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A CHARACTERIZATION OF FORMALLY SYMMETRIC

UNBOUNDED OPERATORS

Danko Joci�c

Abstract. We give necessary and suÆcient conditions for an operator in a Hilbert space
to be formally symmetric, symmetric or self-adjoint. This generalizes the well-known fact that
a bounded operator T is self-adjoint if and only if T �

T � (ReT )2. The proof is based on a
well-behaved extension of the corresponding symmetric operator.

0. Introduction

Fong and Istratescu [1] and also Kittaneh [2] have proved the following:

THEOREM A. A bounded operator T is self-adjoint if and only if T �T �
(ReT )2.

They used Theorem A to investigate some classes of bounded operators |
�;WN and hyponormal operators. A large number of well-known and important
operators, for example x+i d=dx, belongs to similar classes of unbounded operators.
The aim of this note is to extend Theorem A to unbounded operators and to make
it suitable for dealing with such situations. Our main result is Theorem 1 in which
we present characterizations for an operator to be formaly symmetric, symmetric
or self-adjoint (Theorems 2; 3).

1. Preliminaries

Suppose that (H; h � j � i) is a separable, complex, in�nite dimensional Hilbert
space and let (H�H; h � j � i) denote the usual product space. Thoughout this paper
we assume that all operators are linear. Let D(A) denote the domain of an operator
A. The operators (A+A�)=2 and (A+A�)=2i (with �(A) = D(A)\D(A�)) as their
domains) will be denoted by ReA and ImA respectively. If A is a restriction of B
on D(A), we will write A � B. Whenever �(A) is dense in H , we will denote the
domains of (ReA)� and (ImA)� by D(ReA)� and D(ImA)� respectively. We recall
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that a densely de�ned operator A is said to be symmetric i� hAxjyi = hxjAyi for
all x; y 2 D(A), i.e. if A � A�. It is said to be formally symmetric i� A�x = Ax for
all x 2 �(A) i.e. i� ImA � 0. Note that ReA and ImA are symmetric whenever
�(A) is dense in H .

2. The construction

LEMMA 1. For a closed, symmetric operator A in H we de�ne the operator

A~ by A~(x; y) = (A~x;A~y). If the domain of A~ is given by D(A~) = f(x; y) 2
D(A�)�D(A�):x� y 2 D(A)g then A~ is one self-adjoint extension of A� (�A).

Proof. For all (x; y) and (f; g) in D(A~) we have that

hA~(x; y)j(f; g)i = hA�xjfi � hA�yjgi = hA�(x� y)jfi+ hA�yj(f � g)i:

Since x� y and f � g are in D(A), it follows that

hA�(x� y)jfi+ hA�yj(f � g)i = hA(x � y)jfi+ hyjA(f � g)i

= h(x; y)jA~(f; g)i :

So A~ is symmetric.

Suppose that limn!1(xn; yn) = (x; y) and limn!1(A�xn;�A
�yn) = (u; v)

for some (xn; yn) 2 D(A~) and some x; y; u; v 2 H . This implies that limn!1(xn�
yn) = x � y and limn!1A(xn � yn) = limn!1 A�(xn � yn) = u + v. Since
A� and A are closed and xn � yn 2 D(A), it follows that x � y 2 D(A) and
x; y 2 D(A�). Moreover, A�x = u and A�y = �v. Therefore (x; y) 2 D(A~) and
also A~(x; y) = (A�x�A�y) = (u; v) is closed.

Finally, suppose that (x; y) 2 R(A~+ iI)?. Then it follows that hxj(A� +
iI)fi = hyj(A� � iI)gi for all (f; g) 2 D(A~) and, in particular hxj(A� + iI)fi = 0
for all f 2 D(A). Therefore x 2 (A��) = D(A) and, moreover, x 2 Ker(A � iI).
It now follows that 2kxk2 = h(A + iI)xjxi = hxj(A � iI)xi = 0, and hence x = 0.
Analogously, we can prove that y = 0 and thus R(A~+ iI)? = f0g. The equality
R(A� � iI)? = f0g follows similarly, and hence A~ is self-adjoint.

Remark 1. An alternative proof of Lemma 1 can be obtained by using von
Neumann's formulae for self-adjoint extensions of A � (�A). The corresponding
partial isometry V is given by

V (x; y) = �(y; x); for all(x; y) 2 Cl
�
R
�
A� (�A) + iI

��
;

V (x; y) = 0; for all(x; y) 2 Ker
�
A� � (�A�)� iI

�
:

LEMMA 2. Let A and B be closed symmetric operators and assume that

D(A) � D(B) and D(A�) � D(B�). Then there exist selfadjoint extensions A~
and B~ of A� (�A) and B � (�B) respectively, such that D(A~) � D(B~).

Proof. It is suÆcient to take the extension constructed in Lemma 1. Then
the required inclusion can be shown by a straightforward computation.
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3. Main results

THEOREM 1. Let A and B be symmetric operators and assume that D(A) �
D(B), D(A�) � D(B�) and also

k(A� � iB�)xk � kA�xk (a)

for all x 2 D(A�). Then B � 0.

Proof. Without loss of generality we may assume that A and B are closed. To
see this, note that (a) implies kBxk � 2kAxk for all x 2 D(A) and hence D(A�) �
D(B�). Because of A�� = A� and B�� = B� it follows that D(A��) � D(B��)
and k(A���iB��)xk � kA��xk for all x 2 D(A��). So, according to Lemma 2, let
A~and B~be the corresponding self-adjoint extensions of A� (�A) and B� (�B),
respectively. A simple calculation gives

k(A~� iB~)(x; y)k� � kA~(x; y)k� (a0)

for all (x; y) 2 D(A~). Let E be the spectral measure induced by A~and let  � Æ �
R, for some measurable bounded set  and Æ. We de�ne A(Æ) = E(Æ)A~E(Æ) and
B(Æ) = E(Æ)B~E(Æ). Since E(Æ)h 2 D(A~), it follows by Lemma 2 that E(Æ)h 2
D(B~), for an arbitrary h 2 H �H . Hence D

�
B(Æ)

�
= H �H . Obviously B(Æ) is

symmetric and therefore self-adjoint. Then there exists a sequence fhngn2N of unit
vectors in H �H such that limn!1

�
B(Æ) � �

�
hn = 0 for some � 2 R satisfying

j�j = kB(Æ)k. It follows from (a0) that

kB(Æ)hnk � �2Re ihA(Æ)hnj
�
B(Æ) � �

�
hni : (a")

Letting n ! 1 we get kB(Æ)k2 � 0, and consequently E(Æ)B~E(Æ) = 0. Since
 � Æ we conclude that E(Æ)B~E() = 0. If

S
fn:n 2 Ng =

S
fÆn:n 2

Ng = R for some increasing sequences fngn2N and fÆngn2N, it follows that
B~E() = s-limn!1 E(Æn)B~E() = 0 because s-limE(Æn) = I . Moreover,
s-limn!1E(n) = I implies B~= s-limn!1B~E(n) = 0, since B~ is closed. Con-
sequently, B � 0 as required.

Remark 2. If, in addition, A is (essentially) self-adjoint, then the assumption
D(A�) � D(B�) can be omitted and the proof of Theorem 1 simpli�ed. Also, the
use of lemmas becomes unnecessary.

As a consequence of Theorem 1, we give the following characterization.

THEOREM 2. If �(T ) is dense in H, then T is formally symmetric if and only

if: (1) D(ReT )� � D(Im T )�, (2) k(ReT )�x � i(ImT )�xk � k(ReT )�xk for

all x 2 D(ReT )�.

Proof . If (1) and (2) are true, then ImT � 0 by Theorem 1, and hence T is
formally self-adjoint. The necessity of (1) is obvious.

LEMMA 3. If D(T ) � D(T )� for an operator T , then the following are equiv-

alent :
(1) D(ReT )� � D(Im T )�; (10) D(ReT )� � D(T �):
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If the assumption (1) is satis�ed, then T �x = (ReT )�x � i(ImT )�x for every

x 2 D(ReT )�.

Proof. Since D(Re T ) = D(ImT ) = D(T ) it follows that D(ReT )� \
D(ImT )� � D(T �) and D(ReT )� \ D(T �) � D(ImT )� and therefore the equiv-
alence of (1) and (10) is obvious. Because of T = ReT + i ImT it follows that
T � � (ReT )� � i(ImT )� from which we derive the rest of the statement.

THEOREM 3. An operator T is symmetric (resp. self-adjoint ) i�

(00) D(T ) � D(T �); (resp. D(T ) = D(T �))

(10) D(ReT )� � D(T �);

(20) kT �xk � k(ReT )�xk

for all x 2 D(ReT )�.

Proof. If (00), (10) and (20) are true, then T is formally symmetric by Lemma 3
and Theorem 2. Because of (00), T is symmetric (resp. self-adjoint). The necessity
of (00), (10) and (20) is obvious.

REFERENCES

[1] C. K. Fong, V. I. Istratescu, Some characterizations of Hermitian operators and related classes
of operators. I, Proc. Amer. Math. Soc. 76 (1979), 107{112.

[2] F. Kittaneh, Some characterizations of self-adjoint opeators, Acta Sci. Math. 47 (1984), 441{
445.

[3] J. Weidmann, Linear Operators in Hilbert Spaces, Springer-Verlag, New York-Heidelberg-
Berlin, 1980.

Institut za primenjenu matematiku i elektroniku (Received 23 12 1988)
Kneza Milo�sa 37
11000 Beograd
Yugoslavia


