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ABSOLUTE AND ORDINARY KOTHE-TOEPLITZ DUALS
OF SOME SETS OF SEQUENCES
AND MATRIX TRANSFORMATIONS

Eberhard Malkowsky

Abstract. We determine the ordinary Ko6the-Toeplitz dual of the set Als(p) and the
absolute Ko6the-Toeplitz duals of the sets Also (p), Aco(p) and Ac(p) defined by Ahmad and Mur-
saleen. Further we investigate matrix transformations in these spaces and give a characterization
of the class (Aloo(p),loo)-

1. Introduction

By w we denote the set of all complex sequences ¢ = (z)52,. Throughout
the paper p = (pi)72; shall always be an arbitrary sequence of positive reals. The
following sets were introduced and investigated by various authors:

loo(p) := {& € w : sup |z | < 0},
k

c(p) := {z € w: |z — I|" — 0 for some complex [},
co(p) == {z € w: |z ["* — 0},
I(p) = {a: Ew: Z |ze|P* < oo} (cf. [2], [3], [5], and [7]).
k=1

Given any sequence x € w we shall write Az := (2}, — 2+1). In a recent paper (cf.
[1]), Ahmad and Mursaleen defined the following sets:

Alo(p) ={z €w: Az €lx(p)},
Ac(p) :={z € w: Az € ¢(p)},
Aco(p) :={z € w: Az € co(p)}.

In the determination of the absolute Kothe-Toeplitz duals of Al (p) and Aco(p),
they applied some arguments which do not seem to hold:
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(i) z € Al (p) does not imply in general the existence of a finite number
N > supy, k~|zkl, as the following counterexample will show: If we put py := k~*
and zy, := k? (k = 1,2,...) then |Azy|P* — 1 (k — o), hence x € Al (p), and
supy k=1 |zg| = oo.

(ii) If a is a sequence such that

o0
2:k|ak|N1/7”’c =o0o for some N > 1, (1.1)
k=1

then the sequence z defined by z, := kN'/Px sgnay, is not in Al (p), in general. In
order to see this, we put py := k and a; := (—1)¥ (k = 1,2,...). Then a satisfies
(1.1) for all N > 1 and |Az|P* — oo, hence = € Al (p).

In this paper, we shall determine the absolute Kothe-Toeplitz duals of the sets
Al (p) and Acy(p), and give new proofs for the characterizations of the matrix
transformations considered in [1]. Further we shall state some new results.

2. Kothe-Toeplitz duals

For arbitrary set X of sequences, we define the ordinary and absolute Kothe-
Toeplitz duals by

Xt.= {a Ew: Z arxy converges for all x € X} and
k=1

XM .= {aEw:Z|akmk|<ooforallx€X}
k=1

respectively; we shall write Xt := (XT)t and Xl .= (X )If],
THEOREM 2.1. For every strictly positive sequence p = (py), we have

00 k—1

ﬁ {a Ew:= Z|ak|ZN1/”f < oo},
N=2 k=1 j=1

U
N=2

(@) (Al = DY) :

k—1 -1
) (@) = D20) = | {acwssmplal[ S| <ol
©  (Ac®)"=DP @) = {a cw: > Jal Y NP < oo},
N=2 k=1 j=1
] @) 00 k—1 / -1
(d)  (Aco(p)"'" =Dy’ (p) == QZ{CLEW:?EBMMLE:IN ,} <oo}.

(We adopt the usual convention that Z;nzl y; =0 (m < 1) for arbitrary y;.)
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Proof: (a) Let a € Dg))(p) and z € Alx(p). We choose N > max{l,
sup |Azg|P*}. Then

[e's] [e's] k—1
> lakwel <3 larl| 3 Az
k=1 k=1 j=1

[e's] k—1 00
<D larl YONYP o] Y fag] < oo
k=1 j=1 k=1

ol S sl (2.1)
k=1

(Note: Since E;;l N'/Pi > 1 for arbitrary N > 1 (k = 2,3,...), a € Dg;)(p)
implies Y ;2 | Jag| < o0.)

Conversely let a ¢ DY (p). Then we have Y~ |ax] Z;”;ll N/Pi = oo for
some integer N > 1.

We define the sequence z by zj = Z;:ll N'YPi (k =1,2,...). Then it is
easy to see that x € Al (p) and Y -, |arzk| = oo, hence a ¢ (Aloo(p))m.

(b) Let a € D) (p) and = € (Aloo(p))lJr| =pl (p), by part (a). Then for
some N > 1, we have

00 0o k—1 -1 k—1
Z|akxk|:Z|ak||:ZNl/pj:| |wk| ZNI/PJ'
k=2 k=2 =1 =1
k—1 —14 o0 k—1
< sup[|ak| { ZNW] } S el 3N < o,
k>2 j=1 k=2 j=1

Conversely let a ¢ DY (p). Then for all integers N > 1, we have
k-1 —1
sup |ag Nl/p]} = o0.
sup | >

Hence there is a strictly increasing sequence (k(m)) of integers k(m) > 2 such that

k(m)—l 1
|ak(m)|[ > ml/p’} >m? (m=2,3,...).
j=1

We define the sequence x by

g i
"o (k # k(m)) (m=2,3,...).
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Then for all integers N > 2, we have

00 k—1 %) k(m)—1
Z|%|ZN1/W < Z |an(m)| ! Z NP <
k=1 j=1 m=2 j=1
N-—1 k(m)—1 k(m)—1
<Y agem Tt Y NYP 4 Z |akem |~ Y mt/P <
m=2 j=1 j=1
N-1 (m)— %]
<Y il S N m <o
m=2 j=1 m=N
hence x € (Aloo(p))”', and
(o0} o0
Z|akmk| = Z 1= o0,
k=1 N=2

hence a ¢ (Als(p)) I,

(c) Let a € DS (p). Since |ar| < |ag|N'V/Pr AT N=VPi (k= 2,3,...),
we have > 17, |ag] < oo. Let 2 € Aco(p). Then there is an integer ko such
that supy;, |Azi|?* < N7, where N is the number in D(()l)(p). We put M :=
mMaxi<k<ko, |ATk|P*, m := mini <x<i, Pr, L := (M + 1)N and define the sequence y
by yi := xx L=Y/™ (k = 1,2,...). Then it is easy to see that sup, |Ay[P* < N~
and as in (2.1) with N replaced by N~!, we have

o0 (oo}
D lawzi] = L™ Jagys| < oo
k=1 k=1

Conversely, let a & D(()l)(p). Then we can determine a strictly increasing sequence
(k(s)) of integers such that k(1) := 1 and

k(s+1)—1 k—1
My= Y a] D +1)7VP>1 (s=1,2,..).
k=k(s) J=1

We define the sequence z by

s—1 k(l+1)—1 k—1
mee=Y 0 Y ()T Y (s 1)
=1 j=k(l) J=k(s)

(k(s) <k <k(s+1)—1; s=1,2,...).

Then it is easy to see that [Azg [P = 1/(s+1) (k(s) <k < k(s+1)—1; s=1,2,...)
hence = € Acy(p), and Y-, |lapzk]| > > oo, 1 =0, ie. a & (Aco(p))m.
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(d) For N =2,3,..., we put

%] k—1
Eyn = {a Ew: Z|ak| ZN_I/pJ' < oo}
k=1 j=1
k—1

-1
Fy:=<da€w:supla { Nl/”j] <oo}.
vi={ocw sl ¥

=1

By a well known result (cf. [3, Lemma 4 (iv)]), we have to show Fy = EI‘\T,‘
(N =2,3,...). The proof of this is standard and therefore omitted.

Now we shall give some new results:

THEOREM 2.2. For every strictly positive sequence p = (py), we have
(a) (Ac(p))m =DW(p) := D[()l) N{a€w:Y 2, laglk < oo} and

(b) (Alw(»)" = Deo(p)

00 0o k—1 e
= ﬂ {a Ew: Zak ZNl/pJ' converges and ZNl/p’“|Rk| < 00},
N=2 k=1 j=1 k=1

where Ry := Y )7, 1 a, (k=1,2,...).

Proof: (a) Let a € DU (p) and = € Ac(p). Then there is a complex number
I such that |Azy —I|P* — 0 (k — 00). We define y by yi, := 2 +1k (k=1,2,...).
Then y € Acy(p) and

00 o0 k—1 00
D awwr] <7 larl D Ay |+ 111D larlk < oo
k=1 k=1 j=1 k=1

by Theorem 2.1.(c) and since a € D™ (p). Now let a € (Ac(p))m C (Aco(p))Vr| =
D[()l)(p) by Theorem 2.1.(c). Since the sequence z defined by z; :==k (k=1,2,...)
is in Ac(p) we have Y7 | |ag|k < co.

(b) Let a € Dy(p) and © € Aly(p). Then there is an integer N >
max {1,sup,, |Azg|P*}. We have

n n—1 n—1 n
Zakxk = —ZAI‘]'RJ' + R, ZAZ’J' + 2 Zak (n=12,...). (2.2)
k=1 Jj=1 j=1 k=1

Obviously the last term on the right in (2.2) is convergent. Since Z;’il |Axj]
X |Rj| < 352, N'/?i|R;| < oo, the first term on the right in (2.2) is absolutely
convergent. Finally by Corollary 2 in [4], the convergence of Y 7o | aj E;:ll N1/pi
implies lim,_, - R, Zf;ll NY/Pi = (. Conversely let a € (AlOO (p))T. Since e :=
(1,1,...) € Al(p) and z = [Ef;ll Nl/pf] € Al (p), we conclude the convergence
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of Y.po, ar and Y .0, a Zf;ll N'/Pi vespectively. Applying Corollary 2 in [4]
again we have
k—1
i 1/pji —
lim Ry, Z N'/pi = .
j=1
From (2.2), we obtain the convergence of Y7, Az, Ry, for all 2 € Al (p). Since

r € Aly(p) if and only if y := Az € l(p), this implies R € If (p), hence
S0  NYPr|Ry| < oo for all N > 1 by a well known theorem (cf. [2, Th. 2]).

3. Some matrix transformations

For any complex matrix A = (ant), we shall write A, := (ank); for the
sequence in the n-th row of A. Given A we define the matrix B by

bnk = Qpk — Qp41,k (n,k:: 1,2,...).

Let X,Y be two subsets of w. By (X,Y) we denote the class of all matrices A such
that the series A,z := Y ;- | ank@), converge for all z € X (n =1,2,...) and the
sequence Az := (A,z) isin Y for all z € X.

The following is obvious and therefore stated without proof:

LemMA 3.1. Let X,Y be linear sequence spaces. We put AY = {y € w :
Ay €Y}. Then A € (X,AY) if and only if B € (X,Y) and A; € XT.

Lemma 3.1 and well known results together yield for instance the characteri-
zation of the following classes for strictly positive sequences q € o : (l(p), Aloo(q)),
(I(p), Aco(@)), (I(p),Ac(q)), (cf. [5, Th. 5 (i), (i) and (iii)] if 0 < pp < 1
(k=1,2,...),[5, Th. 8 and Th. 9] if 1 < p, < H < o0 (k =1,2,...)). Now
we give a characterization for the class (Al (p),loo):

TaeoreMm 3.1.  For every strictly positive sequence p, we have A €
(Aloo(p),loo) if and only if the following three conditions hold:

o] k—1
(i) Mi(N) :=sup Zank ZNl/pJ' <oo forall N >1,
=1 j=1

(il) My(N):= s%p{ ZNl/pu

o
E Qnk

k=1

00
> an
k=v+1

}<oo for all N > 1,

(ili)) Ms :=sup < 00.

n

Proof: Let conditions (i), (ii) and (iii) be satisfied. Then A4,, € (Aloo(p))Jr
(n = 1,2,...) by Theorem 2.2.(b). Hence the series A,z converge for all z €
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Al (p) (n = 1,2,...). Further as in the proof of Theorem 2.2.(b), we have for
x € Al (p) such that sup, |Azg|P* < N:

o0 o0 o0 o0
Dtk <Y ONYPLS T ang| + | | DY ank| < Ma(N) + |ai | M
k=1 v=1 k=v+1 k=1

n=12,...),

hence Az € l.

Conversely let A € (Also(p),lso). The necessity of conditions (i) and (iii)
follows from the fact that (zy) := [E;:ll Nl/pj] and e are in Al (p). In order to
show the necessity of condition (ii), we assume that M>(N) = oo for some N > 1.

Then for the matrix C defined by

[ee]
Cny ‘= Z anr (n,v=1,2,...),
k=v+1

we have C € (lo(p),ls). (cf. [2, Th. 3]) Hence there is a sequence z €
l(p) such that sup,|z,[P» = 1 and Y .2, ¢z, # O(1). We define the se-
quence y by y, = —E;’;lla:j +x1 (v = 1,2,...). Then y € Aly(p) and
> Ay = Doy Cau®y + T1 Y ey Gny 7 0(1), a contradiction to the assump-
tion A € (Al (p), ls). Therefore we must have M,(N) < oo for all N > 1.
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