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STOCHASTIC STRUCTURE

OF SOME COMPLETELY MONOTONE FUNCTIONS

P. M. Peruni�ci�c

Abstract. We describe the stochastic structure of some completely monotone functions.
The presented results are connected with stability in some rarefaction procedures [3].

Introduction. Let �(s) = s�1
�
1 � exp(�s)

�
(�(0) = 1) be the Laplace

transform of U(0; 1) measure, and

�1(s) = exp

�
�

Z s

0

�(u) du

�
: (1)

We will show that �1(s) is the Laplace transform of the probability measure on
R
+, and give the precise construction of a random variable with such distribution.

THEOREM 1. Let fXn; n � 1g be the markovian sequence of random variables

given by

X1 : U(0; 1)& Xn+1jXn : U(0; Xn) (n 2 N):

Then

S =

1X
1

Xn

exists in mean square and with probability one.

Proof. By induction on n we get that the density function for Xn is

fn(x) =
�
�(n)

��1�
� ln(x)

�n�1
; 0 < x < 1:

Therefore EXn = 2�n; EX2
n = 3�n for n � 1.

Let Sn = X1 + � � �+Xn. For m > n

EjSm � Snj
2 =

mX
n+1

E(X2
k) +

X
k 6=l

E(XkXl):
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fSn; n � 1g is a Cauchy sequence in L2 sense. Indeed, as

E(XkXl) �
�
E(X2

k)
�1=2�

E(X2
l )
�1=2

= 3�(k+l)=2

for every k and l, it follows that

EjSm � Snj
2 �

� mX
n+1

3�k=2
�2

:

In this way, EjSm � Snj
2 ! 0, n;m ! 1, and we have proved that S exists in

mean square.

S exists with probability one, too. That follows from the fact that

sup
m>n

� mX
n+1

Xk

�
P
�! 0; n;m!1:

Put Yn = Xn+1X
�1
1 , n � 1. In the following theorem we will prove that the

sequence Yn has the same stochastic structure as Xn.

THEOREM 2. fYn; n � 1g is a markovian sequence, independent of X1, such

that Y1 : U(0; 1)& Yn+1jYn : U(0; Yn).

Proof . Let y 2 (0; 1). Then

PfY1 < yg = E
�
PfX2 < yX1gjX1

�
= E(yjX1) = y

so Y1: U(0; 1) is independent of X1. Furthermore,

PfYn+1 < yjYng = PfXn+2 < yX1jXn+1X
�1
1 g:

As F(Xn+1X
�1
1 ) � F(Xn+1; X1), where F( ) denotes the �-�eld generated by

the random variable indicated between the brackets, we have

PfYn+1 < yjYng = E
�
E
�
IfXn+2 < yX1gjXn+1; X1

�
jXn+1X

�1
1

�
= E

�
E
�
IfXn+2 < yX1gjXn+1

�
jXn+1X

�1
1

�
= E

�
PfXn+2 < yX1jXn+1gjXn+1X

�1
1

�
= E

�
yX�1

n+1X1jX
�1
n+1X

�1
1

�
= yY �1n ;

so Yn+1jYn : U(0; Yn). Let us prove that the sequence fYng is markovian:

PfYn+1 < yjY1; . . . ; Yng = PfXn+2 < yX1jX2X
�1
1 ; . . . ; Xn+1X

�1
1 g:

Since F(X2X
�1
1 ; . . . ; Xn+1X

�1
1 ) � F(X1; . . . ; Xn+1) the conditional distribution

above is equal to

E
�
E
�
IfXn+2 < yX1gjX1; . . . ; Xn+1

�
jX2X

�1
1 ; . . . ; Xn+1X

�1
1

�
= E

�
E
�
IfXn+2 < yX1gjXn+1

�
jX2X

�1
1 ; . . . ; Xn+1X

�1
1

�
= E

�
yX1X

�1
n+1jX2X

�1
1 ; . . . ; Xn+1X

�1
1

�
= E

�
yY �1n jY1; . . . ; Yn

�
= yY �1n = PfYn+1 < yjYng;
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so the statement is proved.

Let us consider the distribution of S. Having in mind the properties of the
sequence fYng, it is easy to prove

THEOREM 3. The Laplace transform of the distribution of S is �1(u), intro-
duced in (1). Also,

�(u) = 1� u�1(u) and �1(u)
�
�1(qu)

��1
; 0 < q < 1;

are Laplace transforms of some probability measures on R+.

Proof . As

E exp(�uS) = EE
�
exp(�uS)jX1

�
= E exp(�uX1)E

�
exp

�
�uX1

1X
n=1

Yn

��

we have �(u) = E exp(�uS) = E exp(�uX1)�(X1u):

Since X1 : U(0; 1) it follows that

�(u) =

Z 1

0

exp(�ux)�(ux) dx or u�(u) =

Z u

0

exp(�y)�(y) dy:

As

EXn = 2�n; ES =

1X
1

EXn <1

it follows that �(u) is di�erentiable for all u � 0. Hence

�(u) + u�0(u) = exp(�u)�(u):

The solution of that simple di�erential equation, with the initial condition �(0) = 1,
is

�1(u) = exp

�
�

Z u

0

x�1
�
1� exp(�x)

�
dx

�
:

Now we prove that �(s) = 1�s�1(s) is an L-transform of some probability measure
on R+.

As �0(s) = � exp(�s)�1(s) and exp(�s) is an L-transform of the distribution
concentrated in the point x = 1, it follows that ��0(s) = exp(�s)�1(s), is an L-
transform of some probability measure on R+. In this way,

�
��0(s)

�
is completely

monotone (CM) and for all n � 0

(�1)n
�
��0(s)

�(n)
= (�1)n+1�n+1(s) � 0

or
(�1)n�(n)(s) � 0; n � 1:

Let us show that �(s) � 0. From 1.4.2. we have

s�1(s) =

Z s

0

exp(�y)�1(y) dy �

Z s

0

exp(�y) dy = 1� exp(�s) � 1;
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which is equivalent to �(s) � 0.

In this way, �(s) is a CM function with the property �(0) = 1.

Finally we prove that �1(s)
�
�1(qs)

��1
is an L-transform of some probability

measure on R+ for every q 2 (0; 1). Indeed

�1(s)
�
�1(qs)

��1
= exp

�
�

Z s

0

�(u) du+

Z qs

0

�(u) du

�

= exp

�
�

Z s

0

�
�(u)� q�(qu)

�
du

�

= exp

�
�

Z 1

0

x�1
�
1� exp(�sx)

�
d
�
minfx; 1g �minfx; qg

��
:

It is obvious that minfx; 1g�minfx; qg is a measure onR+. It is so-called canonical
measure of some in�nitely divisible law [1].

Consider the distribution function with L-transform �1. It has been proved

that S
D
= X1(1 + S0), where X1 and S0 are independent random variables, S0

D
= S

and X1 : U(0; 1). If L1 denotes the distribution function for S, then for z > 0

L1(z) =

ZZ
A

dx dL1(y);

where A = f(x; y) j x(y + 1) < z; 0 < x < 1; y > 0g. Therefore,

L1(z) =

Z 1^z

0

L1(zx
�1 � 1) dx;

where 1 ^ z = minf1; zg. For 0 < z � 1

L1(z) = cz; c =

Z 1

0

L1(y)(1 + y)�2 dy;

and for z > 1

L1(z) = z

Z 1

z�1

L1(y)(1 + y)�2 dy:

If l1 denotes the density function of this probability law, it follows that l1(z) = c

for 0 < z � 1 and

l1(z) = z�1
�
L1(z)� L1(z � 1)

�
; z > 1:

In this way, the distribution function L1(z) can be determined by solving that
di�erential equation over the intervals (n; n+ 1], n 2 N.

Let L be the distribution function with the Laplace transform �, introduced
in Theorem 3. As l1(z) = 1� L(z), it follows that L(z) = 1� c, z 2 (0; 1]. In this
way, L(z) has the jump in zero, i.e. L(0+)�L(0) = 1�c. Of course, L(z) is not the
unique distribution on R+ with stationary distribution L1(z) [2]. If we introduce
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F(z) = c�1fL(z) � (1 � c)g then F(z) is also a distribution function on R+ with
the same stationary distribution L1(z). At the same time, F is continuous in zero.
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