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ON SOME INTEGRALS

INVOLVING THE MEAN SQUARE FORMULA

FOR THE RIEMANN ZETA-FUNCTION

Aleksandar Ivi�c

Abstract. Let E(T ) denote the error term in the mean square formula for the Riemann
zeta-function �(s). Several mean value results involving E(T ) and �(1=2+ iT ) are obtained which
elucidate the behaviour of these functions.

1. Introduction

For T � 0 let

E(T ) =
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0
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as usual denote the error term in the mean-square formula for the Riemann zeta-
-function �(s) on the critical line Re s = 1=2 (
 is Euler's constant). Atkinson [1]
discovered an explicit formula for E(T ) (see also Ch. 15 of [7]), which led to much
subsequent research. Thus Heath-Brown [5] used Atkinson's formula to show that

(1.1)

Z T

2

E2(t) dt = CT 3=2 +R(T )

�
C =

2�4(3=2)

3
p
2��(3)

�

with R(T )� T 5=4 log2 T . Recently Meurman [9] and Motohashi [10] independently
improved Heath-Brown's result to

(1.2) R(T )� T log5 T:

It is known that E(T ) � T�+" for an exponent � < 1=3 (Ch. 15 of [7] and any
" > 0. The best result hitherto seems to be � � 139=429 = 0:3240093 . . . , proved in
[3] by applying two-dimensional exponential sum techniques of G. Kolesnik [8]. On
the other hand, (1:1) gives at once E(T ) = 
(T 1=4) (proved by another method by

AMS Subject Classi�cation (1980): Primary 10H 25



34 Ivi�c

Good [2]), but much sharper results are obtained by Hafner-Ivi�c [3], [4]. Therein
it is shown that
(1.3)

E(T ) = 
+f(T logT )1=4(log logT )(3+log 4)=4 exp(�B
p
log log logT )g (B > 0)

and

(1.4) E(T ) = 
�

�
T 1=4 exp

�
D(log logT )1=4

(log log logT )3=4

��
(D > 0);

and it may be reasonably conjectured that these bounds are close to the true
maximal order of jE(T )j. In order to establish (1.3){(1.4) Hafner-Ivi�c proved the
asymptotic formula

(1.5)

Z T

2

E(t) dt = �T +G(T );

where

G(T ) = 2�3=2
X
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with d(n) the number of divisors of n,

f(T; n) = 2T ar sinh

r
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2T
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4
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�
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2
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4
+
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and AT < N < A0T for any two �xed constants 0 < A < A0. Actually this formula

is the analogue of Atkinson's formula for E(T ) for the function
R T
2

_E(t) dt, but
in deriving (1:3) and (1:4) the full force of (1:6) was not needed. Instead, it was
suÆcient to use
(1.7)

G(T ) = 21=4��3=4T 3=4
1X
n=1

(�1)nd(n)n�5=4 sin
�p

8�nT � �

4

�
+O(T 2=3 logT );

which follows on simplifying (1:6) by Taylor's formula. Since the series in (1:7)
is absolutely convergent, it follows that G(T ) = O(T 3=4). On the other hand, it
was shown in [3] that G(T ) = 
�(T

3=4), so that the order of G(T ) is precisely
determined. In addition, in [3] we proved the mean-square formula

(1.8)

Z T

2

G2(t) dt = ET 5=2 +O(T 2+")

�
E =

�4(5=2)

5�
p
2��(5)

�
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2. The basic method

The purpose of this paper is to evaluate certain integrals of the type

(2.1) I = I(T;H) =

Z T+H

T
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�
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dt;

where T � T0, 0 � H � T , and f(t) is a given function which is continuous in
[T; T+H ]. The method for evaluating the integral I in (2:1) is very simple. Namely,
if F 0 = f , then from the de�nition of E(T ) it follows that

I =

Z T+H

T

f
�
E(t)

��
E0(t) + log

t

2�
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�
dt

= F
�
E(T +H)

�� F
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E(T )

�
+
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T

f
�
E(t)

��
log

t

2�
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�
dt:

(2.2)

Therefore the problem is reduced to a simpler one, namely to the evaluation of the
integral where j�j2 is replaced by log(t=2�) + 2
. If T and T + H are points at
which E(T ) = E(T +H), then (2:2) simpli�es even further. As the �rst application
we prove

THEOREM 1.

(2.3)
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with C as in (1:1),
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To prove (2:3) we apply (2:2) with H = T , f(t) = t2, F (t) = t3=3. Using the
weak E(t)� t1=3 and (1.1){(1.2) it follows that
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Replacing T by T � 2�j and summing over j = 1; 2; . . . we obtain (2:3). The
remaining estimates (2.4){(2.6) are obtained analogously using

(2.7)

Z T

0

jE(t)jA dt� T 1+A=4+" (0 � A � 35=4);

a proof of which is given in [6] and Ch. 15 of [7]. The upper bounds in (2.4){(2.6)
are close to best possible, since

(2.8)
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jE(t)jA
�����
�
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�����
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dt�
�
T 1+A=4+" (0 � A < 2);

T 1+A=4(logT ) (A � 2);

for any �xed A � 0 and any given " > 0. For A > 2 this follows easily from (2:3)
and H�older's inequality for integrals. For 0 � A � 2 we use again (2:3) and H�older's
inequality to obtain

T 3=2 logT �
Z T

0

EA=2(t)
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2
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0
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�
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:

Using (2:7) (with A replaced by 8� 2A) and the classical bound
R T
0
j� � 12 + it

� j4 dt
� T 1+" we obtain the �rst part of (2:8).

3. The integral involving E(t)

Perhaps the most interesting application of our method is the evaluation of
the integral

(3.1)

Z T

0

E(t)

�����
�
1

2
+ it

�����
2

dt:

The function E(t) has the mean value � by (1:5) while j�(1=2+it)j2 has the average
value log t. Therefore the integral in (3:1) represents in some way the way that the
oscillations of these very important functions superimpose. We shall prove the
following

THEOREM 2. Let U(T ) be de�ned by

(3.2)

Z T

0

E(t)

�����
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2
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�����
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�
log

T

2�
+ 2
 � 1

�
+ U(T );

and let V (T ) be de�ned by

(3.3)

Z T

0

U(t) dt =
�4(3=2)

3
p
2��(3)

T 3=2 + V (T ):
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Then

U(T ) = O(T 3=4 logT ); U(T ) = 
�(T
3=4 logT );(3.4)

V (T ) = O(T 5=4 logT );(3.5)

and

(3.6)

Z T

2

U2(t) dt = T 5=2P2(log T ) +O(T 9=4+");

where P2(x) is a suitable quadratic function in x.

We begin the proof by noting that (2:2) gives

Z T
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2
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Z T

2
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�
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Using (1:5) the integral on the right-hand side of this equality becomes
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2
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�
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t
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�
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T
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�
� �

Z T
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T
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�
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hence

U(T ) =
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2
E2(T ) +G(T )

�
log

T
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�
�
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2

G(t)
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t
+O(1):

Using (1:6) and simple estimates for exponential integrals (Lemma (2:1) of
[7]) it follows that

(3.7)

Z T

2

G(t)
dt

t
= O(T 1=4):

This gives at once

(3.8) U(T ) =
1

2
E2(T ) +G(T )

�
log

T

2�
+ 2


�
+O(T 1=4):

Since E(T ) � T 1=3, then using (1:7) and G(T ) = 
�(T
3=4) we obtain (3:4).

Therefore the order of magnitude of U(T ) is precisely determined, and we pass on
to the proof of (3:5) and (3:6). From (3:8) we have

Z T

T=2

U2(t) dt =
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G2(t)

�
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t
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�
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�
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T=2
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�
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�
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Using (2:7) with A = 4 it is seen that the contribution of the �rst O-term above
is � T 2+". To estimate the second O-term we use (1:8) and the Cauchy-Schwarz
inequality. We obtain a contribution which is

� logT

�Z T

T=2

G2(t) dt

�Z T

T=2

E4(t) dt+ T 3=2

��1=2

� T 9=4+":

Integration by parts and (1:8) yield

Z T

T=2

G2(t)

�
log

t

2�
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�2
dt =

�
Et5=2 +O(t2+")

��
log

t

2�
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�2����
T

T=2

�2
Z T

T=2

�
Et3=2 +O(t1+")

��
log

t

2�
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�
dt = t5=2P2(log t)

���T
T=2

+O(T 2+");

where P2(x) = a0x
2 + a1x+ a2 with a0; a1; a2 e�ectively computable. This means

that we have shown thatZ T

T=2

U2(t) dt = t5=2P2(log t)
���T
T=2

+O(T 9=4+");

so that replacing T by T2�j and summing over j = 0; 1; 2; . . . we obtain (3:6).
Probably the error term in (3:6) could be improved to O(T 2+") (in analogy with
(1:8)), but this appears to be diÆcult.

It remains to estabilish (3:3) with the O-result (3:5). Integrating (3:8) with
the aid of (1.1){(1.2) we have

(3.9)

Z T
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U(t) dt =
1

2
C
�
T 3=2�(T=2)3=2�+O(T 5=4)+

Z T
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G(t)

�
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t
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�
dt:

Using (1:6) (with N = T ) it is seen that the contribution of the sum
P

n�N 0

to the last integrals is O(T ), while the contribution of the error term O(T 1=4) is
trivially O(T 5=4 logT ). The contribution of the sum

P
n�N is, after simpli�cation

by Taylor's formula,

Z T
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1X
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�p
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4

��
log

t

2�
+ 2


�
dt
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�
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8�nt� �

4

�o
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�
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1X
n=1

(�1)n�1d(n)n�7=4

�
�
t5=4

�
log

t

2�
+ 2


�
cos

�p
8�nt� �

4

������
T

T=2
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if we use Lemma (2:1) of [7] to estimate the last integral above. Inserting this
expression in (3:9) we obtain (3:3) with

(3.10)

V (T ) = 2�3=4��5=4T 5=4

�
log

T

2�
+ 2


�

�
1X
n=1

(�1)n�1d(n)n�7=4 cos
�p

8�nt� �

4

�
+W (T );

where

(3.11) W (T ) = O(T 5=4 logT ):

Noting that the series in (3:10) is absolutely convergent, we obtain at once (3:5).
We remark that, in analogy with (3:4), V (T ) = 
�(T

5=4 logT ) should also hold.

Since the series in (3:10) may be shown to be 
�(1) by the method of [3]
which gives G(T ) = 
�(T

3=4), the omega result V (T ) = 
�(T
5=4 logT ) will follow

if (3:11) can be replaced by W (T ) = o(T 5=4 logT ) as T !1. To see that the last
assertion holds we recall that the error term in (1:6) is O(T 1=4). But analyzing
carefully the arguments of [3] it is found that the function standing for this error
term is an oscillating one. Hence integration will show that the resulting expression
is o(T 5=4) and thus its contribution to (3:9) will be o(T 5=4 logT ) as T ! 1. The
details of this analysis are fairly complicated and we omit them.

4. Some lower bounds

We proceed now to derive some lower bound results for the integrals con-
sidered in previous sections. The basis for this analysis is the fact that, crudely
speaking, the function E(t) may increase rapidly, but it can decrease only fairly
slowly. This may be put into quantitative form by the following elementary argu-
ment. Let L(t) = t

�
log(t=(2�))+2
� 1

�
. From the de�nition of E(T ) we have, for

0 � x � T and T � T0,

0 �
Z T+x

T

�����
�
1

2
+ it

�����
2

dt = L(T + x)� L(T ) +E(T + x)�E(T )

=

Z T+x

T

�
log

t

2�
+ 2


�
dt+E(T + x)�E(T ) � x logT +E(T + x)�E(T ):
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This gives

(4.1) E(T ) � E(T + x) + x logT (0 � x � T )

and considering
R T
T�x

��� � 12 + it
���2 dt we obtain analogously

(4.2) E(T ) � E(T � x)� x log T (0 � x � T ):

Integrating these inequalities over x for 0 � x � H; 0 � H � T , we obtain

(4.3) HE(T ) �
Z T+H

T

E(t) dt +
1

2
H2 logT (0 < H � T )

and

(4.4) HE(T ) �
Z T

T�H

E(t) dt� 1

2
H2 logT (0 < H � T ):

Take now for T the points where (1:3) is attained. Then (4:3) yields

(4.5)

Z T+H

T

E(t) dt� H(T logT )1=4(log logT )(3+log 4)=4 exp
��Bplog log logT

�

for

(4.6) 0 < H < C1T
1=4(logT )�3=4(log logT )(3+log 4)=4 exp

��Bplog log logT
�

with some suitable C1 > 0 and some T = Tn such that limn!1 Tn =1.

From (4.3){(4.4) and the Cauchy-Schwarz inequality it follows that

E2(T ) � 2H�1
Z T+H

T

E2(t) dt+
1

2
H2 log2 T (E(T ) > 0)

and

E2(T ) � 2H�1
Z T

T�H

E2(t) dt+
1

2
H2 log2 T

�
E(T ) < 0

�
:

Combining the preceding two inequalities we obtain for all T � T0

(4.7) E2(T ) � 2H�1
Z T+H

T�H

E2(t) dt+H2 log2 T (0 < H � T ):

Taking again T = Tn the sequence for which limn!1 Tn = 1 and (1:3) holds, we
have that
(4.8)Z T+H

T�H

E2(t) dt� H(T logT )1=2(log logT )(3+log 4)=2 exp
��2Bplog log logT

�
;

provided that (4:6) holds. Since C(T +H)3=2 �C(T �H)3=2 (the di�erence of the
main terms in (1:1)) is asymptotic to 3CHT 1=2, this means that there are intervals
in which the integral in (4:8) is substantially larger than C2HT 1=2, which is the
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bound that one expects from (1:1). Incidentally, (4:7) sets a limit to the upper
bound for the error term R(T ) in (1:1). Namely we can prove that

(4.9) R(T ) = 

n
T 3=4(logT )�1=4(log logT )3(3+log 4)=4 exp

��B1

p
log log logT

�o

with a suitable B1. To see this suppose that (4:9) is not true, and let S(T;B1),
denote the function appearing on the right-hand side of (4:9). Choose T (! 1)

such that (1:3) holds and put H =
�
S(T;B1) log

�2 T
�1=3

. Then (1:1) and (4:7) give

(T logT )1=2(log logT )(3+log 4)=2 exp
��2Bplog log logT

�
� T 1=2 +H�1

�
R(T +H)�R(T �H)

�
+H2 log2 T(4.10)

� T 1=2 + T 1=2(log T )�1=6(log logT )(3+log 4)=2

� exp

�
�2

3
B1

p
log log logT

�
(logT )2=3:

This is a contradiction if B1 > 3B and hence (4:9) is proved. Thus (4:9) answers
the question posed in Ch. 15.4 of [7], and a weaker result of the same type was
announced in Ch. VII of [11]. However, the argument given in [11] is not quite
correct (only E(T ) = 
(T 1=4) is not suÆcient in view of the term T 1=2 in the
middle estimate in (4:10)), as was pointed out to me by D. R. Heath-Brown. Both
Heath-Brown and T. Meurman independently informed me in correspondence how
(4:9) is possible if (1:3) is known, and I warmly thank them for this. Since (4:9)
does not seem to have appeared in print before, it seemed appropriate to discuss
it here in detail, as the proof given in our text is an easy consequence of (1:3) and
(4:7).

We shall �nally consider the integral in (3:2) over short intervals. Here (3:4)
provides the right order of magnitude for the function U(T ). To obtain the lower
bound we seek, multiply (4:1) by j�(1=2 + iT + ix)j2 and integrate over x for
0 � x � H , T " � H � T . This gives

(4.11) E(T )
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2
+ it

�����
2

dt �
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T

�
E(t) +H logT
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dt:

But it is well-known (see Ch. 9 of [7]) thatZ T+H

T
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dt�" H logT (T " � H � T );

so that for E(T ) > H logT (4:11) reduces to

(4.12) E(T )� 1

H logT
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T

E(t)
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2
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�����
2

dt+H logT:

Take again T (!1) for which (1:3) holds. Then (4:12) implies

(4.13)
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T

E(t)

�����
�
1

2
+ it

�����
2

dt

� HT 1=4(logT )5=4(log logT )(3+log 4)=4 exp
��Bplog log logT
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for 0 < " < 1=4, where for some suitable C2 > 0

T " � H � C2T
1=4(log T )�3=4(log logT )(3+log 4)=4 exp

��Bplog log logT
�
:

It may be remarked that results analogous to (4:9) and (4:13) can be obtained
by the same method for the integral in (2:3).
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