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ON THE LOGARITHMIC DERIVATIVE

OF SOME BAZILEVIC FUNCTIONS

S. Abdul Halim, R. R. London and D. K. Thomas

Abstract. For � > 0, 0 � � < 1, let B0(�; �) be the class of normalised analytic functions
f de�ned in the open unit disc D such that

Re ei 
�
f 0(z)

�
f(z)=z

���1
� �

�
> 0

for z 2 D and for some  =  (f) 2 R. Upper and lower bounds for the logarithmic derivative
zf 0=f for f 2 B0(�; �) are obtained.

Introduction

For � > 0, denote by B0(�) the class of normalised analytic functions f
de�ned in the unit disc D = fz: jzj < 1g satisfying the condition

Re ei f 0(z)
�
f(z)=z

���1
> 0

for z 2 D and for some  =  (f) 2 R.

It is clear that B0(�) � B(�), the class of Bazilevic functions [1], [5]. Thus
each f 2 B0(�) is univalent in D.

In [3], sharp upper and lower bounds for jzf 0(z)=f(z)j were obtained for
f 2 B0(�) (see also [2]). In this paper, we consider the same problem for the wider
class B0(�; �) de�ned as follows:

De�nition. For � > 0 and 0 � � < 1, denote by B0(�; �) the class of
normalised analytic functions f de�ned in D and satisfying the condition

Re ei 
�
f 0(z)

�
f(z)=z

���1
� �

�
> 0 (1)

for z 2 D and for some  =  (f) 2 R.
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Statement of results

THEOREM 1. Let f 2 B0(�; �). Then for z = rei� 2 D,����zf 0(z)f(z)

���� �
�
(1� �)

�
1 + r

1� r

�
+ �

� � �
�(1� �)

Z 1

0

t��1
�
1 + tr

1� tr

�
dt+ �

�
: (2)

Equality is attained in B0(�; �) for the function f1 given by

f1(z) = z

�
�(1� �)

Z 1

0

t��1
�
1 + tz

1� tz

�
dt+ �

�1=�
; when z = r:

THEOREM 2. Let f 2 B0(�; �) and � 6= 0. Then for z = rei� 2 D,����zf 0(z)f(z)

���� �
��

1� �r2

�(1� r2)

�1=2
+ 1

�
�1

:

In the opposite direction we have

THEOREM 3. Suppose � > 0, 0 < � < 1, � > 1 and 0 < � < 1. Then there

exists f 2 B0(�; �) and r satisfying � < r < 1 such that����zf 0(z)f(z)

���� < �

�
�(1� r2)

1� �r2

�1=2
; for jzj = r:

Remark . We note that when  = 0, the upper bound (2) is sharp in this
subclass. Theorem 3 shows that the expected lower bound

���zf 0(z)�=�f(z)��� ��
rf 01(�r)

�
=
�
f1(�r)

�
is false for the wider class B0(�; �), � 6= 0. The methods of

this paper appear to indicate that the case � 6= 0 is signi�cantly more diÆcult than
the case � = 0.

Proof of Theorems

In order to prove Theorems 1 and 2, we modify the method of Gray and
Ruscheweyh [2], and require the following lemmas:

LEMMA 1. Let F (z) = 1� z�
Æ �

�
R z
0
���1(1� ��)=(1� �) d�

�
, where � > 0

and 0 � � < 1. Then F (z) has non-negative Taylor coeÆcients about z = 0 and in

particular for jzj � r,

jF (z)j � F (r) < lim
t!1

F (t) = 1 and jF 0(z)j � F 0(r):

Proof . It is easily seen that

�

z�

Z z

0

���1
(1� ��)

1� �
d� = 1 +

1X
k=1

�(1� �)

k + �
zk:
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Now letH(z) = F (z)�1 =
1P
k=0

ckz
k. Then

�
1P
k=0

ckz
k

��
1+

1P
k=1

�(1� �)

k + �
zk
�
= �1.

Equating coeÆcients of zk we have c0 = �1 and for k � 1

ck + dk = �(1� �)=(k + �) (3)

where d1 = 0 and dk =
k�1P
j=1

�(1� �)

j + �
ck�j (k � 2).

Now let k � 2. Replace k by k � 1 in (3), multiply by (k � 1 + �)=(k + �)
and substract from (3) to obtain

ck +

�
�(1� �)

1 + �
�
k � 1 + �

k + �

�
ck�1 + ek = 0;

where e2 = 0 and for k � 3,

ek =

k�1X
j=2

�(1� �)ck�j

�
1

j + �
�

k � 1 + �

(j � 1 + �)(k + �)

�
:

Thus for k � 2

ck =
�(k � 1 + �)

k + �
ck�1 +

k�1X
j=1

�(1� �)ck�j

�
k � 1 + �

(j � 1 + �)(k + �)
�

1

j + �

�
:

Also c1 > 0 from (3) and

k � 1 + �

(j � 1 + �)(k + �)
�

1

j + �
=

k � j

(j � 1 + �)(k + �)(j + �)
> 0

for 1 � j � k � 1. Hence ck > 0 for k � 1 by induction. Thus F (z) has positive
coeÆcients and the lemma follows.

LEMMA 2. Let V be a compact and complete subspace of the space A of analytic

functions f de�ned in D with f(0) = 1 and let � be the space of all continuous

linear functionals on A. Suppose �1, �2 2 � with 0 62 �2(V )� d, where � denotes

direct sum and d is constant. Let V �� be the dual space of V . Then for f 2 V ��,
there exists f0 2 V such that

�1(f) + d

�2(f) + d
=
�1(f0) + d

�2(f0) + d
:

Proof . Let f 2 V �� and put

�(F ) =
�
�1(f) + d

�
�2(F )�

�
�2(f) + d

�
�1(F ): (4)

Then � 2 � and �(f) = d
�
�2(f)��1(f)

�
. Now by the duality principle [4, Theorem

1.1], �(V ��) = �(V ) and so there exists f0 2 V such that �(f0) = d
�
�2(f)��1(f)

�
.

Hence using (4) with F replaced by f0 gives�
�1(f) + d

��
�2(f0) + d

�
=
�
�2(f) + d

��
�1(f0) + d

�
:
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By hypothesis 0 62 �2(V )� d and 0 62 �2(V
��)� d by duality. Thus

�1(f) + d

�2(f) + d
=
�1(f0) + d

�2(f0) + d
:

Proof of Theorem 1. From (1) we have

zf 0(z)

f(z)
=

z�
�
(1� �)h(z) + �

�
�
R z
0 [(1� �)h(�) + �] ���1d�

; (5)

where Re ei h(z) > 0 for z 2 D and h(0) = 1. Thus

zf 0(z)

f(z)
�

(1� �)h(z) + �

�
R 1
0
(1� �)h(tz)t��1 dt+ �

: (6)

It follows from Lemma 2 and Theorem 1:6 in [4] that any value assumed by the
right-hand side of (6) for some z 2 D, is also assumed for this z when h(z) is a
function of the form (1 + xz)=(1 + yz) where jxj, jyj = 1. So we may write

h(z) =
1 + xz

1� z
; where jxj = 1 (7)

when obtaining upper or lower bounds for jzf 0(z)=f(z)j.

Using (5) and (7), we have

zf 0(z)

f(z)
= G(z)

�
1 + (1� �)xz=(1� �z)

1 + xF (z)

�
where G(z) = (1� �z)

�
1� F (z)

1� z

�
:

Since jF (z)j < 1 and (1 + ax)=(1 + bx) maps the closed unit disc onto the circle
centre (1� ab)=(1� jbj2), radius ja� bj=(1� jbj2) provided jbj < 1, we deduce that����zf 0(z)f(z)

���� � 1

1� jF (z)j2
(jI1j+ jI2j) ; (8)

where I1 = G(z)

�
(1� �)z

1� �z
� F (z)

�
and I2 = G(z)

�
1�

(1� �)zF (z)

1� �z

�
. Now

I1 =
�
1� F (z)

�� (1� �)z

1� z
�

(1� �z)(F (z)

1� z

�
=
�
1� F (z)

��
G(z)� 1

�
:

Also

I2 =
�
1� F (z)

� ��1� �z

1� z

��
1� F (z)

�
+ F (z)

�
=
�
1� F (z)

��
G(z)� 1

�
+ 1� jF (z)j2:

From the de�nition of F (z) and G(z) we have

zF 0(z) = �
�
1� F (z)

��
G(z)� 1

�
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and so from (8) ����zf 0(z)f(z)

���� � 2jzF 0(z)j

� (1� jF (z)j2)
+ 1:

Using Lemma 1 we deduce that����zf 0(z)f(z)

���� � 2rF 0(r)

�
�
1� F (r)2

� + 1

and the result follows on substituting for F (r).

In order to prove Theorem 2, we require the following:

LEMMA 3. For 0 < � < 1 and z = rei� 2 D,

j1� zj

j1� �zj � (1� �)r
�

�
1� �r2

�(1� r2)

�1=2
:

Proof . Fix � in (0; 1) and put

'(z) =
j1� zj

j1� �zj � (1� �)r
:

Then
@

@�
j1� �zj = j1� �zj Im

�z

1� �z
=
�r sin �

j1� �zj
;

and so, after a simple calculation,

@

@�
j'(z)j =

(1� �)r sin �

j1� zj

�
1� �r2

j1� �zj
� r

�
: (9)

Let � = �(r) denote any value of z for which

j1� �zj = r�1(1� �r2): (10)

Such values exist for all suÆciently large r in (0; 1), since (9) is true if, and only if,

2r� cos � = 2� + 1� r�2: (11)

We now show that

'(r) � '(�r) � '
�
�(r)

�
=

�
1� �r2

�(1� r2)

�1=2
(12)

and this, together with (11) will establish the lemma.

It is easy to verify that '(r) � '(�r). Now '(�r) � '
�
�(r)

�
is equivalent

(on squaring and subtracting 1 from each side) to the inequality

4�r(1 + �r)

(1 + 2�r � r)2
�

1

1� r2
:
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If 0 < p < 1, x(2 + x)=(p + x)2 assumes its maximum value at p=(1 � p) when
x > �p. Thus with x = 2�r and p = 1� r, we have

4�r(1 + �r)

(1 + 2�r � r)2
�
x(2 + x)

(p+ x)2
�

�
(1� r)=r

��
2 + (1� r)=r

�
�
1� r + (1� r)=r

�2 =
1

1� r2
:

Finally, using (10) and (11) we obtain

'
�
�(r)

�
=

�
1� ��1(2� + 1� r�2) + r2

�1=2
r�1 � �r � (1� �)r

=

�
1� �r2

�(1� r2)

�1=2
:

Proof of Theorem 2. As in the proof of Theorem 1, we write h(z) = (1 +
xz)=(1� z) where jxj = 1. Thus we have from (5)

zf 0(z)

f(z)
=

�
1 + x0z

1� z

� � �
�

Z 1

0

t��1
1 + x0tz

1� tz
dt

�
;

where x0 = (1� �)x� � and so

f(z)

zf 0(z)
= �

Z 1

0

t��1
1 + x0tz

1 + x0z

1� z

1� tz
dt = �

Z 1

0

t��1
�

1� t

1 + x0z
+ t

�
1� z

1� tz
dt: (13)

Hence ���� f(z)zf 0(z)

���� � �

Z 1

0

t��1
j1� zj

j1 + x0zj
dt+ �

Z 1

0

t�
���� 1� z

1� tz

���� dt
� �

Z 1

0

t��1
j1� zj

j1� �z � (1� �)xzj
dt+ �

Z 1

0

t�
1 + r

1 + tr
dt

� �

Z 1

0

t��1
j1� zj

j1� �zj � (1� �)r
dt+ �

Z 1

0

2t�

1 + t
dt:

Lemma 3 now gives���� f(z)zf 0(z)

���� � �

�
1� �r2

�(1� r2)

�1=2 Z 1

0

t��1dt+ �

Z 1

0

t��1dt =

�
1� �r2

�(1� r2)

�1=2
+ 1;

which completes the proof of Theorem 2.

Proof of Theorem 3. We use the function �(r) de�ned in Lemma 3 and in
particular the fact that as r ! 1, '

�
�(r)

�
!1 and �(r) = rei� ! 1, which follows

from (12) and (11) respectively. These properities allow us to choose Æ in (0; 1),
and r in (�; 1) such that for � = �(r)

(Æ + 2Æ� � 2� 1=�)'(�) > 1 (14)

and

�

Z Æ

0

t�
���� 1� �

1� t�

���� dt < 1� Æ: (15)
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Also choose x0 so that jx0j = 1 and so that x0� has the same argument as
�� � 1 and let x00 = (1 � �)x � �. We also note, using Lemma 3 that for jzj = r,
and x0 = (1� �)x � �, jxj = 1,���� 1� z

1 + x0z

���� � '(z) � '(�) =

���� 1� �

1 + x00�

����: (16)

Now let f be given by (5), where h is any function satisfying Re ei h(z) > 0. Then
for some x0 as above (13) gives���� f(z)zf 0(z)

���� � J1 � J2 � J3; (17)

where

J1 = �

����
Z Æ

0

t��1
1� t

1 + x0z

1� z

1� tz
dt

����; J2 = �

Z 1

Æ

t��1
���� 1� t

1 + x0z

1� z

1� tz

���� dt;
and J3 = �

Z 1

0

t�
���� 1� z

1� tz

���� dt:
For J3 we obtain

J3 � �

Z 1

0

t�
1 + r

1 + tr
dt � �

Z 1

0

2t�

1 + t
� �

Z 1

0

t��1 dt = 1:

Also, using (16)

J2 � �'(�)

Z 1

Æ

t��1
���� 1� t

1� tz

���� dt � �'(�)

Z 1

Æ

t��1dt = (1� Æ�)'(�):

We now choose h speci�cally so that for z = � the right-hand side of (5) is given
by taking (1+x0t)=(1� t) (jtj < 1) in place of h. For this h we de�ne f by putting

h(z) = f 0(z)
�
f(z)=z

���1
� � so that we have (5). Then

J1 = �

���� 1� �

1 + x00�

����
����
Z Æ

0

t��1
�
1�

t(1� �)

1� t�

�
dt

����
�

���� 1� �

1 + x00�

����
 
Æ� �

Z Æ

0

�t�
���� 1� �

1� t�

���� dt
!
:

Thus from (15) and (16) we deduce that

J1 � (Æ� + Æ � 1)

���� 1� �

1 + x00�

���� = (Æ� + Æ � 1)'(�):

The estimates for J1, J2, J3 together with (17) and (14) give���� f(�)�f 0(�)

���� � '(�)(Æ + 2Æ� � 2)� 1 > ��1'(�):
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