PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE Nouvelle série tome 46 (60), 1989, pp. 141-144

A CHARACTERIZATION OF FORMALLY SYMMETRIC UNBOUNDED OPERATORS

Danko Jocić

Abstract. We give necessary and sufficient conditions for an operator in a Hilbert space to be formally symmetric, symmetric or self-adjoint. This generalizes the well-known fact that a bounded operator T is self-adjoint if and only if $T^*T \leq (\text{Re}T)^2$. The proof is based on a well-behaved extension of the corresponding symmetric operator.

0. Introduction

Fong and Istratescu [1] and also Kittaneh [2] have proved the following:

THEOREM A. A bounded operator T is self-adjoint if and only if $T^*T \leq (\operatorname{Re} T)^2$.

They used Theorem A to investigate some classes of bounded operators — θ , WN and hyponormal operators. A large number of well-known and important operators, for example x+i d/dx, belongs to similar classes of unbounded operators. The aim of this note is to extend Theorem A to unbounded operators and to make it suitable for dealing with such situations. Our main result is Theorem 1 in which we present characterizations for an operator to be formally symmetric, symmetric or self-adjoint (Theorems 2, 3).

1. Preliminaries

Suppose that $(H, \langle \cdot | \cdot \rangle)$ is a separable, complex, infinite dimensional Hilbert space and let $(H \oplus H, \langle \cdot | \cdot \rangle)$ denote the usual product space. Thoughout this paper we assume that all operators are linear. Let D(A) denote the domain of an operator A. The operators $(A + A^*)/2$ and $(A + A^*)/2i$ (with $\Delta(A) = D(A) \cap D(A^*)$) as their domains) will be denoted by Re A and Im A respectively. If A is a restriction of B on D(A), we will write $A \subset B$. Whenever $\Delta(A)$ is dense in H, we will denote the domains of (Re A)* and (Im A)* by $D(\text{Re } A)^*$ and $D(\text{Im } A)^*$ respectively. We recall

AMS Subject Classification (1980): Primary 47 B 25, Secondary 47 B 15

Jocić

that a densely defined operator A is said to be symmetric iff $\langle Ax|y \rangle = \langle x|Ay \rangle$ for all $x, y \in D(A)$, i.e. if $A \subset A^*$. It is said to be formally symmetric iff $A^*x = Ax$ for all $x \in \Delta(A)$ i.e. iff Im $A \subset 0$. Note that Re A and Im A are symmetric whenever $\Delta(A)$ is dense in H.

2. The construction

LEMMA 1. For a closed, symmetric operator A in H we define the operator A^{\sim} by $A^{\sim}(x, y) = (A^{\sim}x, A^{\sim}y)$. If the domain of A^{\sim} is given by $D(A^{\sim}) = \{(x, y) \in D(A^*) \times D(A^*) : x - y \in D(A)\}$ then A^{\sim} is one self-adjoint extension of $A \oplus (-A)$.

Proof. For all (x, y) and (f, g) in $D(A^{\tilde{}})$ we have that

$$\langle A^{\tilde{}}(x,y)|(f,g)\rangle = \langle A^{*}x|f\rangle - \langle A^{*}y|g\rangle = \langle A^{*}(x-y)|f\rangle + \langle A^{*}y|(f-g)\rangle.$$

Since x - y and f - g are in D(A), it follows that

$$\begin{aligned} \langle A^*(x-y)|f\rangle + \langle A^*y|(f-g)\rangle &= \langle A(x-y)|f\rangle + \langle y|A(f-g)\rangle \\ &= \langle (x,y)|A^{\tilde{}}(f,g)\rangle \ . \end{aligned}$$

So A^{\sim} is symmetric.

Suppose that $\lim_{n\to\infty} (x_n, y_n) = (x, y)$ and $\lim_{n\to\infty} (A^*x_n, -A^*y_n) = (u, v)$ for some $(x_n, y_n) \in D(A^{\sim})$ and some $x, y, u, v \in H$. This implies that $\lim_{n\to\infty} (x_n - y_n) = x - y$ and $\lim_{n\to\infty} A(x_n - y_n) = \lim_{n\to\infty} A^*(x_n - y_n) = u + v$. Since A^* and A are closed and $x_n - y_n \in D(A)$, it follows that $x - y \in D(A)$ and $x, y \in D(A^*)$. Moreover, $A^*x = u$ and $A^*y = -v$. Therefore $(x, y) \in D(A^{\sim})$ and also $A^{\sim}(x, y) = (A^*x - A^*y) = (u, v)$ is closed.

Finally, suppose that $(x, y) \in R(A^{\tilde{-}} + iI)^{\perp}$. Then it follows that $\langle x|(A^{*} + iI)f \rangle = \langle y|(A^{*} - iI)g \rangle$ for all $(f, g) \in D(A^{\tilde{-}})$ and, in particular $\langle x|(A^{*} + iI)f \rangle = 0$ for all $f \in D(A)$. Therefore $x \in (A^{**}) = D(A)$ and, moreover, $x \in \text{Ker}(A - iI)$. It now follows that $2||x||^{2} = \langle (A + iI)x|x \rangle = \langle x|(A - iI)x \rangle = 0$, and hence x = 0. Analogously, we can prove that y = 0 and thus $R(A^{*} + iI)^{\perp} = \{0\}$. The equality $R(A^{*} - iI)^{\perp} = \{0\}$ follows similarly, and hence $A^{\tilde{-}}$ is self-adjoint.

Remark 1. An alternative proof of Lemma 1 can be obtained by using von Neumann's formulae for self-adjoint extensions of $A \oplus (-A)$. The corresponding partial isometry V is given by

$$\begin{split} V(x,y) &= -(y,x), \quad \text{for all}(x,y) \in \operatorname{Cl}\left(R\big(A \oplus (-A) + iI\big)\right), \\ V(x,y) &= 0, \qquad \quad \text{for all}(x,y) \in \operatorname{Ker}\big(A^* \oplus (-A^*) - iI\big). \end{split}$$

LEMMA 2. Let A and B be closed symmetric operators and assume that $D(A) \subset D(B)$ and $D(A^*) \subset D(B^*)$. Then there exist selfadjoint extensions A^{\sim} and B^{\sim} of $A \oplus (-A)$ and $B \oplus (-B)$ respectively, such that $D(A^{\sim}) \subset D(B^{\sim})$.

Proof. It is sufficient to take the extension constructed in Lemma 1. Then the required inclusion can be shown by a straightforward computation.

3. Main results

THEOREM 1. Let A and B be symmetric operators and assume that $D(A) \subset D(B)$, $D(A^*) \subset D(B^*)$ and also

$$\|(A^* - iB^*)x\| \le \|A^*x\|$$
(a)

for all $x \in D(A^*)$. Then $B \subset 0$.

Proof. Without loss of generality we may assume that A and B are closed. To see this, note that (a) implies $||Bx|| \leq 2||Ax||$ for all $x \in D(A)$ and hence $D(A^-) \subset D(B^-)$. Because of $A^{-*} = A^*$ and $B^{-*} = B^*$ it follows that $D(A^{-*}) \subset D(B^{-*})$ and $||(A^{-*} - iB^{-*})x|| \leq ||A^{-*}x||$ for all $x \in D(A^{-*})$. So, according to Lemma 2, let A^* and B^* be the corresponding self-adjoint extensions of $A \oplus (-A)$ and $B \oplus (-B)$, respectively. A simple calculation gives

$$\|(A^{\tilde{}} - iB^{\tilde{}})(x, y)\|_{\sim} \le \|A^{\tilde{}}(x, y)\|_{\sim}$$
 (a')

for all $(x, y) \in D(A^{\tilde{}})$. Let E be the spectral measure induced by $A^{\tilde{}}$ and let $\gamma \subset \delta \subset \mathbf{R}$, for some measurable bounded set γ and δ . We define $A(\delta) = E(\delta)A^{\tilde{}}E(\delta)$ and $B(\delta) = E(\delta)B^{\tilde{}}E(\delta)$. Since $E(\delta)h \in D(A^{\tilde{}})$, it follows by Lemma 2 that $E(\delta)h \in D(B^{\tilde{}})$, for an arbitrary $h \in H \oplus H$. Hence $D(B(\delta)) = H \oplus H$. Obviously $B(\delta)$ is symmetric and therefore self-adjoint. Then there exists a sequence $\{h_n\}_{n \in \mathbf{N}}$ of unit vectors in $H \oplus H$ such that $\lim_{n \to \infty} (B(\delta) - \lambda)h_n = 0$ for some $\lambda \in \mathbf{R}$ satisfying $|\lambda| = ||B(\delta)||$. It follows from (a') that

$$||B(\delta)h_n|| \leq -2\operatorname{Re}i\langle A(\delta)h_n|(B(\delta) - \lambda)h_n\rangle .$$
 (a")

Letting $n \to \infty$ we get $||B(\delta)||^2 \leq 0$, and consequently $E(\delta)B^{\tilde{e}}E(\delta) = 0$. Since $\gamma \subset \delta$ we conclude that $E(\delta)B^{\tilde{e}}E(\gamma) = 0$. If $\bigcup\{\gamma_n: n \in \mathbf{N}\} = \bigcup\{\delta_n: n \in \mathbf{N}\}$ = **R** for some increasing sequences $\{\gamma_n\}_{n\in\mathbf{N}}$ and $\{\delta_n\}_{n\in\mathbf{N}}$, it follows that $B^{\tilde{e}}E(\gamma) = s - \lim_{n\to\infty} E(\delta_n)B^{\tilde{e}}E(\gamma) = 0$ because $s - \lim E(\delta_n) = I$. Moreover, $s - \lim_{n\to\infty} E(\gamma_n) = I$ implies $B^{\tilde{e}} = s - \lim_{n\to\infty} B^{\tilde{e}}E(\gamma_n) = 0$, since $B^{\tilde{e}}$ is closed. Consequently, $B \subset 0$ as required.

Remark 2. If, in addition, A is (essentially) self-adjoint, then the assumption $D(A^*) \subset D(B^*)$ can be omitted and the proof of Theorem 1 simplified. Also, the use of lemmas becomes unnecessary.

As a consequence of Theorem 1, we give the following characterization.

THEOREM 2. If $\Delta(T)$ is dense in H, then T is formally symmetric if and only if: (1) $D(\operatorname{Re} T)^* \subset D(\operatorname{Im} T)^*$, (2) $\|(\operatorname{Re} T)^* x - i(\operatorname{Im} T)^* x\| \leq \|(\operatorname{Re} T)^* x\|$ for all $x \in D(\operatorname{Re} T)^*$.

Proof. If (1) and (2) are true, then $\text{Im } T \subset 0$ by Theorem 1, and hence T is formally self-adjoint. The necessity of (1) is obvious.

LEMMA 3. If $D(T) \subset D(T)^*$ for an operator T, then the following are equivalent:

(1) $D(\operatorname{Re} T)^* \subset D(\operatorname{Im} T)^*;$ (1') $D(\operatorname{Re} T)^* \subset D(T^*).$

Jocić

If the assumption (1) is satisfied, then $T^*x = (\operatorname{Re} T)^*x - i(\operatorname{Im} T)^*x$ for every $x \in D(\operatorname{Re} T)^*$.

Proof. Since $D(\operatorname{Re} T) = D(\operatorname{Im} T) = D(T)$ it follows that $D(\operatorname{Re} T)^* \cap D(\operatorname{Im} T)^* \subset D(T^*)$ and $D(\operatorname{Re} T)^* \cap D(T^*) \subset D(\operatorname{Im} T)^*$ and therefore the equivalence of (1) and (1') is obvious. Because of $T = \operatorname{Re} T + i \operatorname{Im} T$ it follows that $T^* \supset (\operatorname{Re} T)^* - i(\operatorname{Im} T)^*$ from which we derive the rest of the statement.

THEOREM 3. An operator T is symmetric (resp. self-adjoint) iff

- (0') $D(T) \subset D(T^*)$, (resp. $D(T) = D(T^*)$)
- $(1') \quad D(\operatorname{Re} T)^* \subset D(T^*);$
- $(2') ||T^*x|| \le ||(\operatorname{Re} T)^*x||$

for all $x \in D(\operatorname{Re} T)^*$.

Proof. If (0'), (1') and (2') are true, then T is formally symmetric by Lemma 3 and Theorem 2. Because of (0'), T is symmetric (resp. self-adjoint). The necessity of (0'), (1') and (2') is obvious.

REFERENCES

- C. K. Fong, V. I. Istratescu, Some characterizations of Hermitian operators and related classes of operators. I, Proc. Amer. Math. Soc. 76 (1979), 107-112.
- F. Kittaneh, Some characterizations of self-adjoint opeators, Acta Sci. Math. 47 (1984), 441–445.
- [3] J. Weidmann, Linear Operators in Hilbert Spaces, Springer-Verlag, New York-Heidelberg-Berlin, 1980.

(Received 23 12 1988)

Institut za primenjenu matematiku i elektroniku Kneza Miloša 37 11000 Beograd Yugoslavia

144