hold good:

Xajkjh �Xajhjk = �Xd
eRa

d
kh � T r

khXajr �RdkhXaj
d

Xajkj
b �Xaj

b
jk = �Xd

eP a
d
k
b � Ck

rbXajr � Pdk
bXaj

d(4.7)

Xaj
bjc �Xaj

cjb = �Xd
eSadbc � Sd

bcXaj
d:
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As an application of these propositions, using (3.18) one obtains:

THEOREM 4.1. For any d-connection D the following identities hold good:

Dakjh �Dahjk = � eRa
o
kh � T r

khDar �Rdkh(Æ
d
a �

eCod
a );

Dakj
b + eCa

ob
jk = � eP a

o
k
b � Crb

k Dar � P dk
b(Æda � eCod

a );(4.8)

� eCob
a j

c + eCoc
a j

b = �eSaobc � Sd
bc(Æda �

eCod
a ):

A d-connection for which Ca
ob = 0, Dak = 0 is said to be of Cartan type.

Using Theorem 4.1 one obtains:

PROPOSITION 4.6. A d-connection of Cartan type has the properties :

(4.9) eRa
o
kh +Rakh = 0; eP a

o
k
b + P ak

b = 0; eSaobc + Sa
bc = 0:

5. The equations of structure of a ddd-connection

Let c: (a; b) ! E� be a curve of class C1 on E�. If X 2 X (E�) then its
covariant derivative along c, with respect to the d-connection D is D _cX , which will
be also denoted by DX=dt.

The curve c is given locally by

(5.1) xi = xi(t); pa = pa(t); t 2 (a; b) � R;

where rank kdxi=dtk = 1 and rank kpa(t)k = 1.

The tangent vector c is represented in the adapted basis as

(5.2) _c =
dxi

dt
Æi +

Æpa
dt

_@a;

so that we have

(5.3)
DX

dt
=

dxi

dt
Dh
Æi
X +

Æpa
dt

Dv
_@a
X:

The covariant di�erential of X , with respect to D, is (DX=dt)dt. Hence by (5.3)
one obtains:

PROPOSITION 5.1. The covariant di�erential DX of a vector �eld X on E is
expressed locally in the adapted basis (Æi; _@

a) as follows :

(5.4) DX = (Dh
Æi
X)dxi + (Dv

_@a
X)Æpa:

If X = XH = X iÆi we have

(5.4') DXH = (DX i)Æi
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where

(5.4") DX i = X i
jkdx

k +X ijaÆpa:

If we put

(5.5) !j
i = H i

jkdx
k + Cj

iaÆpa

we obtain

(5.5') DX i = dX i + !ijX
j :

The 1-forms !j
i will be called the h-forms of the d-connection D. In the

same way, for X = XV = Xa
_@a, putting

(5.6) DXV = DXa
_@a;

one obtains from (5.4)

(5.6') DXa = Xajkdx
k +Xaj

bÆpb

and putting

(5.7) e!ab = eHb
akdx

k + eCa
bcÆpc

one obtains

(5.8) DXa = dXa � e!abXb:

The 1-forms e!ab will be called the v-forms of the d-connection D.

The di�erential of a function f 2 F(E�) has the form

(5.9) df = Ækfdx
k + _@afÆpa:

The exterior di�erential of the 1-forms Æpa, according to (1.8) has the follow-
ing form:

(5.10) d(Æpa) = �
1

2
Raijdx

i ^ dxj � ( _@bNai)Æpb ^ dx
i:

Taking into account previous formulae one obtains:

THEOREM 5.1. The equations of structure of a d-connection D on E are

Dxh ^ !h
i = 
i; d(Æpa) + Æpb ^ e!ab = �e
a;(5.11)

d!j
i � !j

h ^ !h
i = �
i

j ; de!ab � e!cb ^ e!ac = �e
a
b ;(5.12)

where the 2-forms of torsion 
i, e
a are given by

(5.13)

i = (1=2)T i

jkdx
j ^ dxk + Cj

iadxj ^ Æpa;e
a = (1=2)Raijdx
i ^ dxj + Pai

bdxi ^ Æpb + (1=2)Sa
bcÆpb ^ Æpc;
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and the 2-forms of curvature 
j
i, e
b

a are given by

(5.14)

i
j = (1=2)Rj

i
hkdx

h ^ dxk + P j
i
h
adxh ^ Æpa + (1=2)Sj

icdÆpc ^ Æpd;e
a
b = (1=2) eRb

a
hkdx

h ^ dxk + eP b
a
h
cdxh ^ Æpc + (1=2)eSbacdÆpc ^ Æpd:

The equations of structure (5.11) and (5.12) allow us to deduce the Bianchi
identities (�fteen in number) which are satis�ed by any d-connection D.

These equations also allow us to obtain geometrical meaning for d-tensor �elds
of torsion and curvature.

6. vvv-and hhh-metrical structures on EEE�

Let us consider a Hamilton function H on the total space E� of the vector
bundle �� i.e. a function

(6.1) H :E� ! R

which is of the class C1 on E� n f0g and continuous on the null section. For the
case when �� is the cotangent bundle we refer to [12], [13].

The function H de�nes a d-tensor �eld of type (2,0), symmetric, whose local
components are given by

(6.2) gab(x; p) = (1=2) _@a _@bH:

It is said that a Hamilton function H is regular if

(6.2') rank kgab(x; p)k = m

on every domain of a local chart on E�.

We shall assume there is given in advance a nonlinear connection N� on E�.

De�nition 6.1. The v-metric on E� is a d-tensor �eld GV of the type (2,0)
with the properties:

1Æ GV is vertical i.e. GV (X;Y ) = GV (XV ; Y V ); 8X;Y 2 X (E�).

2Æ GV is symmetric.

3Æ The rank of GV is equal to dimEx.

If we set

(6.3) gab(x; p) = GV ( _@a; _@b)

it gives the following local form for GV :

(6.4) GV = gab(x; p) Æpa 
 Æpb

and, furthermore

(6.5) gab(x; p) = gba(x; p); rank kgab(x; p)k = m:
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We shall set kgab(x; p)k = kgab(x; p)k�1.

By (6,2) and (6.2') a regular Hamiltonian function H de�nes a v-metric on
E�. Conversely, we have:

PROPOSITION 6.1. A v-metric GV is provided by a regular Hamilton function
i� the d-tensor �eld whose local components are _@agbc(x; p) is totally symmetric.

Proof . A straightforward calculation using (6.2).

De�nition 6.2. A d-connection D on E� is compatible with the v-metric G if

(6.6) DXG
V = 0; 8X 2 X (E�):

We remark that (6.6) can be expressed locally as

(6.6') gabjk = 0; gabjc = 0:

THEOREM 6.1. If
� Æ

H i
jk ;

ÆeHa
bk; 0; 0

�
are the local coeÆcients of a �xed d-

connection on E�, then the d-connection whose local coeÆcients are
� Æ

H i
jk;

eHa
bk; 0;eCa

bc
�
, where

(6.7)
eHa
bk =

ÆeHa
bk � (1=2)gbcg

ac
Æ

jk
;

eCa
bc = �(1=2)gad( _@

bgdc + _@cgbd � _@dgbc)

is compatible with the v-metric G.

Proof . One veri�es (6.6') for the described d-connection, taking into account

(6.8) gacÆ
jk
= Ækg

ak + gdc eHa
dk + gad

ÆeHc
dk:

De�nition 6.3. The h-metric on E� is a d-tensor �eld GH of type (0,2) having
the properties:

1Æ GH is horizontal i.e. GH(X;Y ) = GH(XH ; Y H); 8X;Y 2 X (E�),

2Æ GH is symmetric.

3Æ The rank of GH is equal to n in every point of E�.

Locally we have

(6.9) GH = gij(x; p) dx
i 
 dxj ;

where we have set

(6.10) gij(x; p) = GH (Æi; Æj):
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De�nition 6.4. A d-connection D on E� is compatible with GH if it satis�es

(6.11) DXG
H = 0; 8X 2 X (E�):

Locally, (6.11) can be written as follows:

(6.12) gijjk = 0; gij j
a = 0:

THEOREM 6.2. The d-connection whose local coeÆcients are
�
H i
jk ;

_@bNak;

Cj
ia; 0

�
, where

(6.13)

(
H i
jk = (1=2)gih(Ækgjh + Æjgkh � Æhgjk)

Cj
ic = (1=2)gih _@cghj

is compatible with the h-metric GH .

Proof . One veri�es (6.12) by a straightforward calculation.

PROPOSITION 6.2. If GH is an h-metric and GV is a v-metric on E� then the
tensor �eld G of the type (0,2) de�ned by

(6.14) G = GH +GV :

is a pseudo-Riemannian metric on E� with respect to which the distributions N�

and V E� are orthogonal.

Proof . G is symmetric because GH and GV are symmetric. Locally G is
given by a matrix

(6.15)

 gij(x; p) 0
0 gab(x; p)


which is nondegenerate because GH and GV are so. The signature of G is constant.
So G is a pseudo-Riemannian metric on E�. By (6.14) the distributions N� and
V E� are orthogonal with respect to it. QED.

De�nition 6.5. A pseudo-Riemannian metric G given by (6.14) will be called
an (h; v)-metric on E�.

Remark 6.1. If G is a positive de�nite metric on E�, then the metric induced
by it on V E� is positive de�nite, too. LetN� be the distribution which is orthogonal
to V E� with respect to G. Then G restricted to V E� and N� gives a v-metric GV

and h-metric GH , respectively, such that (6.14) holds good.

If G is a pseudo-Riemannian metric and the induced metric GV on V E� is
pseudo-Riemannian, then N� can still be de�ned so that GH is pseudo-Riemannian
and satis�es (6.14). Using the adapted basis (Æi; _@

a) an (h; v)-metric G can be
written as follows:

(6.16) G = gij dx
i 
 dxj + gab Æpa 
 Æpb:
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De�nition 6.6. A d-connectionD is said to be compatible with an (h; v)-metric
G if we have

(6.17) DXG = 0; 8X 2 X (E�):

The condition (6.17), by virtue of (6.16), is equivalent to:

(6.18) gijjk = 0; gij j
c = 0; gabjk = 0; gabjc = 0:

THEOREM 6.3. If
Æ

D given locally by
� Æ

Hi
jk ;

ÆeHa
bk;

Æ

Cj
ic;

ÆeCa
bc
�
is a �xed d-

connection on E, then the d-connection D with the coeÆcients

(6.19)
H i
jk = (1=2)gih(Ækgjh + Æjghk � Æhgjk); eHa

bk =
ÆeHa
bk � (1=2)gbcg

ca
Æ

jk
;

Cj
ic = (1=2)gih _@cghj ; eCa

bc = �(1=2)gad( _@
bgdc + _@cgbd � _@dgbc)

is compatible with the (h; v)-metric G.

7. Legendre morphisms

Let us consider again the vector bundle � = (E; �;M). A Lagrangian on E is
a map L:E ! R which is di�erentiable on E n f0g and continuous on null section.
L is called a regular Lagrangian if with respect to any system of local coordinates
(xi; ya) on E, the d-tensor �eld h de�ned by

(7.1) hab(x; y) =
@2L

@ya@yb
; where L = (1=2)L;

is nondegenerate on E n 0.

The vertical derivative of L, denoted by dV L, is

(7.2) (dvL)e = d(LjE�(e)
)je; 8e 2 E:

Considering the dual vector bundle �� let us remark that V E� can be iden-
ti�ed with the bundle (E �M E�; �1; E), where

(7.3) E �M E� = f(e; u) 2 E �E�; �(e) = ��(u)g

and �1:E �M E� ! E is a projection.

It is obvious that (dV L)e belongs to E �M E�.

Following Liberman and Marle, [7], we set:

De�nition 7.1. Let � = (E; �;M) be a vector bundle endowed with a La-
grangian L. The Legendre morphism associated to L is a morphism �:E ! E�

de�ned by

(7.4) � = �2 Æ dvL;
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where �2:E �M E� ! E� is a projection.

Locally, we obtain

dvL =
@L

@ya
dya;(7.5)

�(x; y) =

�
xi; pa =

@L

@ya

�
:(7.6)

PROPOSITION 7.1. If L is a regular Lagrangian, then the Legendre morphism
associated to it is a local di�eomorphism �:E n f0g ! E� n f0g.

Proof . The Jacobi matrix of � in every point of E nf0g is
 Æij 0

� hab(x;y)

 which
is nonsingular, because L is regular. QED.

When the Legendre morphism � is a global di�eomorphism it is called Le-
gendre transformation. In such case L is called hyperregular Lagrangian.

PROPOSITION 7.2. Let L be a hyperregular Lagrangian on E and Z the Liou-
ville �eld on E. Then the map H = 2H where

(7.7) H =
�
i(Z)dL � L

�
Æ��1

is a Hamilton function on E�.

Proof . See [7].

Locally, the map eL = i(Z)dL� L is written

(7.8) eL = ya
@L

@ya
�L(x; y):

Next we have

dv eL = yadv

�
@L

@ya

�
(7.9)

dvH = yadpa;(7.10)

from which one obtains

(7.11) ya =
@H

@pa
:

Therefore ��1 is locally as follows

(7.12) ��1: (xi; pa)!

�
xi; ya =

@H

@pa

�
:

If we assume that L is only regular, the Legendre morphism can be inversed
only locally and by (7.7) and (7.8) we can write

(7.13) H(x; p) = pay
a �L(x; y);
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where ya = ya(x; p), for a = 1; . . . ;m.

From the above considerations we get

PROPOSITION 7.3. Let L be a regular Lagrangian on E n f0g and U an open
subset of E n f0g on which the Legendre morphism is a di�eomorphism. Then on
V = �(U) � E� n f0g a regular Hamilton function H is obtained and � carries the
v-metric tensor de�ned by L on U to the v-metric tensor de�ned by H on V .

PROPOSITION 7.4. The Legendre transformation associated to a hyperregular
Lagrangian L applies the v-metric h de�ned by L on E to the v-metric g de�ned
by the Hamilton function H induced on E�.

PROPOSITION 7.5. If L is a regular Lagrangian, then locally we have

(7.14)
@H

@xi
= �

@L

@xi
:

Now we are interested in the e�ects of � on a nonlinear connection.

THEOREM 7.1. If L is a hyperregular Lagrangian, then the Legendre transfor-
mation � associated to it carries a nonlinear connection N on E to a nonlinear
connection N� on E�. If Na

i are the local coeÆcients of N and Nai are the local
coeÆcients of N� on E�, then we have

(7.15) Nai(x; p) = �(N b
i +

_@b@iH)hba;

where H is the Hamilton function induced on E� and hab are the coeÆcients of the
v-metric induced by L on E.

Proof . Taking into account (7.6) one can see that the di�erential d� acts on
the canonical basis as follows

d�(@i) = @i +
@2L

@ya@xi
_@a = @i � ( _@b@iH)hbc _@

c(7.16)

d�( _@a) = hab _@
b;(7.17)

so that on (Æi) i = 1; . . . ; n, d� acts as

(7.18) d�(Æi) = d�(@i �Na
i
_@a) = @i � (N b

i +
_@b@iH)hba _@

a:

Therefore the distribution N is mapped by � to the distribution N� and (7.15)
holds good. QED.

PROPOSITION 7.6. Let L be a hyperregular Lagrangian and � the Legendre
transformation associated to it. If Ra

ij and Raij are the integrability tensors of the
nonlinear connection N and N�, respectively, then

(7.19) Raij Æ�
�1 = habR

b
ij ; holds good :
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Proof . We have [Æi; Æj ] = Ra
ij
_@a, ( _@a = @=@ya). Since � is a di�eomorphism,

[d�(Æi); d�(Æj)] = Ra
ijd�( _@a) = Ra

ijhab _@
b. On the other hand [d�(Æi); d�(Æj)] =

(Raij
_@a) Æ ��1. QED.

COROLLARY 7.6. The distribution N is integrable if and only if the induced
distribution N� is integrable.
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