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ABSOLUTE AND ORDINARY K�OTHE-TOEPLITZ DUALS

OF SOME SETS OF SEQUENCES

AND MATRIX TRANSFORMATIONS

Eberhard Malkowsky

Abstract. We determine the ordinary K�othe-Toeplitz dual of the set �l1(p) and the
absolute K�othe-Toeplitz duals of the sets �l1(p), �c0(p) and �c(p) de�ned by Ahmad and Mur-
saleen. Further we investigate matrix transformations in these spaces and give a characterization
of the class

�
�l1(p); l1

�
.

1. Introduction

By ! we denote the set of all complex sequences x = (xk)
1
k=1. Throughout

the paper p = (pk)
1
k=1 shall always be an arbitrary sequence of positive reals. The

following sets were introduced and investigated by various authors:

l1(p) :=
�
x 2 ! : sup

k
jxkj

pk <1
	
;

c(p) :=
�
x 2 ! : jxk � ljpk ! 0 for some complex l

	
;

c0(p) :=
�
x 2 ! : jxkj

pk ! 0
	
;

l(p) :=

�
x 2 ! :

1X
k=1

jxk j
pk <1

�
(cf. [2], [3], [5], and [7]):

Given any sequence x 2 ! we shall write �x := (xk � xk+1). In a recent paper (cf.
[1]), Ahmad and Mursaleen de�ned the following sets:

�l1(p) := fx 2 ! : �x 2 l1(p)g;

�c(p) := fx 2 ! : �x 2 c(p)g;

�c0(p) := fx 2 ! : �x 2 c0(p)g:

In the determination of the absolute K�othe-Toeplitz duals of �l1(p) and �c0(p),
they applied some arguments which do not seem to hold:
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(i) x 2 �l1(p) does not imply in general the existence of a �nite number
N > supk k

�1jxkj, as the following counterexample will show: If we put pk := k�1

and xk := k2 (k = 1; 2; . . . ) then j�xk j
pk ! 1 (k ! 1), hence x 2 �l1(p), and

supk k
�1jxkj =1.

(ii) If a is a sequence such that

1X
k=1

kjakjN
1=pk =1 for some N > 1; (1.1)

then the sequence x de�ned by xk := kN1=pk sgnak is not in �l1(p), in general. In
order to see this, we put pk := k and ak := (�1)k (k = 1; 2; . . . ). Then a satis�es
(1.1) for all N > 1 and j�xkj

pk !1, hence x 62 �l1(p).

In this paper, we shall determine the absolute K�othe-Toeplitz duals of the sets
�l1(p) and �c0(p), and give new proofs for the characterizations of the matrix
transformations considered in [1]. Further we shall state some new results.

2. K�othe-Toeplitz duals

For arbitrary set X of sequences, we de�ne the ordinary and absolute K�othe-
Toeplitz duals by

Xy :=

�
a 2 ! :

1X
k=1

akxk converges for all x 2 X

�
and

X jyj :=

�
a 2 ! :

1X
k=1

jakxkj <1 for all x 2 X

�

respectively; we shall write Xyy := (Xy)y and X jyyj := (X jyj)jyj.

THEOREM 2.1. For every strictly positive sequence p = (pk), we have

(a)
�
�l1(p)

�jyj
= D(1)

1 (p) :=

1\
N=2

�
a 2 ! :=

1X
k=1

jakj

k�1X
j=1

N1=pj <1

�
;

(b)
�
�l1(p)

�jyyj
= D(2)

1 (p) :=

1[
N=2

�
a 2 ! : sup

k�2
jakj

�k�1X
j=1

N1=pj

��1
<1

�
;

(c)
�
�c0(p)

�jyj
= D

(1)
0 (p) :=

1[
N=2

�
a 2 ! :

1X
k=1

jakj
k�1X
j=1

N�1=pj <1

�
;

(d)
�
�c0(p)

�jyyj
= D

(2)
0 (p) :=

1\
N=2

�
a 2 ! : sup

k�2
jakj

�k�1X
j=1

N�1=pj

��1
<1

�
:

(We adopt the usual convention that
Pm

j=1 yj = 0 (m < 1) for arbitrary yi.)
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Proof : (a) Let a 2 D
(1)
1 (p) and x 2 �l1(p). We choose N > maxf1;

sup j�xkj
pkg. Then

1X
k=1

jakxkj �

1X
k=1

jakj

����
k�1X
j=1

�xj

����+ jx1j
1X
k=1

jakj (2.1)

�
1X
k=1

jakj
k�1X
j=1

N1=pj + jx1j
1X
k=1

jakj <1:

(Note: Since
Pk�1

j=1 N
1=pj � 1 for arbitrary N > 1 (k = 2; 3; . . . ), a 2 D

(1)
1 (p)

implies
P1

k=1 jakj <1.)

Conversely let a 62 D
(1)
1 (p). Then we have

P1
k=1 jakj

Pk�1
j=1 N

1=pj = 1 for
some integer N > 1.

We de�ne the sequence x by xk :=
Pk�1

j=1 N
1=pj (k = 1; 2; . . . ). Then it is

easy to see that x 2 �l1(p) and
P1

k=1 jakxkj =1, hence a 62
�
�l1(p)

�jyj
.

(b) Let a 2 D
(2)
1 (p) and x 2

�
�l1(p)

�jyj
= D

(1)
1 (p), by part (a). Then for

some N > 1, we have

1X
k=2

jakxkj =

1X
k=2

jakj

� k�1X
j=1

N1=pj

��1
jxkj

k�1X
j=1

N1=pj

� sup
k�2

�
jakj

� k�1X
j=1

N1=pj

��1� 1X
k=2

jxk j
k�1X
j=1

N1=pj <1:

Conversely let a 62 D
(2)
1 (p). Then for all integers N > 1, we have

sup
k�2

jakj

� k�1X
j=1

N1=pj

��1
=1:

Hence there is a strictly increasing sequence
�
k(m)

�
of integers k(m) � 2 such that

jak(m)j

� k(m)�1X
j=1

m1=pj

��1
> m2 (m = 2; 3; . . . ):

We de�ne the sequence x by

xk :=

�
jak(m)j

�1
�
k = k(m)

�
0

�
k 6= k(m)

�
(m = 2; 3; . . . ):
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Then for all integers N � 2, we have

1X
k=1

jxk j
k�1X
j=1

N1=pj �
1X

m=2

jak(m)j
�1

k(m)�1X
j=1

N1=pj �

�

N�1X
m=2

jak(m)j
�1

k(m)�1X
j=1

N1=pj +

1X
m=N

jak(m)j
�1

k(m)�1X
j=1

m1=pj �

�

N�1X
m=2

jak(m)j
�1

k(m)�1X
j=1

N1=pj +

1X
m=N

m�2 <1;

hence x 2
�
�l1(p)

�jyj
, and

1X
k=1

jakxkj =

1X
N=2

1 =1;

hence a =2
�
�l1(p)

�jyyj
.

(c) Let a 2 D
(1)
0 (p). Since jakj � jakjN

1=p1
Pk�1

j=1 N
�1=pj (k = 2; 3; . . . ),

we have
P1

k=1 jakj < 1. Let x 2 �c0(p). Then there is an integer k0 such

that supk>k0 j�xk j
pk � N�1, where N is the number in D

(1)
0 (p). We put M :=

max1�k�k0 j�xkj
pk , m := min1�k�k0 pk, L := (M +1)N and de�ne the sequence y

by yk := xkL
�1=m (k = 1; 2; . . . ). Then it is easy to see that supk j�yj

pk � N�1,
and as in (2.1) with N replaced by N�1, we have

1X
k=1

jakxk j = L1=m
1X
k=1

jakykj <1:

Conversely, let a 62 D
(1)
0 (p). Then we can determine a strictly increasing sequence�

k(s)
�
of integers such that k(1) := 1 and

Ms :=

k(s+1)�1X
k=k(s)

jakj

k�1X
j=1

(s+ 1)�1=pj > 1 (s = 1; 2; . . . ):

We de�ne the sequence x by

xk :=

s�1X
l=1

k(l+1)�1X
j=k(l)

(l + 1)�1=pj +

k�1X
j=k(s)

(s+ 1)�1=pj

�
k(s) � k � k(s+ 1)� 1; s = 1; 2; . . .

�
:

Then it is easy to see that j�xkj
pk = 1=(s+1)

�
k(s) � k � k(s+1)�1; s = 1; 2; . . .

�
hence x 2 �c0(p), and

P1
k=1 jakxk j �

P1
s=1 1 =1, i.e. a 62

�
�c0(p)

�jyj
.
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(d) For N = 2; 3; . . . , we put

EN :=

�
a 2 ! :

1X
k=1

jakj
k�1X
j=1

N�1=pj <1

�

FN :=

�
a 2 ! : sup

k�2
jakj

� k�1X
j=1

N�1=pj

��1
<1

�
:

By a well known result (cf. [3, Lemma 4 (iv)]), we have to show FN = E
jyj
N

(N = 2; 3; . . . ). The proof of this is standard and therefore omitted.

Now we shall give some new results:

THEOREM 2.2. For every strictly positive sequence p = (pk), we have

(a)
�
�c(p)

�jyj
= D(1)(p) := D

(1)
0 \ fa 2 ! :

P1
k=1 jakjk <1g and

(b)
�
�l1(p)

�y
= D1(p)

:=

1\
N=2

�
a 2 ! :

1X
k=1

ak

k�1X
j=1

N1=pj converges and

1X
k=1

N1=pk jRkj <1

�
;

where Rk :=
P1

�=k+1 a� (k = 1; 2; . . . ) .

Proof : (a) Let a 2 D(1)(p) and x 2 �c(p). Then there is a complex number
l such that j�xk � ljpk ! 0 (k !1). We de�ne y by yk := xk + lk (k = 1; 2; . . . ).
Then y 2 �c0(p) and

1X
k=1

jakxk j �

1X
k=1

jakj
��k�1X
j=1

�yj
��+ jlj

1X
k=1

jakjk <1

by Theorem 2.1.(c) and since a 2 D(1)(p). Now let a 2
�
�c(p)

�jyj
�
�
�c0(p)

�jyj
=

D
(1)
0 (p) by Theorem 2.1.(c). Since the sequence x de�ned by xk := k (k = 1; 2; . . . )

is in �c(p) we have
P1

k=1 jakjk <1.

(b) Let a 2 D1(p) and x 2 �l1(p). Then there is an integer N >
max f1; supk j�xkj

pkg. We have

nX
k=1

akxk = �
n�1X
j=1

�xjRj +Rn

n�1X
j=1

�xj + x1

nX
k=1

ak (n = 1; 2; . . . ): (2.2)

Obviously the last term on the right in (2.2) is convergent. Since
P1

j=1 j�xj j

� jRj j �
P1

j=1N
1=pj jRj j < 1, the �rst term on the right in (2.2) is absolutely

convergent. Finally by Corollary 2 in [4], the convergence of
P1

k=1 ak
Pk�1

j=1 N
1=pj

implies limn!1Rn

Pk�1
j=1 N

1=pj = 0. Conversely let a 2
�
�l1(p)

�y
. Since e :=

(1; 1; . . . ) 2 �l1(p) and x =
hPk�1

j=1 N
1=pj

i
2 �l1(p), we conclude the convergence
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of
P1

k=1 ak and
P1

k=1 ak
Pk�1

j=1 N
1=pj respectively. Applying Corollary 2 in [4]

again we have

lim
n!1

Rn

k�1X
j=1

N1=pj = 0:

From (2.2), we obtain the convergence of
P1

k=1�xkRk for all x 2 �l1(p). Since

x 2 �l1(p) if and only if y := �x 2 l1(p), this implies R 2 ly1(p), henceP1
k=1N

1=pk jRkj <1 for all N > 1 by a well known theorem (cf. [2, Th. 2]).

3. Some matrix transformations

For any complex matrix A = (ank), we shall write An := (ank)k for the
sequence in the n-th row of A. Given A we de�ne the matrix B by

bnk := ank � an+1;k (n; k = 1; 2; . . . ):

Let X;Y be two subsets of !. By (X;Y ) we denote the class of all matrices A such
that the series Anx :=

P1
k=1 ankxk converge for all x 2 X (n = 1; 2; . . . ) and the

sequence Ax := (Anx) is in Y for all x 2 X .

The following is obvious and therefore stated without proof:

LEMMA 3.1. Let X;Y be linear sequence spaces. We put �Y := fy 2 ! :
�y 2 Y g. Then A 2 (X;�Y ) if and only if B 2 (X;Y ) and A1 2 X

y.

Lemma 3.1 and well known results together yield for instance the characteri-
zation of the following classes for strictly positive sequences q 2 l1 :

�
l(p);�l1(q)

�
,�

l(p);�c0(q)
�
,
�
l(p);�c(q)

�
, (cf. [5, Th. 5 (i), (ii) and (iii)] if 0 < pk � 1

(k = 1; 2; . . . ), [5, Th. 8 and Th. 9] if 1 < pk � H < 1 (k = 1; 2; . . . )). Now
we give a characterization for the class

�
�l1(p); l1

�
:

THEOREM 3.1. For every strictly positive sequence p, we have A 2�
�l1(p); l1

�
if and only if the following three conditions hold:

(i) M1(N) := sup
n

����
1X
k=1

ank

k�1X
j=1

N1=pj

���� <1 for all N > 1;

(ii) M2(N) := sup
n

� 1X
�=1

N1=p�

����
1X

k=�+1

ank

����
�
<1 for all N > 1;

(iii) M3 := sup
n

����
1X
k=1

ank

���� <1:

Proof : Let conditions (i), (ii) and (iii) be satis�ed. Then An 2
�
�l1(p)

�y
(n = 1; 2; . . . ) by Theorem 2.2.(b). Hence the series Anx converge for all x 2
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�l1(p) (n = 1; 2; . . . ). Further as in the proof of Theorem 2.2.(b), we have for
x 2 �l1(p) such that supk j�xkj

pk < N :

����
1X
k=1

ankxk

���� �
1X
�=1

N1=p�

����
1X

k=�+1

ank

����+ jx1j
����
1X
k=1

ank

���� �M2(N) + jx1jM3

(n = 1; 2; . . . );

hence Ax 2 l1.

Conversely let A 2
�
�l1(p); l1

�
. The necessity of conditions (i) and (iii)

follows from the fact that (xk) :=
hPk�1

j=1 N
1=pj

i
and e are in �l1(p). In order to

show the necessity of condition (ii), we assume that M2(N) =1 for some N > 1.

Then for the matrix C de�ned by

cn� :=

1X
k=�+1

ank (n; � = 1; 2; . . . );

we have C 62
�
l1(p); l1

�
. (cf. [2, Th. 3]) Hence there is a sequence x 2

l1(p) such that sup� jx� j
p� = 1 and

P1
�=1 cn�x� 6= O(1). We de�ne the se-

quence y by y� := �
P��1

j=1 xj + x1 (� = 1; 2; . . . ). Then y 2 �l1(p) andP1
�=1 an�y� =

P1
�=1 cn�x� + x1

P1
�=1 an� 6= 0(1), a contradiction to the assump-

tion A 2
�
�l1(p); l1

�
. Therefore we must have M2(N) <1 for all N > 1.
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