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ON THE ASYMPTOTIC BEHAVIOUR OF THE G�
� -MEANS

OF EIGENFUNCTION EXPANSION RELATED TO THE SLOWLY

OSCILLATING FUNCTIONS WITH REMAINDER TERM

Manojlo Maravi�c

Abstract. Let f(Q) = f(x1; . . . ; xn) 2 L2(D) where D is a bounded open domain with
the suÆciently regular boundary in the space En. Two theorems are proved in this paper. The
mains result is expressed by Theorem 2 which connects the asymptotic behaviour of the G�

�
means

of eigenfunction expansion (2:1) with the behaviour of the spherical mean of function f when this
is related to behaviour of a slowly oscillating function with remainder term.

1. (i) The G�
� -method of summation is de�ned [3] by

G�
� (�;w) =

X
���w

�
1� exp[(�� � w)w�� ]

	�
a�

(0 < �1 < �2 < � � � < �� !1 as � !1);

where 0 < � < 1 and � > 0, or by

G�
� (w) =

Z w

0

�
1� exp[(t� w)w�� ]

	�
d[A(t)];

where A(t) is of bounded variation in any �nite interval. Without loss of generality
we can assume A(0) = 0 and in this case we have

G�
� (w) = �w��

Z w

0

�
1� exp[(t� w)w�� ]

	��1
exp[(t� w)w�� ]A(t) dt: (1.1)

(ii) It is quite natural to introduce the class of slowly oscillating functions
with remainder term everywhere in analisys whenever results about convergence are
extended to more general asymptotic results. They appear naturally in problems
related to the asymptotic evaluations of certain integrals and sums.

De�nition. Let r be a positive increasing function on [0;1) such that

r(x) !1; x!1 (1.2)
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and
x�Ær(x) is eventually decreasing� for some Æ > 0: (1.3)

A positive measurable function L on [0;1) is called slowly oscilating function with
remainder term r if

L(tx)[L(x)]�1 = 1 +O
�
[r(x)]�1

	
; x!1

for every t > 0, [1].

We denote the class of these functions by KÆ(r).We will use the following
properties of functions of class KÆ(r) [1]:

(a) If � > 0, then

x�L(x)!1; x!1; (1.4)

x��L(x)! 0; x!1: (1.5)

(b) If � > 0 and

L1(x) = x�� sup
0�t�x

[t�L(t)]; (1.6)

L2(x) = x� sup
x�t<1

[t��L(t)]; (1.7)

then

L1(x) �= L(x) and L2(x) �= L(x); x!1; (1.8)

i.e. both L1(x) and L2(x) are slowly oscillating functions.

(c) From (1:4) we get

[L(x)]�1 � x��Æ ; � > Æ > 0; for x �M: (1.9)

(d) Since the function x�Ær(x) is decreasing, it follows that

w�Æ � b�Ær(b)[r(w)]�1 for w � b: (1.10)

(e) There are the asymptotic relations

[L(w)]�1
Z 1

0

g(t)L(tw) dt =

Z 1

0

g(t) dt+O
�
[r(w)]�1

	
; w !1 (1.11)

and

[L(w)]�1
Z 1

1

g(t)L(tw) dt =

Z 1

1

g(t) dt+O
�
[r(w)]�1

	
; w !1 (1.12)

The conditions which insure the validity of these results are usually of the formZ 1

0

t�� j g(t) j dt <1 or

Z 1

1

t� j g(t) j dt <1; � > 0; (1.13)

� A function f on (0;1) is eventually decreasing if there exists x � 0 such that x2 � x1 � x
implies f(x1) � f(x2).
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assuming that
t�L(t) is bounded on [0; d] for some � > Æ,

where [0; d] is any �nite interval:
(1.14)

(iii) Let D denote a bounded open domain in the Euclidean space En (n � 2).
Let P (x01; . . . ; x

0
n) and Q(x1; . . . ; xn), be two points in D. We suppose that the

boundary B of the domain D is suÆciently regular, so that the eigenvalue problem

�u+ �u = 0 in D;

u = 0 on B;

�u =

nX
m=1

@2u

@x2m

possesses an in�nite number of positive eigenvalues 0 < �1 � �2 . . . � �m ! 1 as
m ! 1 with the corresponding eigenfunctions '1(Q); '2(Q); . . . ; 'm(Q); . . . . We
assume that these eigenfunctions form a complete orthonormal set in the space L2.

Let f(Q) 2 L2(D). We form its eigenfunction expansion

f(Q) �
X

am'm(Q); (1.15)

where

am =

Z
D

f(Q)'m(Q)dVQ

and dVQ denotes the element of volume in En.

f(P ; t) is the spherical mean of the function f(Q) over a sphere of radius t
with centre at the point P , i.e.,

f(P ; t) = 2�1��s�1�(s+ 1)

Z
S

f(x01 + t�1; . . . ; x
0
n + t�n) dS� ; (1.16)

where S is the unit sphere �21 + � � � + �2n = 1; dS� its (n � 1)-dimensional volume
element and

s = (n� 2)=2: (1.17)

�P is the shortest distance between the point P and the boundary B, and �
is a number such that

0 < � < �P : (1.18)

(iv) Jm(x) is the Bessel function of the �rst kind of order m. The following
results hold [6]

Jm(x) = O(xm); x! 0 (1.19)

Jm(x) = O(x�1=2); x!1 (1.20)Z 1

0

t����1J�(t) dt = 2����1�(�=2)[�(1 + � � �=2)]�1 (1.21)



On the asymptotic behaviour of the G�
�
means . . . 107

for 0 < � < � + 3=2.

We will make use of the known formula [6, p. 46]

dk

(xdx)k
[xmJm(x)] = xm�kJm�k(x): (1.22)

(v) Throughout this paper all M;M0;M1; . . . are the positive constants.

2. In this paper we consider a problem concerning the asymptotic behaviour
of the G�

� means of eigenfunction expansion (1:15), i.e.,

G�
� (P ;w) =

X
�m�w

�
1� exp[(�m � w)w�� ]

	�
am'm(P ): (2.1)

We will formulate and prove a theorem (Theorem 2) which connects the asymptotic
behaviour of G�

� means (2.1) with the asymptotic behaviour of the spherical mean
f(P ; t) of the function f(Q) at the point P , de�ned by (1:16), when this is related
to the behaviour of a function L 2 KÆ(r).

T. V. Avadhani has proved for the Riesz means of eigenfunction expansion
(1:15) ((3:12) in [2]) that

Rk(P ;w) =
X
��w

(1� w�1�m)kam'm(P )

= Fk(P ;w) + o[w�(k�s�1=2)=2]; w !1; k > s+ 1=2; (2.2)

where

Fk(P ;w) = ckw
(s�k+1)=2

Z �

0

ts�kJk+s+1(t
p
w)f(P ; t) dt; (2.3)

with
ck = 2k�s�(k + 1)[�(s+ 1)]�1

and s de�ned by (1:17) and � by (1:18). The Riesz method of summation is de�ned
by the integral

Rk(w) = kw�k
Z w

0

(w � t)k�1A(t) dt: (2.4)

If k is a positive integer, then it follows from (2:4) that

A(w) =
1

k!
� dk

dwk
[wkRk(w)]: (2.5)

To prepare for the proof of Theorem 2 we �rst prove the following

THEOREM 1. If

f(P ; t) �= t�aL(t�1); t! 0; L 2 KÆ(r); (2.6)

where

s+ � + 1=2 < a < 2s+ 2� �; s = (n� 2)=2; � > Æ > 0; (2.7)
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then

F0(P ;w) = c0(
p
w)s+1

Z �

0

tsJs+1(t
p
w)f(P ; t) dt

= b0(
p
w)aL(

p
w) +O

�
(
p
w)2s+2+�L(

p
w)[r(

p
w)]�1

	
; w !1;

(2.8)

with c0 = 2�s[�(s+ 1)]�1 and

b0 = 2�a�(s+ 1� a=2)[�(s+ 1)�(1 + a=2)]�1: (2.9)

Proof . We write integral (2:8) in the form

F0(P ; t) = c0(
p
w)s+1

Z �

0

ts�aJs+1(t
p
w)L(t�1) dt

+ c0(
p
w)s+1

Z �

0

tsJs+1(t
p
w)[f(P ; t)� t�aL(t�1)] dt

= H1 +H2: (2.10)

Furthermore,

H1 = c0(
p
w)a

 Z 1

0

�
Z 1=�

p
w

0

!
ta�s�2Js+1(t�1)L(t

p
w) dt = H11 �H12: (2.11)

Now we estimate the integral

H11 = c0u
a

Z 1

0

ta�s�2Js+1(t�1)L(tu) dt;

where u =
p
w.

According to (2:7), (1:19) and (1:20) the function

g(t) = ta�s�2Js+1(t�1)

satis�es the conditions (1:13). Therefore we can apply the relations (1:11) and
(1:12) and we get

H11 = c0u
aL(u)

�Z 1

o

ta�s�2Js+1(t�1) dt+O
�
[r(u)]�1

	�
; u!1:

In virtue of (1:21) we haveZ 1

0

ta�s�2Js+1(t�1) dt =
Z 1

0

ts�aJs+1(t) dt

= 2s�a�(1 + s� a=2)[�(1 + a=2)]�1;

i.e.,
H11 = b0u

aL(u) +O
�
uaL(u)[r(u)]�1

	
; u!1; (2.12)
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where b0 is given by (2:9).

With respect to (1:20) we obtain

jH12j �MuaL(u)

Z 1=�u

0

ta�s�3=2L(tu)[L(u)]�1 dt

and further by (1:9) it follows that

jH12j �MuaL(u)u�Æ
Z 1=�u

0

ta�s���3=2[(tu)�L(tu)] dt

�MuaL(u)u�Æ sup
0�v�1=�

[v�L(v)]

Z 1=u�

0

ta�s���3=2dt:

In virtue of (1:10) we have

jH12j �MuaL(u)[r(u)]�1�Ær(1=�) sup
0�v�1=�

[v�L(v)]

Z 1=u�

0

ta�s���3=2dt

and by (2:7) and (1:14) we �nally get

H12 = O
�
uaL(u)[r(u)]�1

	
: (2.13)

With respect to (2.11){(2.13) we get

H1 = b0u
aL(u) +O

�
uaL(u)[r(u)]�1

	
; u!1; (2.14)

where b0 is given by (2:9).

Now we estimate the integral H2. By assumption (2.6), � can be chosen so
that

jf(P ; t)� t�aL(t�1)j � "t�aL(t�1); for 0 � t � �;

whence

jH2j � "c0u
s+1

Z �

0

ts�a j Js+1(tu) j L(t�1)dt

= "c0u
a

Z 1

1=u�

ta�s�2 j Js+1(t�1) j L(tu)dt:

Since Im(x) = O(xm) on [0;1) it follows that

jH2j �M"ua+�
Z 1

1=u�

ta�2s�3+� [(tu)��L(tu)] dt

�M"ua+�
�

sup
1=��v<1

[v��L(v)]
�Z 1

1=u�

ta�2s�3+�dt:

Since by (2:7) a� 2s� 2 + � < 0, we have

jH2j �M1"�
2s+2�a��

�
sup

1=��v<1
[v��L(v)]

�
[L(u)]�1[u2s+2L(u)];
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and further by (1:9)

jH2j �M1"�
2s+2�a��

(
sup

1=��v<1
[v��L(v)]

)
u�Æ[u2s+2+�L(u)]:

With respect to (1:10) we have

jH2j �M1"�
2s+2�a+Æ��r(1=�)

�
sup

1=��v<1
[v��L(v)]

�
u2s+2+�L(u)[r(u)]�1:

According to the property (1:5), � can be chosen so that

H2 = O
�
u2s+2+�L(u)[r(u)]�1

	
; u!1: (2.15)

In virtue of (2:10), (2:14), (2:15), (2:7) and substituting u =
p
w we �nally

get

F0(P ;w) = b0(
p
w)aL(

p
w)

+O
�
(
p
w)2s+2+�L(

p
w)[r(

p
w)]�1

	
; w !1; (2.16)

where b0 is given by (2:9). This concludes the proof of Theorem 1.

3. Now we formulate and prove the mentioned theorem on the asymptotic
behaviour of G�

� -means (2:1) of eigenfunction expansion (1:15)

THEOREM 2. If

f(P ; t) �= t�aL(t�1); t! 0; L 2 KÆ(r) (3.1)

with

s� k + � + 1=2 < a < 2s+ 2� �; k > s+ 1=2; s = (n� 2)=2; (3.2)

where � is any number such that � > Æ > 0, then

G�
� (P ;w) = O[w1��+a=2L(

p
w)]

+O
n
w2+���+�=2L(

p
w)[r(

p
w)]�1

o
+ o(1); w !1 (3.3)

for � > k, where k is the smallest positive integer greater than s + 1=2 and � is

such that 1=2 < � < 1 and 2�1(2s+ 1)(2� � 1)�1 is an integer .

Proof . If k is a positive integer, then according to (2:5), (1:1) and (2:2) we
can write expression (2:1) in the form

G�
� (P ;w) = �w��

Z w

0

�
1� exp[(t� w)w�� ]

	��1
exp[(t� w)w�� ]

� 1

k!

dk

dtk
[tkRk(P ; t)]dt

= �w��
Z w

0

�
1� exp[(t� w)w�� ]

	��1
exp[(t� w)w�� ]

� 1

k!

dk

dtk
[tkFk(P ; t) + tk��"(t)]dt

= I1 + I2; (3.4)
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where � = (k � s� 1=2)=2 and "(t)! 0 as t! 0:

In [4, Chapter II] it is proved that

I2 =
(�1)k
k!

�

w�

Z w

0

dk

dtk

��
1� exp[(t� w)w�� ]

	��1
exp[(t� w)w�� ]

�
� tk��"(t) dt = o(1); w !1; (3.5)

if � = k(1� �) i.e., (k � s� 1=2)=2 = k(1� �), whence

k =
2s+ 1

2(2� � 1)
; � =

1

2

�
1 +

s+ 1=2

k

�
;

i.e., 1=2 < � < 1, but such � that 2�1(2s+ 1)(2� � 1)�1 is an integer, because k is
a positive integer.

Now we estimate the integral I1. With respect to (2:3) we have

1

k!

dk

dtk
[tkFk(P ; t)] =

ck
k!

Z �

0

u�2k�1
dk

dtk

h
(u
p
t)k+s+1Jk+s+1(u

p
t)
i
f(P ;u) du:

By the successive di�erentiation exploring (1:22) we get

dk

dtk
[(u
p
t)k+s+1Jk+s+1(u

p
t)] = 2�ku2k(u

p
t)s+1Js+1(u

p
t)

i.e.,

1

k!

dk

dtk
[tkFk(P ; t)] =

(
p
t)s+1

2s�(s+ 1)

Z �

0

usJs+1(u
p
t)f(P ;u)du = F0(P ; t);

and according to (2:8),

I1 = �w��
Z w

0

�
1� exp[(t� w)w��1]

	��1
exp[(t� w)w�� ]

�
�
b0(
p
t)aL(

p
t) +O

n
(
p
t)2s+2+�L(

p
t)[r(

p
t)]�1

o�
dt

= I11(w) +O[I12(w)]; w !1: (3.6)

Since � > k and k � 1, k is a positive integer, the function

T (t; w) =
�
1� exp[(t� w)w�� ]

	��1
exp[(t� w)w�� ]; 0 � t � w

has the maximum ��1(1� ��1)��1 for t = w � w� log �.

Therefore

I11(w) � b0(1� �)��1w��
Z w

0

(
p
t)a�� [(

p
t)�L(

p
t)] dt

� b0(1� ��1)��1w��
Z w

0

(
p
t)a�� sup

0�v�pt
[v�L(v)] dt:
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According to (3:2) it follows that

I11(w) �Mw��(
p
w)�

�
(
p
w)�� sup

0�v�pw
[v�L(v)]

�
w1+a=2��=2

and with respect to(1:6) and (1:8) we get

I11(w) = O[w1��+a=2L(
p
w)]; w !1: (3.7)

Finally we estimate the integral I12(w).

I12(w) � (1� ��1)��1w��
Z w

0

(
p
t)2s+2+�L(

p
t)[r(

p
t)]�1 dt

� (1� ��1)��1w��
Z w

0

(
p
t)2s+2 sup

0�v�pt
[v�L(v)][r(

p
t)]�1 dt

� (1� ��1)��1w��(
p
w)�

�
(
p
w)�� sup

0�v�pw
[v�L(v)]

�

�
Z w

0

(
p
t)2s+2�Æ [(

p
t)�Ær(

p
t)]�1 dt:

According to the property (1:3) of the function x�Ær(x) we see that the func-
tion [x�Ær(x)]�1 is increasing on [0;1), and further with respect to (1:6) we get

I12 � (1� ��1)��1w��(
p
w)�L1(

p
w)[(

p
w)�Ær(

p
w)]�1

Z w

0

(
p
t)2s+2�Æ dt

In virtue of (1:8) and 3:2 we obtain

I12(w) = O
n
w2+s��+�=2L(

p
w)[r(

p
w)]�1

o
; w !1: (3.8)

According to (3.6){(3.8) we have

I1 = O[w1��+a=2L(
p
w)] +O

n
w2+s��+�=2L(

p
w)[r(

p
w)]�1

o
; w !1: (3.9)

Finally from (3:4), (3:5) and (3:9) substituting u =
p
w we get (3:3). This

concludes the proof of Theorem 2.

REFERENCES

[1] S. Aljan�ci�c, R. Bojani�c, M. Tomi�c, Slowly varying functions with remainder term and their
applications in analysis, Monograph, Vol. CDLXVII, Acad. Serbe Sci. et Arts, Beograd, 1974.

[2] T. V. Avadhani, On the summability of eigenfunction expansions I, J. Indian Math. Soc. 18
(1958), 9{18.

[3] V. G. Avakumovi�c, �Uber die Eigenwerte der Schwingungsgleichung, Math. Scand. 4 (1956),
161{173.

[4] M. Maravi�c, �Uber die G�
�
-Summierbarkeit der verallgemeinerten Fourier-Reihen, Publ. Inst.

Math. 12 (1958), 137{146.

[5] G. N. Watson, A Treatise of the Theory of Bessel Functions, Cambridge Univ. Press, Cam-
bridge, 1952.

Akademija nauka i umjetnosti BiH (Received 11 05 1988)
71000 Sarajevo
Yugoslavia


