A PROPERTY OF GENERALIZED RAMANUJAN'S SUMS CONCERNING GENERALIZED COMPLETELY MULTIPLICATIVE FUNCTIONS

Pentti Haukkanen

Abstract

Let A be a regular convolution in the sense of Narkiewicz. A necessary and sufficient condition for a multiplicative function to be A-multiplicative (i.e. such that $f(n)=f(d) f(n / d)$ whenever $d \in A(n))$ is given in terms of generalized Ramanujan's sums. (With the Dirichlet convolution A-multiplicative functions are completely multiplicative.) In addition, another necessary and sufficient condition for a multiplicative function to be completely multiplicative is given in terms of generalized Ramanujan's sums as well. As an application a representation theorem in terms of Dirichlet series is given. The results of this paper generalize respective results of Ivić and Redmond.

Let A be a mapping from the set \mathbf{N} of positive integers to the set of subsets of \mathbf{N} such that for each $n \in \mathbf{N}, A(n)$ consists entirely of divisors of n. Then the A-convolution of arithmetical functions is defined by

$$
(f A g)(n)=\sum_{d \in A(n)} f(d) g(n / d)
$$

Narkiewicz [3] defined an A-convolution to be regular if
(a) the set of arithmetical functions is a commutative ring with unity with respect to the ordinary addition and the A-convolution,
(b) the A-convolution of multiplicative functions is multiplicative,
(c) the function 1 , defined by $1(n)=1$ for all n, has an inverse μ_{A} with respect to the A-convolution, and $\mu_{A}(n)=0$ or -1 whenever n is a prime power. By [3] it can be seen that an A-convolution is regular if and only if
(i) $A(m n)=\{d e: d \in A(m), e \in A(n)\}$ for all $(m, n)=1$,
(ii) for every prime power $p^{\alpha}>1$ there is a divisor $t=\tau_{A}\left(p^{\alpha}\right)$ of a, called the type of p^{α}, such that

$$
A\left(p^{\alpha}\right)=\left\{1, p^{t}, p^{2 t}, \ldots, p^{r t}\right\}
$$

AMS Subject Classification (1985): Primary 11 A 25
Key words and phrases: generalized completely multiplicative functions, regular convolutions, generalized Ramanujan's sums, Möbius function, Dirichlet series.
where $r t=a$, and

$$
A\left(p^{i t}\right)=\left\{1, p^{t}, p^{2 t}, \ldots, p^{i t}\right\} \quad \text { for all } i=0,1,2, \ldots, r-1
$$

The prime powers p^{t} are called A-primitive prime powers.
We assume throughout this paper that A is an arbitrary but fixed regular convolution. For example, the Dirichlet convolution D, where $D(n)$ is the set of all positive divisors of n, and the unitary convolution U, where $U(n)=$ $\{d>0: d \mid n,(d, n / d)=1\}$, are regular.

Yocom [6] defined an arithmetical function to be A-multiplicative if for each $n \in \mathbf{N}$

$$
f(d) f(n / d)=f(n) \quad \text { for all } d \in A(n)
$$

For example, the D-multiplicative functions are the well-known completely or (totally) multiplicative functiona and the U-multiplicative functions are the wellknown multiplicative functions. All A-multiplicative functions are multiplicative.

Yocom [6] proved that the following statements are equivalent:
(I) f is A-multiplicative,
(II) for each $n \in \mathbf{N}, f(n)=\prod f\left(p^{t}\right)^{a / t}$, where $n=\prod p^{a}$ is the canonical factorization of n and $t=\tau_{A}\left(p^{a}\right)$,
(III) $f(g A h)=f g A f h$ for all arithmetical functions g, h.

The inverse of an arithmetical function f with $f(1) \neq 0$ is defined by

$$
f A f^{-1}=f^{-1} A f=e
$$

where $e(1)=1$ and $e(n)=0$ for $n \geq 2$. Yocom [6] proved that a multiplicative function f with $f(1) \neq 0$ is A-multiplicative if and only if

$$
f^{-1}=\mu_{A} f
$$

The generalized Möbius function $\mu_{A}[3]$ is the multiplicative function such that for each prime power $p^{a}(\neq 1)$

$$
\mu_{A}\left(p^{a}\right)= \begin{cases}-1 & \text { if } \tau_{A}\left(p^{a}\right)=a \\ 0 & \text { otherwise }\end{cases}
$$

Ramanujan's sum $C(m ; n)$ is defined by

$$
C(m ; n)=\sum_{a} \exp (2 \pi i a m / n)
$$

where a runs over a reduced residue system modulo n. A well-known evaluation of Ramanujan's sum is

$$
C(m ; n)=\sum_{d \mid(m, n)} d \mu(n / d)
$$

where μ is the Möbius function. This formula suggests that we define (cf. [1]) a generalization of Ramanujan's sum as follows:

$$
S_{A, k}^{f, g}\left(m_{1}, m_{2}, \ldots, m_{u} ; n\right)=\sum_{d^{k} \in A\left(\left(m_{1}, \ldots, m_{u}\right), n^{k}\right)_{A, k}} f(d) g(n / d)
$$

where $(a, b)_{A, k}$ is the greatest k-th power divisor of a which belongs to $A(b)$. In other words,

$$
S_{A, k}^{f, g}\left(m_{1}, m_{2}, \ldots, m_{u}, ; n\right)=\sum_{\substack{d \in A_{k}(n) \\ d^{k} \mid m_{1}, \ldots, m_{u}}} f(d) g(n / d)
$$

where $A_{k}(n)=\left\{d>0: d^{k} \in A\left(n^{k}\right)\right\}$.
It is known [5] that the A_{k}-convolution is regular since the A-convolution is regular.

In [2] A. Ivić gave necessary and sufficient conditions for a multiplicative function to be completely multiplicative in terms of Ramanujan's sum. He also gave a Ramanujan-expansion of a generalization of von Mangoldt function. In [4] D. Redmond generalized the results of A. Ivić [2]. The purpose of this note is to generalize further these results. We assume throughout that f is multiplicative.

Theorem 1. (a) If f is A_{k}-multiplicative, then for all positive integers n and non-negative integers $m_{1}, m_{2}, \ldots, m_{u}$

$$
\begin{align*}
& \sum_{d \in A_{k}(n)} f(d) f(n / d) S_{A, k}^{h, \mu_{A_{k}}}\left(m_{1}, m_{2}, \ldots, m_{u} ; d\right) \\
& \quad= \begin{cases}f(n) h(n) & \text { if } n^{k} \mid m_{1}, m_{2}, \ldots, m_{u} \\
0 & \text { otherwise }\end{cases} \tag{1}
\end{align*}
$$

The converse holds if $h\left(p^{a-t}\right) \neq h(1), t=\tau_{A_{k}}\left(p^{a}\right)$, for all prime powers p^{a} such that $a \neq t$.
(b) If f is completely multiplicative and $f(1) \neq 0$, then for all positive integers n_{1}, m and non-negative integers n_{2}, \ldots, n_{u}

$$
\begin{align*}
& \sum_{d \mid n_{1}} f^{-1}(d) f\left(n_{1} / d\right) S_{A, k}^{h, g}\left(n_{1} / d, n_{2}, \ldots, n_{u} ; m\right) \\
& = \begin{cases}f\left(n_{1}\right) h(a) g(m / a) & \text { if } n_{1}=a^{k}, a \in A_{k}(m), n_{1} \mid n_{2}, \ldots, n_{u} \\
0 & \text { otherwise }\end{cases} \tag{2}
\end{align*}
$$

f^{-1} being the Dirichlet inverse of f. The converse holds if $k=1, A=D, g$ is of the form μg and $g(p) h\left(p^{a-1}\right) \neq 0$ for all prime powers p^{a}.

Theorem 2. Suppose a, n_{2}, \ldots, n_{u} are non-negative integers and k, m, u are positive integers. Define

$$
\varepsilon=0 \text { if } \sum_{\substack{d \in A_{k}(m) \\ d^{k} \mid n_{2}, \ldots, n_{u}}} \frac{h(d) g(m / d)}{d^{k}}=0, \quad \text { and }=1 \text { otherwise. }
$$

Then

$$
k^{a} \sum_{\substack{d \in A_{k}(m) \\ d^{k} \mid n_{2}, \ldots, n_{u}}} \frac{g(m / d) h(d) \log ^{a} d}{d^{k(1+\varepsilon)}}=\sum_{n=1}^{\infty} \frac{S_{A, k}^{h, g}\left(n, n_{2}, \ldots, n_{u} ; m\right)}{n^{1+\varepsilon}} \sum_{r=1}^{\infty} \frac{\mu(r) \log ^{a}(n r)}{r^{1+\varepsilon}}
$$

D. Redmond [4] proved the teorems for $A=D, k=u=1, g=\mu$. Further, we obtain the theorems of A. Ivić [2] if we assume in addition that $h(n)=n$ for all n. Ivić [2] and Redmond [4] presented formulas (1) and (2) in terms of Dirichlet series.

Proof of Theorem 1. Throughout the proof we shall use the notation:

$$
\chi_{A}(m ; d)= \begin{cases}1 & \text { if } d \in A(m) \\ 0 & \text { otherwise }\end{cases}
$$

(a) Suppose f is A_{k}-multiplicative. Then, by (III), we have

$$
\begin{aligned}
& \sum_{d \in A_{k}(n)} f(d) f(n / d) S_{A, k}^{h, \mu_{A_{k}}}\left(m_{1}, \ldots, m_{u} ; d\right)=\left(f A_{k} f S_{A, k}^{h, \mu_{A_{k}}}\left(m_{1}, \ldots, m_{u} ; \cdot\right)\right)(n) \\
& \quad=f(n)\left(1 A_{k} S_{A, k}^{h, \mu_{A_{k}}}\left(m_{1}, \ldots, m_{u} ; \cdot\right)\right)(n) \\
& \quad=f(n)\left(1 A_{k}\left(\chi_{D}\left(m_{1} ;(\cdot)^{k}\right) \ldots \chi_{D}\left(m_{u} ;(\cdot)^{k}\right) h\right) A_{k} \mu_{A_{k}}\right)(n) \\
& \quad=f(n) \chi_{D}\left(m_{1} ; n^{k}\right) \cdots \chi_{D}\left(m_{u} ; n^{k}\right) h(n)
\end{aligned}
$$

which proves (1).
Conversely, suppose (1) holds with $h\left(p^{a-t}\right) \neq h(1), t=\tau_{A_{k}}\left(p^{a}\right)$, for all prime powers p^{a} such that $a \neq t$. We proceed by induction on a to prove that

$$
\begin{equation*}
f\left(p^{a t}\right)=f\left(p^{t}\right)^{a} \tag{3}
\end{equation*}
$$

for all A-primitive prime powers p^{t} and integers a with $\tau_{A_{k}}\left(p^{a t}\right)=t$. It is clear that (3) holds for $a=1$. Suppose (3) holds for $a<s$ and $\tau_{A_{k}}\left(p^{s t}\right)=t$. (Note that then $\tau_{A_{k}}\left(p^{a t}\right)=t$ for $a<s$.) Taking $n=p^{s t}, m_{1}=\cdots=m_{u}=p^{s t k}$ in (1) gives

$$
\begin{aligned}
f\left(p^{s t}\right) h(1)+\sum_{i=1}^{s-1} f\left(p^{i t}\right) f\left(p^{(s-i) t}\right) & \left(h\left(p^{i t}\right)-h\left(p^{(i-1) t}\right)\right) \\
& +f\left(p^{s t}\right)\left(h\left(p^{s t}\right)-h\left(p^{(s-1) t}\right)\right)=f\left(p^{s t}\right) h\left(p^{s t}\right)
\end{aligned}
$$

which can be written as

$$
\begin{aligned}
& \sum_{i=1}^{s-2}\left(f\left(p^{i t}\right) f\left(p^{(s-i) t}\right)-f\left(p^{(i+1) t}\right) f\left(p^{s-(i+1) t}\right)\right) h\left(p^{i t}\right) \\
& \quad+f\left(p^{(s-1) t}\right) f\left(p^{t}\right) h\left(p^{(s-1) t}\right)-f\left(p^{t}\right) f\left(p^{(s-1) t}\right) h(1) \\
& \quad+f\left(p^{s t}\right) h(1)-f\left(p^{s t}\right) h\left(p^{(s-1) t}\right)=0
\end{aligned}
$$

By the inductive assumption

$$
f\left(p^{i t}\right) f\left(p^{(s-i) t}\right)-f\left(p^{(i+1) t}\right) f\left(p^{s-(i+1) t}\right)=0
$$

hence we have

$$
\left(f\left(p^{t}\right) f\left(p^{(s-1) t}\right)-f\left(p^{s t}\right)\right)\left(h\left(p^{(s-1) t}\right)-h(1)\right)=0
$$

which completes the induction. So (3) holds. Thus, by (II), f is A_{k}-multiplicative.
(b) Suppose f is completely multiplicative with $f(1) \neq 0$. Then, as $f^{-1}=\mu f$, we have

$$
\begin{aligned}
\sum_{d \mid n_{1}} & f^{-1}(d) f\left(n_{1} / d\right) S_{A, k}^{h, g}\left(n_{1} / d, n_{2}, \ldots, n_{u} ; m\right) \\
& =f\left(n_{1}\right) \sum_{c d=n_{1}} \mu(d) S_{A, k}^{h, g}\left(c, n_{2}, \ldots, n_{u} ; m\right) \\
& =f\left(n_{1}\right) \sum_{c d=n_{1}} \mu(d) \sum_{a^{k} \mid c} \chi_{A_{k}}(m ; a) \chi_{D}\left(n_{2} ; a^{k}\right) \cdots \chi_{D}\left(n_{u} ; a^{k}\right) h(a) g(m / a) \\
& =f\left(n_{1}\right) \sum_{a^{k} b d=n_{1}} \mu(d) \chi_{A_{k}}(m ; a) \chi_{D}\left(n_{2} ; a^{k}\right) \cdots \chi_{D}\left(n_{u} ; a^{k}\right) h(a) g(m / a) \\
& =f\left(n_{1}\right) \sum_{a^{k} v=n_{1}} \chi_{A_{k}}(m ; a) \chi_{D}\left(n_{2} ; a^{k}\right) \cdots \chi_{D}\left(n_{u} ; a^{k}\right) h(a) g(m / a) \sum_{b d=v} \mu(d) \\
& =f\left(n_{1}\right) \sum_{a^{k} v=n_{1}} \chi_{A_{k}}(m ; a) \chi_{D}\left(n_{2} ; a^{k}\right) \cdots \chi_{D}\left(n_{u}, a^{k}\right) h(a) g(m / a) e(v)
\end{aligned}
$$

This proves (2).
Conversely, suppose (2) holds when $k=1, A=D, g$ is of the form μg and $g(p) h\left(p^{a-1}\right) \neq 0$ for all prime powers p^{a}. Then we prove that

$$
\begin{equation*}
f\left(p^{a}\right)=f(p)^{a} \tag{4}
\end{equation*}
$$

for all prime powers p^{a}. Clearly (4) holds for $a=1$. Suppose $a>1$. Taking $n_{1}=\cdots=n_{u}=m=p^{a}$ in (2) gives

$$
\sum_{i=0}^{a} f^{-1}\left(p^{i}\right) f\left(p^{a-i}\right) \sum_{j=0}^{a-i} h\left(p^{j}\right)(\mu g)\left(p^{a-j}\right)=f\left(p^{a}\right) h\left(p^{a}\right) g(1)
$$

that is,

$$
f\left(p^{a}\right)\left(h\left(p^{a}\right) g(1)-h\left(p^{a-1}\right) g(p)\right)-f^{-1}(p) f\left(p^{a-1}\right) h\left(p^{a-1}\right) g(p)=f\left(p^{a}\right) h\left(p^{a}\right) g(1)
$$

Therefore

$$
f\left(p^{a}\right)=f(p) f\left(p^{a-1}\right)
$$

which proves (4). Thus f is completely multiplicative. Now the proof of Theorem 1 is complete.

Proof of Theorem 2. Writing (2) in terms of Dirichlet series gives

$$
\begin{gathered}
\sum_{r=1}^{\infty} f(r) \mu(r) r^{-s} \sum_{n=1}^{\infty} f(n) S_{A, k}^{h, g}\left(n, n_{2}, \ldots, n_{u} ; m\right) n^{-s} \\
=\sum_{\substack{d \in A_{k}(m) \\
d^{k} \mid n_{2}, \ldots, n_{u}}} f\left(d^{k}\right) h(d) g(m / d) d^{-k s}
\end{gathered}
$$

Take $f=1$. Suppose $\operatorname{Re}(s)$ is large enough and differentiate the above equation a times with respect to s. Then we obtain

$$
\begin{gather*}
\sum_{i=0}^{a}\binom{a}{i} \sum_{r=1}^{\infty}(-1)^{i} \mu(r) r^{-s} \log ^{i} r \sum_{n=1}^{\infty}(-1)^{a-i} S_{A, k}^{h, g}\left(n, n_{2}, \ldots, n_{u} ; m\right) n^{-s} \log ^{a-i} n \\
=(-k)^{a} \sum_{\substack{d \in A_{k}(m) \\
d^{k} \mid n_{2}, \ldots, n_{u}}} h(d) g(m / d) d^{-k s} \log ^{a} d \tag{5}
\end{gather*}
$$

As $s \rightarrow(1+\varepsilon)^{+}$

$$
\sum_{r=1}^{\infty} \mu(r) r^{-s} \log ^{i} r \rightarrow \sum_{r=1}^{\infty} \mu(r) r^{-(1+\varepsilon)} \log ^{i} r
$$

Moreover

$$
\begin{aligned}
& \sum_{n \leq x} S_{A, k}^{h, g}\left(n, n_{2}, \ldots, n_{u} ; m\right)=\sum_{n \leq x} \sum_{\substack{d \in A_{k}(m) \\
d^{k} \mid n, n_{2}, \ldots, n_{u}}} h(d) g(m / d) \\
& =\sum_{\substack{d \in A_{k}(m) \\
d^{k} \mid n_{2}, \ldots, n_{u}}} h(d) g(m / d) \sum_{d^{k} l \leq x} 1=\sum_{\substack{d \in A_{k}(m) \\
d^{k} \mid n_{2}, \ldots, n_{u}}} h(d) g(m / d)\left(\frac{x}{d^{k}}+O(1)\right) \\
& =x \sum_{\substack{d \in A_{k}(m) \\
d^{k} \mid n_{2}, \ldots, n_{u}}} h(d) g(m / d) d^{-k}+O(1) .
\end{aligned}
$$

Now, we are in the position to prove that

$$
\begin{equation*}
\sum_{n=1}^{\infty} S_{A, k}^{h, g}\left(n, n_{2}, \ldots, n_{u} ; m\right) n^{-(1+\varepsilon)} \log ^{a-i} n \tag{6}
\end{equation*}
$$

converges. By Abel's identity, we have

$$
\begin{aligned}
& \sum_{n \leq x} S_{A, k}^{h, g}\left(n, n_{2}, \ldots, n_{u} ; m\right) n^{-(1+\varepsilon)} \log ^{a-i} n \\
& =\left(x \sum_{d \in A_{k}(m), d^{k} \mid n_{2}, \ldots, n_{u}} h(d) g(m / d) d^{-k}+O(1)\right) \frac{\log ^{a-i} x}{x^{1+\varepsilon}}
\end{aligned}
$$

$$
-\int_{1}^{x}\left(t \sum_{d \in A_{k}(m), d^{k} \mid n_{2}, \ldots, n_{u}} h(d) g(m / d) d^{-k}+O(1)\right) \frac{d}{d t}\left(\frac{\log ^{a-i} t}{t^{1+\varepsilon}}\right) d t
$$

If

$$
\sum_{\substack{d \in A_{k}(m) \\ d^{k} \mid n_{2}, \ldots, n_{u}}} h(d) g(m / d) d^{-k}=0,
$$

then $\varepsilon=0$ and we obtain

$$
\begin{aligned}
& \sum_{n \leq x} S_{A, k}^{h, g}\left(n, n_{2}, \ldots, n_{u} ; m\right) n^{-1} \log ^{a-i} n \\
& =\frac{\log ^{a-i} x}{x} O(1)-\int_{1}^{x} \frac{d}{d t}\left(\frac{\log ^{a-i} t}{t^{1+\varepsilon}}\right) O(1) d t=\frac{\log ^{a-i} x}{x} O(1) \rightarrow 0 \quad \text { as } x \rightarrow \infty .
\end{aligned}
$$

On the other hand, if

$$
\sum_{\substack{d \in A_{k}(m) \\ d^{k} \mid n_{2}, \ldots, n_{u}}} h(d) g(m / d) d^{-k}=K \neq 0,
$$

then $\varepsilon=1$ and we obtain

$$
\begin{aligned}
& \sum_{n \leq x} S_{A, k}^{h, g}\left(n, n_{2}, \ldots, n_{u} ; m\right) n^{-2} \log ^{a-i} n \\
& \quad=(K x+O(1)) \frac{\log ^{a-i} x}{x^{2}}-K \int_{1}^{x} t \frac{d}{d t}\left(\frac{\log ^{a-i} t}{t^{2}}\right) d t-\int_{1}^{x} \frac{d}{d t}\left(\frac{\log ^{a-i} t}{t^{2}}\right) O(1) d t \\
& \quad=O\left(\frac{\log ^{a-i} x}{x}\right)-K \int_{1}^{x} \frac{\log ^{a-i} t}{t^{2}} d t,
\end{aligned}
$$

which converges as $x \rightarrow \infty$. So we have proved that (6) converges.
Now, letting $s \rightarrow(1+\varepsilon)^{+}$in (5) we get Theorem 2.

REFERENCES

[1] P. Haukkanen, Classical arithmetical identities involving a generalization of Ramanujan's sum, Ann. Acad. Sci. Fenn. Ser. A. I. Math. Dissertationes 68 (1988), 69p.
[2] A. Ivić, A property of Ramanujan's sums concerning totally multiplicative functions, Univ. Beograd, Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 577-No. 598 (1977), 74-78.
[3] W. Narkiewicz, On a class of arithmetical convalutions, Colloq. Math. 10 (1963), 81-94.
[4] D. Redmond, Some remarks on a paper of A. Ivić, Univ. Beograd, Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 634-No. 677 (1979), 137-142.
[5] V. Sita Ramaiah, Arithmetical sums in regular convolutions, J. Reine Angew. Math. 303/304 (1978), 265-283.
[6] K. L. Yocom, Totally multiplicative functions in regular convolution rings, Canad. Math. Bull. 16 (1973), 119-128.

