
PUBLICATIONS DE L'INSTITUT MATH�EMATIQUE
Nouvelle s�erie tome 46 (60), 1989, pp. 132{140

ON SOME NEUTRIX PRODUCTS OF DISTRIBUTIONS

B. Fisher and A. Taka�ci

Abstract. The neutrix product [2] of the distributions x�+L(x) and x� or Æ(m) is analysed

and explicitly calculated, where �; � =2 Z, m 2 N0 and L is a slowly varying function at both zero
and in�nity [7].

The neutrix product of distributions is de�ned with a �xed in�nitely di�er-
entiable function � : R! [0;1), which has the following properties:

(i) �(x) = 0, jxj � 1,

(ii) �(x) = �(�x), x 2 R,

(iii)

Z 1

�1

�(x) dx = 1.

The sequence Æn(x) = n ��(nx), n 2 N, x 2 R, is a so-called \delta sequence"

i.e. it is a sequence of functions from the space D which tends to the measure Æ in
the topology of D0. Further on, for arbitrary g 2 D0 we put

gn(x) = g � Æn(x); n 2 N; x 2 R: (1)

Then the sequence of in�nitely di�erentiable functions fgng tends to g in the topol-
ogy of D0.

This leads to the following de�nition of the product of two distributions on
an open interval (a; b):

De�nition 1. Let f and g be distributions and let gn be as in (1). We say
that the product f Æ g exists and is equal to the distribution h on (a; b) if for each
' 2 D(a; b)

lim
n!1

hf � gn; 'i = lim
n!1

hf; gn � 'i =: hh; 'i:

It turns out that this de�nition gives an extension of the product of continuous
functions (observed as regular distributions). However, the neutrix product of
distributions, see [2], is even more general. In order to de�ne it we need
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On some neutrix products of distributions 133

De�nition 2. A neutrix N is a commutative additive group of functions
� : N 0 ! N 00 (where the domain N 0 is a set and the range N 00 is a commutative
additive group) with the property that if � is in N and �(�) =  for all � in N 0,
then  = 0. The functions in N are said to be negligible. Now suppose that N 0

is contained in a topological space with a limit point b which is not in N 0 and let
N be a commutative additive group of functions � : N 0 ! N 00 with the property
that if N contains a function of � which tends to a �nite limit  as � tends to b,
then  = 0. It follows that N is a neutrix. If now f : N 0 ! N 00 and there exists a
constant � such that f(�) � � is negligible in N , then � is called the neutrix limit

of f(�) as � tends to b and we write N - lim�!b f(�) = �, where � is always unique
if it exists.

Now let N 0 = N andN 00 = R andN be the neutrix whose neglibigle functions
are all linear sums of functions that tend to zero and all functions of the form

n�; n� lnm�1 n; lnm n (2)

for all real � 6= 0 and m 2 N. Then we have

De�nition 3. Let f , g and gn be as in De�nition 1. We say that the neutrix
product f � g exists and is equal to h on the open interval (a; b) if

N - lim
n!1

hf � gn; 'i = N - lim
n!1

hf; gn � 'i =: hh; 'i

for each ' 2 D(a; b).

It is important to note that if the product of two distributions exists by
De�nition 1 then so does the neutrix product and they are equal, see [2]. However,
the converse does not hold as the following example shows:

Example 1. Let f = g = Æ. Then for arbitrary ' 2 D we have hÆ � Æn; 'i =
Æn(0)'(0) = n�(0)'(0). It follows that the product ÆÆÆ does not exist by De�nition
1 but it does by De�nition 3 and then Æ � Æ = 0.

The neutrix product (De�nition 3) has some \expected" properties of a prod-
uct. For instance, if h = f � g exists for f; g;2 D0, then

supph � supp f \ supp g; and (3.1)

sing supph � sing supp f [ sing supp g: (3.2)

Further, if f � g and f 0 � g (or f � g0) exist, then f � g0 (or f 0 � g) exists too and the
Leibniz rule holds: (f � g)0 = f 0 � g + f � g0. However, the neutrix product is not
commutative as the following example shows.

Example 2. Let f = Æ and g = x�1. Then (x�1)n = x�1 � Æn is an odd
function and so (x�1)n(0) = 0. Thus for arbitrary ' 2 D we have

hÆ � (x�1)n; 'i = (x�1)n(0)'(0) = 0

implying Æ � x�1 � ' = 0, but

hx�1 � Æn; 'i =

Z
1

0

x�1[Æn(x)'(x) � Æn(�x)'(�x)] dx
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=

Z
1

0

x�1Æn(x)['(x) � '(�x)] dx

= '0(0) +O(1=n)

implying x�1 � Æ = �Æ0.

On using De�nition 3, one can �nd several important (neutrix) products of

distributions, like x�+ lnj x � x�
�
for di�erent values of �, � and j (see [2], [3], [4]).

However, the more general cases, like x�+L(x) � x
�
�

or x�+L(x) � Æ
(m)(x) cannot be

obtained with the neutrix used in the mentioned papers. Here and also throughout
this paper L : (0;1)! (0;1) is a given locally integrable function which satis�es
the following conditions

lim
x!0+

L(kx)

L(x)
= 1 for any k > 0, (4.1)

lim
x!1

L(kx)

L(x)
= 1 for any k > 0. (4.2)

A positive locally integrable function satisfying (4.1) (resp. (4.2.)) is called slowly

varying at zero (resp. slowly varying at in�nity). The �rst example of a function
satisfying the relations (4) is the logarithm.

The distribution x�+L(x) in S 0+ (tempered distributions with supports in
[0;1)), is de�ned for di�erent values of the real parameter � by:

hx�+L(x); '(x)i =

Z
1

0

x�L(x)'(x) dx if � > �1, (5.1)

hx�+L(x); '(x)i =

Z
1

0

x�L(x)

�
'(x) �

l�1X
j=0

xj

j!
'(j)(0)

�
dx (5.2)

if �(l + 1) < � < �l and l 2 N ,

hx�+L(x); '(x)i =

Z 1

0

x�L(x)

�
'(x) �

���1X
j=0

xj

j!
'(j)(0)

�
dx

+

Z
1

1

x�L(x)

�
'(x) �

���2X
j=0

xj

j!
'(j)(0)

�
dx (5.3)

if � 2 Z� = f�1;�2; . . .g and ' 2 S.

(By de�nition if � = �1, then the last summation is omitted.)

It is worth noting that if L(x) = 1 on (0;1), then the distribution x�+ de�ned

by relations (5) coincides with the distribution x�+ de�ned in [6] (see also [2]):

x�+ =
�(�+ 1)

�(�+ l + 1)
Dlx�+l+ (6)

if �(l+1) < � < �l, l 2 N. The distribution x�
�
is de�ned in an analogous way to

(6); its support is (�1; 0].
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The aim of this paper is to analyse and explicitely calculate several neutrix
products involving slowly varying functions. For that reason we replace the neutrix
N from De�nition 3 with the one whose negligible functions are all linear sums of
functions that tend to zero and all functions of the form

n�; n�L(1=n); L(1=n) (7)

for all real � 6= 0 (compare with (2)). Naturally, if L(1=n) tends to a non zero limit
as n!1, then L(1=n) is omitted in (7).

Before we turn to the announced neutrix products, we cite two statements
that we need later on.

THEOREM 1. Let L be a slowly varying function at zero and let f be a locally

integrable function on the interval [0; b] with the property that

Z b

0

x�Æ jf(x)j dx <1 for some Æ > 0.

Then the integral

�(") =

Z b

0

f(x)L("x) dx

exists and

�(") � L(")

Z b

0

f(x) dx as "! 0+.

THEOREM 2. Let x�+L(x) be given by (5.2) for �(l + 1) < � < �l, l 2 N

and L a slowly varying function both at zero and at in�nity. Then there exists a

locally integrable function K : (0;1)! R which is both slowly varying at zero and

at in�nity and satis�es the following conditions:

Dl(xl+�+ K(x)) = x�+L(x); Kl(x) � ((� + 1) � . . . � (� + l))�1L(x)

as x! 0+ and as x! +1.

Theorem 1 is an easy consequence of Th�eor�eme 2 from [1, p. 82], while The-
orem 2 was proved in [8, p. 180, Lemma 2].

Because of (3.1) and (3.2) it is clear that

x�+L(x) � x
�
�
=

nX
j=0

ajD
jÆ(x) (8)

for some constants aj and some n 2 N0 whatever � and � are, provided that the
left hand side exists. The case L(x) � 1 was analysed in [3]:

THEOREM 3. The neutrix product of x�+ and x�
�

exists and x�+ � x�
�

= 0,
provided that �+ � =2 Z� = f�1;�2; . . .g.
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We �rst of all prove the following generalization of (8):

THEOREM 4. The neutrix product of x�+L(x) and x�
�

exists and

x�+L(x) � x
�
�
= 0 (9)

provided that �; �; � + � =2 Z�, i.e. all aj from (8) are zero.

Proof . We follow the lines of the proof of Theorem 6 from [3], giving the
modi�cations necessary because of the slowly varying function L.

Suppose �rst of all that �; �; �+� > �1. Then the left hand side of (9) exists
even in the sense of De�nition 1, since by (5.1) and (1) we have for ' 2 S

hx�+L(x); (x
�
�
)n'(x)i

=

Z
1

0

x�L(x)'(x)

�Z
1

�1

(t� x)�
�
Æn(t) dt

�
dx

=

Z 1=n

0

x�L(x)'(x)

�Z 1=n

x

(t� x)�Æn(t) dt

�
dx

=

Z 1=n

0

Æn(t)

�Z t

0

x�L(x)(t� x)�'(x) dx

�
dt

= n�����2
Z 1

0

s�+�+1Æn

�
s

n

�Z 1

0

v�(1� v)�L

�
sv

n

�
'

�
sv

n

�
dvds:

The function L is slowly varying at zero and so we can �nd a positive number " > 0
such that

jL(x)j � Cx�" for 0 < x < 1 and �+ �+ 1� " > 0; (10)

the constant C depends on �, � and ". Further on, the function ' is fast decreasing,
hence bounded and so

jhx�+L(x); (x�)n'(x)ij � C 0n�����1+"
Z 1

0

s�+�+1�(s)

�Z 1

0

v�(1� v)� dv

�
ds

for some constant C 0 > 0 and " > 0 from (10).

Now let � > �1, �(m+ 1) < � < �m, m 2 N, and �+ � =2 Z. As in [3], we
have for j 2 N0

�(�+m+ 1)

�(�+ 1)

Z
1

�1

x�+L(x)(x
�
�
)nx

j dx

= n�����j�1
Z 1

0

s�+�+j+m+1�(m)(s)

Z 1

0

v�+j(1� v)�+mL

�
sv

n

�
dvds:

On using Theorem 1, we see that the right hand side behaves as

L

�
1

n

�
n����j�1B(� + j + 1; �+m+ 1)

Z 1

0

s�+�+j+m+1�(m)(s) ds:
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Hence by the suppositions on �; �; j and the function L we have

N - lim
n!1

Z
1

�1

x�+L(x)(x
�
�
)nx

j dx = 0: (11)

We note that if j 2 N is chosen so that j > �(� + � + 1) then (11) holds even in
the usual sense. The remainder of the proof for the case � > �1; �; � + � =2 Z is
essentialy as in [3, pp. 324{325] and so we omit it here.

Let us now suppose that (9) is proved for any � such that � > �l, � =2 Z,
any � such that �; �+ � =2 Z, and any slowly varying function L at both zero and
at in�nity. On using Theorem 2 for given � � 1 and L, we can �nd a function K
which is slowly varying at both zero and at in�nity and satis�es

Dl+1(x�+l+ K(x)) = x��1+ L(x): (12)

The Leibniz rule gives

Dl+1(x�+l+ K(x) � x�
�
)

= Dl+1(x�+l+ K(x)) � x�
�
+

lX
j=0

�
l + 1

j

�
Dj(x�+l+ K(x)) �Dl+1�j(x�

�
);

or on using (12)

x��1+ L(x) � x�
�
=

lX
j=0

CjD
j(x�+l+ K(x)) � x��l�1+j

�

for some constants Cj , provided that we can show the existence of the right hand
side. In fact we will show that each term in the last sum is zero. It is obviously
enough to show that

Dj(x�+l+ K(x)) � x�
0

�
= 0 (13)

for j = 0; 1; . . . ; l and �; �0; �+ �0 =2 Z. This has been proved already for j = 0. If
(13) is true for some j 2 f0; 1; . . . ; l� 1g, then

Dj+1(x�+l+ K(x)) � x�
0

�
= D(Dj(x�+l+ K(x)) � x�

0

�
) + �0Dj(x�+l+ K(x)) � x�

0
�1

�
= 0;

i.e. it is true for j + 1 as well. We have thus proved (9) for �; �; �+ � =2 Z.

We now prove

THEOREM 5. The neutrix product of x�+L(x) and Æ(m)(x) exists and

x�+L(x) � Æ
(m)(x) = 0 (14)

for m 2 N0 and � 6= 0;�1; . . . ;�m;�m� 1;�m� 2; . . . .

Proof . Assume �rst that � > �1 and � 6= 0; 1; . . . ;m. Then for j = 0; 1; . . .
we have
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Z
1

�1

x�+L(x)Æ
(m)
n (x)xj dx = nm���j

Z 1

0

tj+�L

�
t

�

�
�(m)(t) dt (15)

� nm���jL

�
1

n

�Z 1

0

tj+��(m)(t) dt as n!1.

Hence the functions
R
1

�1
x�+L(x)Æ

(m)
n (x)xj dx are negligible for j = 0; 1; . . . and

j 6= m� �. Then we have����
Z
1

�1

x�+L(x)Æ
(m)
n (x)xm+1 dx

���� � CL

�
1

n

�
n���1

Z 1

0

t�+m+1j�(m)(t)j dt (16)

for some constant C > 0. Since L is slowly varying at zero, the right hand side of
the last inequality tends to zero as n tends to in�nity. Using Taylor's theorem for
a test function ' 2 S, we have

'(x) =

mX
j=0

xj

j!
'(j)(0) +

xm+1

(m+ 1)!
'(m+1)(�x)

for some � = �(x) 2 [0; 1]. It follows from (15) and (16) that

N - lim
n!1

hx�+L(x); Æ
(m)
n (x)'(x)i = 0

i.e. (14) follows for � > �1 and � 6= 0; 1; . . . ;m.

Now assume that �2 < � < �1. On using Theorem 2 we can �nd a locally
integrable function K which is slowly varying both at zero and in�nity such that
D(x�+1+ K(x)) = x�+L(x). Then

0 = D(x�+1+ K(x) � Æ(m)(x)) = x�+L(x) � Æ
(m)(x) + x�+1+ K(x) � Æ(m+1)(x):

It follows from what we have just proved that (14) holds for �2 < � < �1.
More generally, it follows by induction that (14) holds for m 2 N0 and � 6=
0; 1; . . . ;m;�m� 1;�m� 2; . . . .

We are now going to consider the product x�+L(x) � x
�m
�

for � =2 Z�. For this
purpose we note that by de�nition

Dm lnx+ = �(m� 1)!x�m+ ; m 2 N

and this is in accordance with (5.3) for L(x) � 1. Further

Dm lnx� = �(m� 1)!x�m
�

; m 2 N:

THEOREM 6. The product x�+L(x) � x
�m
�

exists and x�+L(x) � x
�m
�

= 0 for

m 2 N0 and � =2 Z�.

Proof . For � > �1 we have

hx�+L(x); (x
�m
�

)nx
ji =

Z 1=n

0

x�+jL(x)

Z 1=n

x

ln(t� x)Æ(m)
n (t) dtdx
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=

Z 1=n

0

t�+j+1Æn(t)

Z 1

0

v�+j ln(t� tv)L(tv) dvdt:

Putting t = s=n and using the method from the proof of Theorem 4 we �nd that
the last double integral is negligible. The rest of the proof is as in [3, p. 326], with
the already used modi�cations.

We will now use the statement and the proof of Theorem 4 for �nding the
�-product of x�+L(x) and x�

�
. This product was analysed in [5] as a natural gener-

alization of the neutrix product de�ned by a vector.

De�nition 4. Let f and g be distributions and let gn be as in (1). We say

that the �-neutrix product of f and g, denoted by f
�
� g, exists and is equal to the

distribution vector h = [h0; h1; . . . ; hr; . . . ] on the open interval (a; b) if

N - lim
n!1

hf; gn'i = hh0; 'i; N - lim
n!1

n���rhf; gn'i = hhr; 'i (17)

for r = 1; 2; . . . and all test functions ' 2 D(a; b). It is supposed that �1 < � � 0.

The following generalization of Theorem 3 was proved in [5].

THEOREM 7. Let �; � be real numbers such that �; �; �+� =2 Z and �+� < �1.

Then the �-product x�+
�
� x�
�

exists and

x�+
�
� x�
�
= h(�; �) = [0; h1(�; �); . . . ; hq(�; �)];

where q = [��� �], � = ��� �� q � 1,

hi(�; �) =
B(�+ 1; �+ q � i+ 1)

(q � i)!
(�1)q�iaq�i(�; �)Æ

(q�i);

ai(�; �) =
(�1)p�(�+ �+ i+ 2)

�(�+ �+ p+ i+ 2)

Z 1

0

u�+�+p+i+1�(p)(u) du

for i = 1; . . . ; q and B and � denote the beta and gamma functions respectively.

In order to �nd the �-product of x�+L(x) and x�
�
, we must slightly change

De�nition 4. In fact, replacing (17) by

N - lim
n!1

n���rL(1=n)hf; gn'i = hhr; 'i; r 2 N;

we get a product which will be denoted by f
(�;L)
� g; L is a slowly varying function

with properties (4.1) and (4.2). Similarly as Theorem 4 from [5], one can prove

THEOREM 8. Let �; � be real numbers such that �; �; �+� =2 Z and �+� < �1.
Then the (�;L) product

x�+L(x)
(�;L)
� x�

�
= h(�; �) = [0; h1(�; �); . . . ; hq(�; �)];

where �; q and hi(�; �) are as given in Theorem 7.
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Thus we can write

hx�+L(x); (x
�
�
)n'i = h0; 'i+

qX
r=1

n�+r

L(1=n)
hhr; 'i+O

�
n�

L(1=n)

�

as n!1.
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