ON THE LOGARITHMIC DERIVATIVE OF SOME BAZILEVIC FUNCTIONS

S. Abdul Halim, R. R. London and D. K. Thomas

Abstract

For $\alpha>0,0 \leq \beta<1$, let $B_{0}(\alpha, \beta)$ be the class of normalised analytic functions f defined in the open unit disc \bar{D} such that $$
\operatorname{Re} e^{i \psi}\left(f^{\prime}(z)(f(z) / z)^{\alpha-1}-\beta\right)>0
$$ for $z \in D$ and for some $\psi=\psi(f) \in \mathbf{R}$. Upper and lower bounds for the logarithmic derivative $z f^{\prime} / f$ for $f \in B_{0}(\alpha, \beta)$ are obtained.

Introduction

For $\alpha>0$, denote by $B_{0}(\alpha)$ the class of normalised analytic functions f defined in the unit disc $D=\{z:|z|<1\}$ satisfying the condition

$$
\operatorname{Re} e^{i \psi} f^{\prime}(z)(f(z) / z)^{\alpha-1}>0
$$

for $z \in D$ and for some $\psi=\psi(f) \in \mathbf{R}$.
It is clear that $B_{0}(\alpha) \subset B(\alpha)$, the class of Bazilevic functions [1], [5]. Thus each $f \in B_{0}(\alpha)$ is univalent in D.

In [3], sharp upper and lower bounds for $\left|z f^{\prime}(z) / f(z)\right|$ were obtained for $f \in B_{0}(\alpha)$ (see also [2]). In this paper, we consider the same problem for the wider class $B_{0}(\alpha, \beta)$ defined as follows:

Definition. For $\alpha>0$ and $0 \leq \beta<1$, denote by $B_{0}(\alpha, \beta)$ the class of normalised analytic functions f defined in D and satisfying the condition

$$
\begin{equation*}
\operatorname{Re} e^{i \psi}\left(f^{\prime}(z)(f(z) / z)^{\alpha-1}-\beta\right)>0 \tag{1}
\end{equation*}
$$

for $z \in D$ and for some $\psi=\psi(f) \in \mathbf{R}$.

Statement of results

Theorem 1. Let $f \in B_{0}(\alpha, \beta)$. Then for $z=r e^{i \theta} \in D$,

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}\right| \leq\left[(1-\beta)\left(\frac{1+r}{1-r}\right)+\beta\right] /\left[\alpha(1-\beta) \int_{0}^{1} t^{\alpha-1}\left(\frac{1+t r}{1-t r}\right) d t+\beta\right] . \tag{2}
\end{equation*}
$$

Equality is attained in $B_{0}(\alpha, \beta)$ for the function f_{1} given by

$$
f_{1}(z)=z\left(\alpha(1-\beta) \int_{0}^{1} t^{\alpha-1}\left(\frac{1+t z}{1-t z}\right) d t+\beta\right)^{1 / \alpha}, \quad \text { when } z=r
$$

Theorem 2. Let $f \in B_{0}(\alpha, \beta)$ and $\beta \neq 0$. Then for $z=r e^{i \theta} \in D$,

$$
\left|\frac{z f^{\prime}(z)}{f(z)}\right| \geq\left[\left(\frac{1-\beta r^{2}}{\beta\left(1-r^{2}\right)}\right)^{1 / 2}+1\right]^{-1}
$$

In the opposite direction we have
Theorem 3. Suppose $\alpha>0,0<\beta<1, \mu>1$ and $0<\rho<1$. Then there exists $f \in B_{0}(\alpha, \beta)$ and r satisfying $\rho<r<1$ such that

$$
\left|\frac{z f^{\prime}(z)}{f(z)}\right|<\mu\left[\frac{\beta\left(1-r^{2}\right)}{1-\beta r^{2}}\right]^{1 / 2}, \quad \text { for }|z|=r
$$

Remark. We note that when $\psi=0$, the upper bound (2) is sharp in this subclass. Theorem 3 shows that the expected lower bound $\left|\left(z f^{\prime}(z)\right) /(f(z))\right| \geq$ $\left(r f^{\prime}{ }_{1}(-r)\right) /\left(f_{1}(-r)\right)$ is false for the wider class $B_{0}(\alpha, \beta), \beta \neq 0$. The methods of this paper appear to indicate that the case $\beta \neq 0$ is significantly more difficult than the case $\beta=0$.

Proof of Theorems

In order to prove Theorems 1 and 2, we modify the method of Gray and Ruscheweyh [2], and require the following lemmas:

Lemma 1. Let $F(z)=1-z^{\alpha} /\left(\alpha \int_{0}^{z} \xi^{\alpha-1}(1-\beta \xi) /(1-\xi) d \xi\right)$, where $\alpha>0$ and $0 \leq \beta<1$. Then $F(z)$ has non-negative Taylor coefficients about $z=0$ and in particular for $|z| \leq r$,

$$
|F(z)| \leq F(r)<\lim _{t \rightarrow 1} F(t)=1 \quad \text { and } \quad\left|F^{\prime}(z)\right| \leq F^{\prime}(r)
$$

Proof. It is easily seen that

$$
\frac{\alpha}{z^{\alpha}} \int_{0}^{z} \xi^{\alpha-1} \frac{(1-\beta \xi)}{1-\xi} d \xi=1+\sum_{k=1}^{\infty} \frac{\alpha(1-\beta)}{k+\alpha} z^{k}
$$

Now let $H(z)=F(z)-1=\sum_{k=0}^{\infty} c_{k} z^{k}$. Then $\left(\sum_{k=0}^{\infty} c_{k} z^{k}\right)\left(1+\sum_{k=1}^{\infty} \frac{\alpha(1-\beta)}{k+\alpha} z^{k}\right)=-1$. Equating coefficients of z^{k} we have $c_{0}=-1$ and for $k \geq 1$

$$
\begin{equation*}
c_{k}+d_{k}=\alpha(1-\beta) /(k+\alpha) \tag{3}
\end{equation*}
$$

where $d_{1}=0$ and $d_{k}=\sum_{j=1}^{k-1} \frac{\alpha(1-\beta)}{j+\alpha} c_{k-j}(k \geq 2)$.
Now let $k \geq 2$. Replace k by $k-1$ in (3), multiply by $(k-1+\alpha) /(k+\alpha)$ and substract from (3) to obtain

$$
c_{k}+\left(\frac{\alpha(1-\beta)}{1+\alpha}-\frac{k-1+\alpha}{k+\alpha}\right) c_{k-1}+e_{k}=0
$$

where $e_{2}=0$ and for $k \geq 3$,

$$
e_{k}=\sum_{j=2}^{k-1} \alpha(1-\beta) c_{k-j}\left[\frac{1}{j+\alpha}-\frac{k-1+\alpha}{(j-1+\alpha)(k+\alpha)}\right]
$$

Thus for $k \geq 2$

$$
c_{k}=\frac{\beta(k-1+\alpha)}{k+\alpha} c_{k-1}+\sum_{j=1}^{k-1} \alpha(1-\beta) c_{k-j}\left[\frac{k-1+\alpha}{(j-1+\alpha)(k+\alpha)}-\frac{1}{j+\alpha}\right]
$$

Also $c_{1}>0$ from (3) and

$$
\frac{k-1+\alpha}{(j-1+\alpha)(k+\alpha)}-\frac{1}{j+\alpha}=\frac{k-j}{(j-1+\alpha)(k+\alpha)(j+\alpha)}>0
$$

for $1 \leq j \leq k-1$. Hence $c_{k}>0$ for $k \geq 1$ by induction. Thus $F(z)$ has positive coefficients and the lemma follows.

Lemma 2. Let V be a compact and complete subspace of the space A of analytic functions f defined in D with $f(0)=1$ and let Λ be the space of all continuous linear functionals on A. Suppose $\lambda_{1}, \lambda_{2} \in \Lambda$ with $0 \notin \lambda_{2}(V) \oplus d$, where \oplus denotes direct sum and d is constant. Let $V^{* *}$ be the dual space of V. Then for $f \in V^{* *}$, there exists $f_{0} \in V$ such that

$$
\frac{\lambda_{1}(f)+d}{\lambda_{2}(f)+d}=\frac{\lambda_{1}\left(f_{0}\right)+d}{\lambda_{2}\left(f_{0}\right)+d}
$$

Proof. Let $f \in V^{* *}$ and put

$$
\begin{equation*}
\lambda(F)=\left(\lambda_{1}(f)+d\right) \lambda_{2}(F)-\left(\lambda_{2}(f)+d\right) \lambda_{1}(F) \tag{4}
\end{equation*}
$$

Then $\lambda \in \Lambda$ and $\lambda(f)=d\left(\lambda_{2}(f)-\lambda_{1}(f)\right)$. Now by the duality principle [4, Theorem 1.1], $\lambda\left(V^{* *}\right)=\lambda(V)$ and so there exists $f_{0} \in V$ such that $\lambda\left(f_{0}\right)=d\left(\lambda_{2}(f)-\lambda_{1}(f)\right)$. Hence using (4) with F replaced by f_{0} gives

$$
\left(\lambda_{1}(f)+d\right)\left(\lambda_{2}\left(f_{0}\right)+d\right)=\left(\lambda_{2}(f)+d\right)\left(\lambda_{1}\left(f_{0}\right)+d\right)
$$

By hypothesis $0 \notin \lambda_{2}(V) \oplus d$ and $0 \notin \lambda_{2}\left(V^{* *}\right) \oplus d$ by duality. Thus

$$
\frac{\lambda_{1}(f)+d}{\lambda_{2}(f)+d}=\frac{\lambda_{1}\left(f_{0}\right)+d}{\lambda_{2}\left(f_{0}\right)+d}
$$

Proof of Theorem 1. From (1) we have

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=\frac{z^{\alpha}((1-\beta) h(z)+\beta)}{\alpha \int_{0}^{z}[(1-\beta) h(\xi)+\beta] \xi^{\alpha-1} d \xi} \tag{5}
\end{equation*}
$$

where $\operatorname{Re} e^{i \psi} h(z)>0$ for $z \in D$ and $h(0)=1$. Thus

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}-\frac{(1-\beta) h(z)+\beta}{\alpha \int_{0}^{1}(1-\beta) h(t z) t^{\alpha-1} d t+\beta} \tag{6}
\end{equation*}
$$

It follows from Lemma 2 and Theorem 1.6 in [4] that any value assumed by the right-hand side of (6) for some $z \in D$, is also assumed for this z when $h(z)$ is a function of the form $(1+x z) /(1+y z)$ where $|x|,|y|=1$. So we may write

$$
\begin{equation*}
h(z)=\frac{1+x z}{1-z}, \quad \text { where }|x|=1 \tag{7}
\end{equation*}
$$

when obtaining upper or lower bounds for $\left|z f^{\prime}(z) / f(z)\right|$.
Using (5) and (7), we have

$$
\frac{z f^{\prime}(z)}{f(z)}=G(z)\left(\frac{1+(1-\beta) x z /(1-\beta z)}{1+x F(z)}\right) \text { where } G(z)=(1-\beta z)\left(\frac{1-F(z)}{1-z}\right)
$$

Since $|F(z)|<1$ and $(1+a x) /(1+b x)$ maps the closed unit disc onto the circle centre $(1-a \bar{b}) /\left(1-|b|^{2}\right)$, radius $|a-b| /\left(1-|b|^{2}\right)$ provided $|b|<1$, we deduce that

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}\right| \leq \frac{1}{1-|F(z)|^{2}}\left(\left|I_{1}\right|+\left|I_{2}\right|\right) \tag{8}
\end{equation*}
$$

where $I_{1}=G(z)\left(\frac{(1-\beta) z}{1-\beta z}-F(z)\right)$ and $I_{2}=G(z)\left(1-\frac{(1-\beta) z \overline{F(z)}}{1-\beta z}\right)$. Now

$$
I_{1}=(1-F(z))\left(\frac{(1-\beta) z}{1-z}-\frac{(1-\beta z)(F(z)}{1-z}\right)=(1-F(z))(G(z)-1)
$$

Also

$$
\begin{aligned}
I_{2} & =(1-F(z))\left[\left(\frac{1-\beta z}{1-z}\right)(1-\overline{F(z)})+\overline{F(z)}\right] \\
& =(1-\overline{F(z)})(G(z)-1)+1-|F(z)|^{2}
\end{aligned}
$$

From the definition of $F(z)$ and $G(z)$ we have

$$
z F^{\prime}(z)=\alpha(1-F(z))(G(z)-1)
$$

and so from (8)

$$
\left|\frac{z f^{\prime}(z)}{f(z)}\right| \leq \frac{2\left|z F^{\prime}(z)\right|}{\alpha\left(1-|F(z)|^{2}\right)}+1
$$

Using Lemma 1 we deduce that

$$
\left|\frac{z f^{\prime}(z)}{f(z)}\right| \leq \frac{2 r F^{\prime}(r)}{\alpha\left(1-F(r)^{2}\right)}+1
$$

and the result follows on substituting for $F(r)$.
In order to prove Theorem 2, we require the following:
Lemma 3. For $0<\beta<1$ and $z=r e^{i \theta} \in D$,

$$
\frac{|1-z|}{|1-\beta z|-(1-\beta) r} \leq\left[\frac{1-\beta r^{2}}{\beta\left(1-r^{2}\right)}\right]^{1 / 2}
$$

Proof. Fix β in $(0,1)$ and put

$$
\varphi(z)=\frac{|1-z|}{|1-\beta z|-(1-\beta) r}
$$

Then

$$
\frac{\partial}{\partial \theta}|1-\beta z|=|1-\beta z| \operatorname{Im} \frac{\beta z}{1-\beta z}=\frac{\beta r \sin \theta}{|1-\beta z|}
$$

and so, after a simple calculation,

$$
\begin{equation*}
\frac{\partial}{\partial \theta}|\varphi(z)|=\frac{(1-\beta) r \sin \theta}{|1-z|}\left(\frac{1-\beta r^{2}}{|1-\beta z|}-r\right) \tag{9}
\end{equation*}
$$

Let $\lambda=\lambda(r)$ denote any value of z for which

$$
\begin{equation*}
|1-\beta z|=r^{-1}\left(1-\beta r^{2}\right) \tag{10}
\end{equation*}
$$

Such values exist for all sufficiently large r in $(0,1)$, since (9) is true if, and only if,

$$
\begin{equation*}
2 r \beta \cos \theta=2 \beta+1-r^{-2} \tag{11}
\end{equation*}
$$

We now show that

$$
\begin{equation*}
\varphi(r) \leq \varphi(-r) \leq \varphi(\lambda(r))=\left[\frac{1-\beta r^{2}}{\beta\left(1-r^{2}\right)}\right]^{1 / 2} \tag{12}
\end{equation*}
$$

and this, together with (11) will establish the lemma.
It is easy to verify that $\varphi(r) \leq \varphi(-r)$. Now $\varphi(-r) \leq \varphi(\lambda(r))$ is equivalent (on squaring and subtracting 1 from each side) to the inequality

$$
\frac{4 \beta r(1+\beta r)}{(1+2 \beta r-r)^{2}} \leq \frac{1}{1-r^{2}}
$$

If $0<p<1, x(2+x) /(p+x)^{2}$ assumes its maximum value at $p /(1-p)$ when $x>-p$. Thus with $x=2 \beta r$ and $p=1-r$, we have

$$
\frac{4 \beta r(1+\beta r)}{(1+2 \beta r-r)^{2}} \leq \frac{x(2+x)}{(p+x)^{2}} \leq \frac{((1-r) / r)(2+(1-r) / r)}{(1-r+(1-r) / r)^{2}}=\frac{1}{1-r^{2}}
$$

Finally, using (10) and (11) we obtain

$$
\varphi(\lambda(r))=\frac{\left[1-\beta^{-1}\left(2 \beta+1-r^{-2}\right)+r^{2}\right]^{1 / 2}}{r^{-1}-\beta r-(1-\beta) r}=\left[\frac{1-\beta r^{2}}{\beta\left(1-r^{2}\right)}\right]^{1 / 2}
$$

Proof of Theorem 2. As in the proof of Theorem 1, we write $h(z)=(1+$ $x z) /(1-z)$ where $|x|=1$. Thus we have from (5)

$$
\frac{z f^{\prime}(z)}{f(z)}=\left(\frac{1+x^{\prime} z}{1-z}\right) /\left(\alpha \int_{0}^{1} t^{\alpha-1} \frac{1+x^{\prime} t z}{1-t z} d t\right)
$$

where $x^{\prime}=(1-\beta) x-\beta$ and so

$$
\begin{equation*}
\frac{f(z)}{z f^{\prime}(z)}=\alpha \int_{0}^{1} t^{\alpha-1} \frac{1+x^{\prime} t z}{1+x^{\prime} z} \frac{1-z}{1-t z} d t=\alpha \int_{0}^{1} t^{\alpha-1}\left(\frac{1-t}{1+x^{\prime} z}+t\right) \frac{1-z}{1-t z} d t \tag{13}
\end{equation*}
$$

Hence

$$
\begin{aligned}
\left|\frac{f(z)}{z f^{\prime}(z)}\right| & \leq \alpha \int_{0}^{1} t^{\alpha-1} \frac{|1-z|}{\left|1+x^{\prime} z\right|} d t+\alpha \int_{0}^{1} t^{\alpha}\left|\frac{1-z}{1-t z}\right| d t \\
& \leq \alpha \int_{0}^{1} t^{\alpha-1} \frac{|1-z|}{|1-\beta z-(1-\beta) x z|} d t+\alpha \int_{0}^{1} t^{\alpha} \frac{1+r}{1+t r} d t \\
& \leq \alpha \int_{0}^{1} t^{\alpha-1} \frac{|1-z|}{|1-\beta z|-(1-\beta) r} d t+\alpha \int_{0}^{1} \frac{2 t^{\alpha}}{1+t} d t
\end{aligned}
$$

Lemma 3 now gives

$$
\left|\frac{f(z)}{z f^{\prime}(z)}\right| \leq \alpha\left[\frac{1-\beta r^{2}}{\beta\left(1-r^{2}\right)}\right]^{1 / 2} \int_{0}^{1} t^{\alpha-1} d t+\alpha \int_{0}^{1} t^{\alpha-1} d t=\left[\frac{1-\beta r^{2}}{\beta\left(1-r^{2}\right)}\right]^{1 / 2}+1
$$

which completes the proof of Theorem 2.
Proof of Theorem 3. We use the function $\lambda(r)$ defined in Lemma 3 and in particular the fact that as $r \rightarrow 1, \varphi(\lambda(r)) \rightarrow \infty$ and $\lambda(r)=r e^{i \theta} \rightarrow 1$, which follows from (12) and (11) respectively. These properities allow us to choose δ in $(0,1)$, and r in $(\rho, 1)$ such that for $\lambda=\lambda(r)$

$$
\begin{equation*}
\left(\delta+2 \delta^{\alpha}-2-1 / \mu\right) \varphi(\lambda)>1 \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha \int_{0}^{\delta} t^{\alpha}\left|\frac{1-\lambda}{1-t \lambda}\right| d t<1-\delta \tag{15}
\end{equation*}
$$

Also choose x_{0} so that $\left|x_{0}\right|=1$ and so that $x_{0} \lambda$ has the same argument as $\beta \lambda-1$ and let $x_{0}^{\prime}=(1-\beta) x-\beta$. We also note, using Lemma 3 that for $|z|=r$, and $x^{\prime}=(1-\beta) x-\beta,|x|=1$,

$$
\begin{equation*}
\left|\frac{1-z}{1+x^{\prime} z}\right| \leq \varphi(z) \leq \varphi(\lambda)=\left|\frac{1-\lambda}{1+x^{\prime}{ }_{0} \lambda}\right| \tag{16}
\end{equation*}
$$

Now let f be given by (5), where h is any function satisfying $\operatorname{Re} e^{i \psi} h(z)>0$. Then for some x^{\prime} as above (13) gives

$$
\begin{equation*}
\left|\frac{f(z)}{z f^{\prime}(z)}\right| \geq J_{1}-J_{2}-J_{3} \tag{17}
\end{equation*}
$$

where

$$
\begin{gathered}
J_{1}=\alpha\left|\int_{0}^{\delta} t^{\alpha-1} \frac{1-t}{1+x^{\prime} z} \frac{1-z}{1-t z} d t\right|, \quad J_{2}=\alpha \int_{\delta}^{1} t^{\alpha-1}\left|\frac{1-t}{1+x^{\prime} z} \frac{1-z}{1-t z}\right| d t \\
\text { and } \quad J_{3}=\alpha \int_{0}^{1} t^{\alpha}\left|\frac{1-z}{1-t z}\right| d t
\end{gathered}
$$

For J_{3} we obtain

$$
J_{3} \leq \alpha \int_{0}^{1} t^{\alpha} \frac{1+r}{1+t r} d t \leq \alpha \int_{0}^{1} \frac{2 t^{\alpha}}{1+t} \leq \alpha \int_{0}^{1} t^{\alpha-1} d t=1
$$

Also, using (16)

$$
J_{2} \leq \alpha \varphi(\lambda) \int_{\delta}^{1} t^{\alpha-1}\left|\frac{1-t}{1-t z}\right| d t \leq \alpha \varphi(\lambda) \int_{\delta}^{1} t^{\alpha-1} d t=\left(1-\delta^{\alpha}\right) \varphi(\lambda)
$$

We now choose h specifically so that for $z=\lambda$ the right-hand side of (5) is given by taking $\left(1+x_{0} t\right) /(1-t)(|t|<1)$ in place of h. For this h we define f by putting $h(z)=f^{\prime}(z)(f(z) / z)^{\alpha-1}-\beta$ so that we have (5). Then

$$
\begin{aligned}
J_{1} & =\alpha\left|\frac{1-\lambda}{1+x^{\prime}{ }_{0} \lambda}\right|\left|\int_{0}^{\delta} t^{\alpha-1}\left(1-\frac{t(1-\lambda)}{1-t \lambda}\right) d t\right| \\
& \geq\left|\frac{1-\lambda}{1+x_{0}^{\prime} \lambda}\right|\left(\delta^{\alpha}-\int_{0}^{\delta} \alpha t^{\alpha}\left|\frac{1-\lambda}{1-t \lambda}\right| d t\right)
\end{aligned}
$$

Thus from (15) and (16) we deduce that

$$
J_{1} \geq\left(\delta^{\alpha}+\delta-1\right)\left|\frac{1-\lambda}{1+x^{\prime}{ }_{0} \lambda}\right|=\left(\delta^{\alpha}+\delta-1\right) \varphi(\lambda)
$$

The estimates for J_{1}, J_{2}, J_{3} together with (17) and (14) give

$$
\left|\frac{f(\lambda)}{\lambda f^{\prime}(\lambda)}\right| \geq \varphi(\lambda)\left(\delta+2 \delta^{\alpha}-2\right)-1>\mu^{-1} \varphi(\lambda)
$$

REFERENCES

[1] I. E. Bazilevic, Über einen Fall der Integrierbarkeit in der Quadratur der Gleichung von Löwner-Kufarev, Math. Sb. 37 (1955), 471-476.
[2] F. Gray and S. Ruscheweyh, Functions whose derivate take values in a half-plane, Proc. Amer. Math. Soc. 104 (1988), 215-218.
[3] R. R. London and D. K. Thomas, On the derivative of Bazilevic functions, Proc. Amer. Math. Soc. 104 (1988), 235-238.
[4] S. Ruscheweyh, Convolutions in Geometric Function Theory, Sem. Math. Sup., Univ. Montréal 83 (1982).
[5] D. K. Thomas, On Bazilevic functions, Trans. Amer. Math. Soc. 132 (1968), 353-361.

Department of Mathematics and Computer Science (Received 1002 1989)
University College of Swansea
Swansea SA2 8PP
Wales, Great Britain

