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CLASSES OF WEIGHTED SYMMETRIC FUNCTIONS�

Tan Cao Tran

Abstract. We generalize the concept of the k-th symmetric di�erence in the sense of
Stein and Zygmund to that of symmetric di�erence with respect to a weight system of order
n and the concept of symmetrically continuous functions and symmetric functions to that of
functions symmetric with respect to a weight system of order n. We also study the classes of
even symmetry and odd symmetry consisting of functions whose limits to the right and to the left
exist at each point; hence, their set of points of discontinuity is countable, and they are in Baire
class one. The functions symmetric with respect to a �xed weight system Wn of order n form
a linear space V (Wn), and the subclass B(Wn) consisting of bounded functions forms a Banach
space with the norm kfk = sup jf(x)j.

Classes of weighted symmetric functions

De�nitions: We call a weight system of order n a set of real numbers

Wn = fw�n; . . . ; w�1; w0; w1; . . . ; wng

such that
Pn

k=�n wk = 0 and jwnj+ jw�nj > 0.

We say that a weight system Wn is even if

w�k = wk; k = 0; 1; . . . ; n;

with
Pn

k=1 wk 6= 0 and w0 = �2
Pn

k=1 wk 6= 0 and a weight system Wn is odd if

w�k = �wk; k = 0; 1; . . . ; n;

with
Pn

k=1 wk 6= 0 and w0 = 0.

We call symmetric diference with respect to a weight system Wn of order n
for a �nite real function f(x) the following expression

�f(x;Wn; h) =

nX
k=�n

wkf(x+ kh=2):
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This symmetric di�erence includes the k-th symmetric di�erence introduced by
Stein and Zygmund [4]:

�kf(x; h) =

kX
i=0

(�1)i
�
k

i

�
f [x+ (k � 2i)h=2]:

A function f(x) will be called symmetric wih respect to a weight system Wn

if
lim
h!0

�f(x;Wn; h) = 0;

and then we write f 2 S(Wn).

We see clearly that if W1 is odd, then S(W1) is the class of symmetrically
continuous functions, that is, the class of functions satisfying the condition

lim
h!0

�
f(x+ h)� f(x� h)

�
= 0;

and ifW1 is even, S(W1) is the class of symmetric functions satisfying the condition

lim
h!0

�
f(x+ h) + f(x� h)� 2f(x)

�
= 0:

Remark : Some classes are equal.

Example 1: Consider

W1 = f1;�2; 1g

W2 = f1; 0;�2; 0; 1g

W3 = f1; 0; 0;�2; 0; 0; 1g

Wn = f1; 0; . . . ; 0;�2; 0; . . . ; 0; 1g;

then
S(W1) = S(W2) = S(W3) = � � � = S(Wn):

Example 2: Let

W1 = f�1; 0; 1g

W2 = f�1; 0; 0; 0; 1g

Wn = f�1; 0; . . . ; 0; . . . ; 0; 1g;

then
S(W1) = S(W2) = � � � = S(Wn):

Example 3: Let W1 = f1;�2; 1g and let W2 be an even weight system

W2 = fa; b; c; b; ag

such that
a 6= 0; c = �2(a+ b); jaj < jbj and w = b=a < 0:
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Let B(W1) be the class of functions bounded and symmetric with respect
to W1; B(W2) the class of functions bounded and symmetric with respect to W2.
Then

B(W2) = B(W1):

Proof : Prop. 2, which follows this example, shows that

f 2 B(W1)) f 2 B(W2):

Now we prove
f 2 B(W2)) f 2 B(W1):

Since f is bounded, we may assume f(0) = 0. For if f(0) 6= 0, the function

g(x) = f(x)� f(0)

satis�es g(0) = 0 and

lim
h!0

2X
k=�2

w�kg(kh=2) = lim
h!0

2X
k=�2

wk [f(kh=2)� f(0)]

= lim
h!0

2X
k=�2

w�kf(kh=2)� f(0)

2X
k=�2

wk = 0:

There exists an M > 0 such that, for every x,

jf(x)j < M:

We show that if f is not symmetric with respect to W1 at x = 0, then there is a
contradiction.

Suppose there exists a sequence hn ! 0 and

f(hn) + f(�hn)� 2f(0) > ":

Since f is symmetric with respect to W2, there exists a Æ > 0 such that for jhj < Æ��a�f(�2h) + f(2h)
�
+ b

�
f(�h) + f(h)

��� < "jaj:

Let w = b=a with jwj > 1. Then

jf(�2h) + f(2h) + w [f(�h) + f(h)] j < ":

Since hn ! 0, we have, for n suÆciently large,

(1) �" < f(�2hn) + f(2hn) + w [f(�h) + f(h)] < ":

But �w > 1, and thus we have

(2) �w" < �w [f(�hn) + f(hn)] :

From (1) and (2)

(3) (�w � 1)" < f(�2hn) + f(2hn):
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We also have, for n suÆciently large,

(4) �" < f(�4hn) + f(4hn) + w [f(�2hn) + F (2hn)] < ":

And by (3) it follows that

(5) (w2 + w)" < �w [f(�2hn) + f(2hn)] :

From (4) and (5):
(w2 + w � 1)" < f(�4hn) + f(4hn):

Similarly, for n suÆciently large:

(�w3 � w2 + w � 1)" < f(�8hn) + f(8hn):

In general, let

ap = (�1)pwp + (�1)pwp�1 + (�1)p�1wp�2 + (�1)p�2wp�3 + � � � � 1:

Then for n suÆciently large it follows that

ap" < f(�2phn) + f(2phn):

We can choose p and n so that

ap" > M and 2pjhnj < Æ:

Then
f(2phn) + f(2phn) > M:

This is a contradiction.

PROPOSITION 1. If f is continuous, then f 2 S(Wn) for any weight system

Wn.

Proof : Since

lim
h!0

f(x+ kh=2) = f(x); k = �n; . . . ; n;

we have

lim
h!0

nX
k=�n

wkf(x+ kh=2) = f(x)

nX
k=�n

wk = 0:

PROPOSITION 2. If f is symmetric, then f is symmetric with respect to any

even weight system of any order .

Proof : Let Wn be any even weight system. Then

�F (x;Wn; h) =
nX

k=�n

wkf(x+ kh=2)

=

nX
k=1

wk [f(x+ kh=2) + f(x� kh=2)� 2f(x)] :
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Since
lim
h!0

f(x+ h=2) + f(x� h=2)� 2f(x) = 0;

we have

lim
h!0

f(x+ kh=2) + f(x� kh=2)� 2f(x) = 0; k = 0; 1; . . . ; n:

Thus
lim
h!0

�f(x;Wn; h) = 0:

COROLLARY. Ssym =
T
1

n=1 S(even-Wn) where Ssym is the class of symmetric

functions, and S(even-Wn) is the class of functions symmetric with respect to an

even system Wn.

PROPOSITION 3. If f is symetrically continuous, then f is symmetric with

respect to any odd weight system of any order .

Proof : Let Wn be any odd weight system. Then

�f(x;Wn; h) =

nX
k=1

wk [f(x+ kh=2)� f(x� kh=2)] :

Since
lim
h!0

f(x+ h=2)� f(x� h=2) = 0;

we have
lim
h!0

f(x+ kh=2)� f(x� kh=2) = 0:

Thus
lim
h!0

�f(x;Wn; h) = 0:

COROLLARY. Ssc =
T
1

n=1 S(odd-Wn) where Ssc is the class of symmetrical-

ly continuous functions, and S(odd-Wn) is the class of functions symmetric with

respect to an odd system Wn.

PROPOSITION 4. There are functions symmetric with respect to an even weight

system of order 2 but not symmetric.

Proof : 1) First we construct a bounded function, which is symmetric with
respect to

W2 = f1; 1;�4; 1; 1g at x = 0

but not symmetric at x = 0.

Let c be a �xed positive number.

We de�ne f as follows: f(0) = 0. For x 62 (�2c; 2c); f(x) = 0.

For x > 0,
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f(x) = 0 for x = 2c; c; c=2; c=22; . . . ; c=2n . . .

f(x) = 1 for x = 3c=2; 3c3=2; . . . ; 3c=22n+1; . . .

f(x) = �1 for x = 3c=22; 3c=24; . . . ; 3c=22n . . . :

For x < 0 :

f(x) = 0 for x = �2c;�c;�c=2;�c=22; . . . ;�c=2n; . . .

x = �3c=2;�3c=22; 3c=23; . . . ; 3c=2n; . . .

f(x) = 1 for x = �7c=23;�7c=25; . . . ;�7c=22n+3; . . .

x = �5c=23;�5c=25; . . . ;�5c=22n+3; . . .

f(x) = �1 for x = �7c=22;�7c=24; . . . ;�7c=22n; . . .

x = �5c=22;�5c=24; . . . ;�5c=22n; . . . :

Between any two consecutive points listed above, f(x) is linear. Then we see easily
that f is symmetric with respect to W2 at x = 0 but not symmetric at x = 0.

2) We also construct an unbounded function, which is symmetric with respect
to the system

W2 = f2; 1;�6; 1; 2g at x = 0

but not symmetric at x = 0.

Let c > 0 and let

f(x) = 1 for x 2 (�2c; 2c)

f(x) = 0 for x = 0

f(x) = 1 for x = �2c;�c=2;�c=23; . . . ; �/22n+1; . . .

f(x) = 1=8 for x = �c;�c=22;�c=24; . . . ;�c=22n; . . .

f(x) = 1 for x = 2c

f(x) = �33=8 for x = c:

At the points
x = c=2; c=22; c=23; . . .

we de�ne f(x) by the recursion formula

2[f(c=2n) + f(�c=2n)] + f(c=2n+1) + f(�c=2n+1) = 0

and we let f(x) be linear between any two consecutive points listed above. This
function is symmetric with respect to W2 but not symmetric at x = 0. To show
this, we need the lemma:

LEMMA. For the function f given above and each h = c=2n

2[f(�2h) + f(2h)] + f(�h) + f(h) = 0(1)

2[f(�h) + f(h)] + f(�h=2) + f(h=2) = 0(2)
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and, for any t in [h=2; h], f satisi�es

2[f(�2t) + f(2t)] + f(�t) + f(t) = 0:

Proof of the lemma: Let

f(�2h) = a0; f(2h) = a00

f(�h) = a1; f(h) = a01

f(�h=2) = a2; f(h=2) = a02:

Thus

(1) holds, 2(a0 + a00) + a1 + a01 = 0;

(2) holds, 2(a1 + a01) + a2 + a02 = 0:

Let L1 be the segment joining (�2h; a0) and (�h; a1); L2 joining (2h; a00) and
(h; a01); L3 joining (�h; a1) and (�h=2; a2); L3 joining (h; a01) and (h=2; a02).

L1 : y � a0 = (a1 � a0)(x+ 2h)=h

L2 : y � a00 = (a01 � a00)(x � 2h)=h

L3 : y � a1 = 2(a2 � a1)(x + h)=h

L4 : y � a01 = �2(a02 � a01)(x � h)=h:

Thus,

f(�2t) = (a1 � a0)(�2t+ 2h) + a0

f(2t) = �(a1
0 � a00)(2t� 2h) + a00

f(�t) = 2(a2 � a1)(�t+ h)=h+ a1

f(t) = �2(a02 � a01)(t� h)=h+ a01:

So for every t in [h=2; h],

2[f(�2t) + f(2t)] + f(�t) + f(t) = 0:

This lemma applied to each step, shows that f is symmetric with respect to W2 at
x = 0. But by the recursion formula

f(c=2n+1) + f(�c=2n+1) = �2[f(c=2n) + f(�c=2n)];

we have:

f(c=2n+1) + f(�c=2n+1) = (�2)[f(c) + f(�c)]

= (�2)n+1[f(2c) + f(�2c)] = 2(�2)n+1:

Thus f is not symmetric at x = 0.

PROPOSITION 5. There are functions symmetric with respect to an odd weight

system of order 2 but not symmetrically continuous .
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Proof . 1) First we construct a bounded function symmetric with respect to

W 0

2 = f�1;�1; 0; 1; 1g:

Let f(x) be the function of Part 1 in the proof of Prop. 4. Then we de�ne

g(x) = f(x) for x � 0

g(x) = �f(x) for x < 0:

This function g(x) is symmetric with respect toW 0

2 and not symetrically continuous
at x = 0.

2) We also construct an unbounded function symmetric with respect to

W 00

2 = f�2;�1; 0; 1; 2g:

Let c > 0 and let

f(x) = �1 for x � �2c

f(x) = 0 for x = 0

f(x) = �1 for x = �2c;�c=2;�c=23; . . . ;�c=22n+1

f(x) = �1=8 for x = �c;�c=22;�c=24; . . . ;�c=22n

f(x) = 1 for x � 2c

f(x) = �33=8 for x = c.

At the points
x = c=2; c=22; c=23; . . . ; c=2n; . . .

we de�ne f(x) by the recursion formula

2
�
f(c=2n)� f(�c=2n)

�
+ f(c=2n+1)� f(�c=2n+1) = 0

and let f(x) be linear between any two consecutive points listed above. Then by a
proof similar to that of Part 2 in Prop. 4, we see that the function f(x) de�ned here
is symmetric with respect to the odd system W 00

2 but not symmetrically continuous
at x = 0.

Thus there is a variety of functions satisfying di�erent weighted symmetric
conditions.

PROPOSITION 6. A function f is continuous i� f is both symmetric and

symmetrically continuous.

Proof: If f is continuous, by Prop. 1, f is both symmetric and symmetrically
continuous.

Conversely, suppose f is both symmetric and symmetrically continuous, then

lim
h!0

�
f(x+ h=2)� f(x� h=2)

�
= 0(1)



Classes of weighted symmetric functions 67

lim
h!0

�
f(x+ h=2) + f(x� h=2)� 2f(x)

�
= 0:(2)

From (1) and (2) we have

lim
h!0

�
2f(x+ h=2)� 2f(x)

�
= 0:

Thus, f(x+ 0) = f(x� 0) = f(x) and f is continuous.

PROPOSITION 7. If f is symmetric with respect to an even (odd ) weight system
Wn of order n, and if at each point the limits to the right and to the left of f exist,

then f is symmetric with respect to any even (odd ) weight system of any order.

Proof : Fix n � 1. Let f be symmetric with respect to an even or odd system
Wn.

If n = 1, then the results are true by Prop. 2 and Prop. 3. Suppose n > 1
and Wn is even.

Since the right limits and left limits exist at each point x, we have

lim
h!0

nX
k=1

wk
�
f(x+ h=2) + f(x� h=2)� 2f(x)

�
= 0

�
f(x+ 0) + f(x� 0)� 2f(x)

� nX
k=1

wk = 0:

By the de�nition of an even weight system, we have

nX
k=1

wk 6= 0:

Thus
f(x+ 0) + f(x� 0)� 2f(x) = 0:

So f is symmetric, and by Prop. 2, f is symmetric with respect to any even system
of any order.

If Wn is odd, we have

lim
h!0

nX
k=1

wk
�
f(x+ kh=2) + f(x� kh=2)

�
= 0

and �
f(x+ 0) + f(x� 0)

� nX
k=1

wk = 0:

Since
Pn

k=1 wk 6= 0, we have

f(x+ 0)� f(x� 0) = 0:

Thus f is symmetrically continuous and hence, by Prop. 3, f is symmetric with
respect to any odd system of any order.
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By Prop. 7, we see that functions which are symmetric with respect to an
even (odd) weight system and whose limits to the right and to the left at each
point exist form a special subclass of symmetric functions. There are only two such
subclasses which we call even symmetry class and odd symmetry class denoted by
Seven and Sodd.

1) A function in the even (odd ) symmetry class is symmetric with respect to

any even (odd ) weight system of any order.

2) If f is measurable and f is in Seven or Sodd, then the set of points of

discontinuity of f is countable ; hence, f is in Baire class one. For it is well known
that, for a function f , if the right limit and left limit exist at each point, then the
set of points of discontinuity is countable, and f is, therefore, Baire 1 [2, p. 283].

3) Seven �
T
1

n=1 S(even-Wn) = Ssym.

The inclusion is strict; for instance, the function

f(x) = 1 + sin(1=x) for x > 0

f(x) = 0 for x = 0

f(x) = �1 + sin(1=x) for x < 0

is symmetric, but the right limit and left limit do not exist at x = 0.

4) Sodd �
T
1

n=1 S(odd-Wn) = Ssc.

The inclusion is strict because the function

f(x) = cos(1=x) for x 6= 0

f(x) = 0 for x = 0

is symmetrically continuous, but the right limit and left limit do not exist at x = 0.

Now consider the class of functions such that at each x,

lim
h!0+

lim
m!0+

nX
k=1

wk
�
f(x+ kh=2) + f(x� km=2)� 2f(x)

�
= 0

if Wn is even, and

lim
h!0+

lim
m!0+

nX
k=1

wk
�
f(x+ kh=2) + f(x� km=2)

�
= 0

if Wn is odd.

Then it is clear that the left limit and the right limit of f exist at each point

x. Hence, the set of points of discontinuity of f is countable, and f is Baire 1.

PROPOSITION 8. If ffig is a sequence of functions symmetric with respect to

a �xed weight system Wn (Wn need not be even or odd ), and if f is the uniform

limit of ffig, then f is symmetric with respect to Wn.
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Proof. We have

�f(x;Wn; h) = �f(x;Wn; h)��fi(x;Wn; h) + �fi(x;Wn; h)

=

nX
k=�n

wk
�
f(x+ kh=2)� fi(x+ kh=2)

�
+�fi(x;Wn; h):

Then

j�f(x;Wn; h)j �

nX
k=�n

jwk j � jf(x+ kh=2)� fi(x+ kh=2)j+ j�fi(x;Wn; h)j:

Since fi is symmetric with respect to Wn, there is a Æ > 0 such that

j�fi(x;Wn; h)j < "=2 for jhj < Æ.

Since fi ! f uniformly, there is an N > 0 such that

jf(x+ kh=2)� fi(x + kh=2)j < " �

�
2

nX
k=�n

jwkj

�
�1

for i > N .

Thus
j�f(x;Wn; h)j < " for jhj < Æ.

PROPOSITION 9. Given a weight system Wn of order n, the sum of two func-

tions symmetric with respect to Wn is symetric with respect to Wn.

Proof : Suppose

lim
h!0

�f(x;Wn; h) = 0; lim
h!0

�g(x;Wn; h) = 0;

then

lim
h!0

�(f + g)(x;Wn; h) = lim
h!0

�f(x;Wn; h) + lim
h!0

�g(x;Wn; h) = 0:

PROPOSITION 10. The product of a function symmetric with respect to a weight

system Wn by a scalar is symmetric with respect to Wn.

Proof : Suppose
lim
h!0

�f(x;Wn; h) = 0:

Then
lim
h!0

�(cf)(x;Wn; h) = c lim
h!0

�f(x;Wn; h) = 0:

THEOREM. Given a weight system Wn of order n, the functions symmet-

ric with respect to Wn form a linear space V (Wn). The uniform limit of a se-

quence in V (Wn) belongs to V (Wn). Moreover, if B(Wn) is the subspace of V (Wn)
consisting of bounded functions, then B(Wn) is a Banach space with the norm

kfk = sup jf(x)j.
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