ON SUMS INVOLVING RECIPROCALS OF CERTAIN LARGE ADDITIVE FUNCTIONS (II)

Tizuo Xuan

Abstract

Let $\beta(n)=\sum_{p \mid n} p$ and $B(n)=\sum_{p^{\alpha} \| n} \alpha p$. Let $p(n)$ denote the largest prime factor of an integer $n \geq 2$. In the present paper we sharpen the asymptotic formula for the sum $\sum_{2 \leq n \leq x} B(n) / \beta(n)$ and we derive an asymptotic formula for the sum $\sum_{2 \leq n \leq x}(B(n)-\beta(n)) / p(n)$.

1. Introduction and statement of results

Let $\beta(n)=\sum_{p \mid n} p$ and $B(n)=\sum_{p^{\alpha} \| n} \alpha p$.
In [2] it was proved that

$$
\begin{equation*}
\sum_{2 \leq n \leq x} B(n) / \beta(n)=x+O\left(x \exp \left(-c_{1}\left(\log x \log _{2} x\right)^{1 / 2}\right)\right), \quad c_{1}>0, \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{2 \leq n \leq x} \beta(n) / B(n)=x+O\left(x \exp \left(-c_{2}\left(\log x \log _{2} x\right)^{1 / 2}\right)\right), \quad c_{2}>0 . \tag{1.2}
\end{equation*}
$$

The above results were slightly sharpened in [6]. Let us define $p(n)$ as the largest prime factor of $n \geq 2$, and $p(1)=1$. In [3] it was proved that

$$
\sum_{n \leq x} 1 / p(n)=x \delta(x)\left(1+O\left(\left(\log _{2} x / \log x\right)^{1 / 2}\right)\right),
$$

where

$$
\delta(x)=\int_{2}^{\infty} \rho\left(\frac{\log x}{\log t}\right) t^{-2} d t
$$

Here $\rho(u)$ is the so-called "Dickman function", which is the solution of the differential-difference equation $u \rho^{\prime}(u)+\rho(u-1)=0,(u>1)$, with the initial
condition $\rho(u)=1,(0 \leq u \leq 1), \rho(u)$ continuous at $u=1$. An approximation to $\rho(u)$ in terms of elementary functions is

$$
\begin{equation*}
\rho(u)=\exp \left\{-u\left(\log u+\log _{2} u-1+\log _{2} u / \log u+O(1 / \log u)\right)\right\} \tag{1.3}
\end{equation*}
$$

where $\log _{2} u=\log \log u$. The asymptotic formula (1.3) was established by Hua [5] and de Bruijn [1], independently.

In [8], we proved that

$$
\begin{equation*}
\sum_{2 \leq n \leq x} 1 / \beta(n)=\left(D+O\left(\log _{3}^{2} x / \log _{2} x\right)\right) \sum_{n \leq x} 1 / p(n) \tag{1.4}
\end{equation*}
$$

where $1 / 2<D<1$ is an absolute constant.
One of the aimes of the present paper is to provide sharpenings of (1.1) and (1.2). The results are contained in the following theorem.

Theorem 1.

$$
\begin{equation*}
\sum_{2 \leq n \leq x} \frac{B(n)}{\beta(n)}=x+\frac{1}{2} D \log x\left(1+O\left(\frac{\log _{3}^{2} x}{\log _{2} x}\right)\right) \sum_{n \leq x} \frac{1}{p(n)} \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{2 \leq n \leq x} \frac{\beta(n)}{B(n)}=x-\frac{1}{2} D \log x\left(1+O\left(\frac{\log _{3}^{2} x}{\log _{2} x}\right)\right) \sum_{n \leq x} \frac{1}{p(n)} \tag{1.6}
\end{equation*}
$$

where D is the same as in (1.4).
Moreover, in [9] we proved that

$$
\begin{equation*}
\sum_{2 \leq n \leq x} \frac{1}{p^{r}(n)}=x \exp \left\{-\left(2 r \log x \log _{2} x\right)^{1 / 2}\left(1+\frac{\sqrt{r}}{2 \sqrt{2}} \frac{\log _{3} x}{\log _{2} x}+O\left(\frac{1}{\log _{2} x}\right)\right)\right\} \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{2 \leq n \leq x} \frac{B(n)-\beta(n)}{p(n)}=x \exp \left\{-\left(2 r \log x \log _{2} x\right)^{1 / 2}\left(1+\frac{\sqrt{r}}{2 \sqrt{2}} \frac{\log _{3} x}{\log _{2} x}+O\left(\frac{1}{\log _{2} x}\right)\right)\right\} \tag{1.8}
\end{equation*}
$$

where $r>0$ is arbitrary but fixed.
Another aim of the present paper is to provide sharpenings of (1.8). The result is:

Theorem 2.

$$
\sum_{2 \leq n \leq x} \frac{B(n)-\beta(n)}{p(n)}=\frac{1}{2} \log x\left(1+O\left(\frac{\log _{3} x}{\log _{2} x}\right)\right) \sum_{n \leq x} \frac{1}{p(n)}
$$

By Theorem 1 and 2, we have

$$
\sum_{2 \leq n \leq x} \frac{B(n)-\beta(n)}{\beta(n)} \sim D \sum_{n \leq x} \frac{B(n)-\beta(n)}{p(n)}
$$

It seems interesting to compare the sums involving reciprocals of $\beta(n)$ with the sums involving reciprocals of $p(n)$ [8]:

$$
\sum_{2 \leq n \leq x} \frac{1}{\beta(n)} \sim D \sum_{n \leq x} \frac{1}{p(n)}, \quad \sum_{2 \leq n \leq x} \frac{\omega(n)}{\beta(n)} \sim D \sum_{n \leq x} \frac{\omega(n)}{p(n)}
$$

and

$$
\sum_{2 \leq n \leq x} \frac{\Omega(n)-\omega(n)}{\beta(n)} \sim D \sum_{n \leq x} \frac{\Omega(n)-\omega(n)}{p(n)}
$$

where $\Omega(n)$ and $\omega(n)$ denote respectively the number of prime factors of n counted with and without multiplicities.

2. The necessary lemmas

Lemma 1 [7]. Let

$$
\begin{aligned}
& L_{1}=\exp \left[\left(\frac{1}{2} \log x \log _{2} x\right)^{1 / 2}\left(1-2 \frac{\log _{3} x}{\log _{2} x}\right)\right], \quad \text { and } \\
& L_{2}=\exp \left[\left(\frac{1}{2} \log x \log _{2} x\right)^{1 / 2}\left(1+2 \frac{\log _{3} x}{\log _{2} x}\right)\right]
\end{aligned}
$$

Then we have

$$
\sum_{n \leq x} \frac{1}{p(n)}=\sum_{L_{1}<p \leq L_{2}} \frac{1}{p} \Psi\left(\frac{x}{p}, p\right)\left(1+O\left(\log ^{-A} x\right)\right)
$$

where $A>0$ is arbitrary but fixed, and $\Psi(x, y)$ denotes the number of positive integers not exceeding x, all of whose prime factors do not exceed y.

Lemma 2 [4]. For any fixed $\varepsilon>0$ and $x \geq 3$, $\exp \left\{\left(\log _{2} x\right)^{5 / 3+\varepsilon}\right\} \leq y \leq x$, we have uniformly

$$
\Psi(x, y)=x \rho(u)\left(1+O\left(\frac{\log (u+1)}{\log y}\right)\right), \quad u=\frac{\log x}{\log y}
$$

Lemma 3 [8]. For any fixed $\varepsilon>0$ and $1 \leq d \leq y$, $\exp \left\{\left(\log _{2} x\right)^{5 / 3+\varepsilon}\right\} \leq y \leq$ $x^{1 / 2}$ we have uniformly

$$
\begin{equation*}
\Psi(x / d, y)=\Psi(x, y) d^{-\beta}\left(1+O(1 / u)+\left(\frac{\log (u+1)}{\log y}\right)\right) \tag{2.1}
\end{equation*}
$$

where

$$
\beta=\beta(x, y)=1-\frac{\xi(\log x / \log y)}{\log y} ;
$$

here $\xi(u)$ denotes the positive solution of the equation

$$
\begin{equation*}
e^{\xi}=u \xi+1, \quad(u>1) \tag{2.2}
\end{equation*}
$$

and satisfies

$$
\begin{equation*}
\xi(u)=\log u+O\left(\log _{2}(u+2)\right), \quad u \rightarrow \infty . \tag{2.3}
\end{equation*}
$$

Lemma 4 [8]. For any fixed $\varepsilon>0$ and

$$
1 \leq d \leq y, \quad \exp \left\{\left(\log _{2} x\right)^{5 / 3+\varepsilon}\right\} \leq y \leq x,
$$

we have uniformly

$$
\Psi(x / d, y) \ll \Psi(x, y) d^{-\beta} .
$$

3. Proofs of the Theorems

We shall only give a detailed proof of Theorem 1 , since Theorem 2 may be obtained in a similar and simpler way.

By the definition of $B(n)$ and $\beta(n)$ we have (p, q denote primes):

$$
\begin{align*}
W(x):= & \sum_{2 \leq n \leq x} \frac{B(n)-\beta(n)}{\beta(n)}=\sum_{q^{\alpha} \leq x}(\alpha-1) q \sum_{2 \leq n \leq x, q^{\alpha} \| n} \frac{1}{\beta(n)} \\
= & \sum_{q^{\alpha} \leq x}(\alpha-1) q \sum_{q<p_{1} \leq x / q^{\alpha}} \sum_{m_{1} \leq x / q^{\alpha} p_{1}, p\left(m_{1}\right) \leq p_{1},\left(q, m_{1}\right)=1} \frac{1}{q+\beta\left(m_{1} p_{1}\right)} \tag{3.1}\\
& +O\left(\sum_{q^{\alpha} \leq x}(\alpha-1) \Psi\left(x q^{-\alpha}, q\right)\right)=W_{1}+O\left(W_{2}\right), \quad \text { say. }
\end{align*}
$$

It is evident that

$$
W_{1}=\sum_{p_{1} \leq x} \sum_{\substack{q^{\alpha} \leq x / p_{1}, q<p_{1}}}(\alpha-1) q \sum_{\substack{m_{1} \leq x / q^{\alpha} p_{1} \\ p\left(m_{1}\right) \leq p_{1},\left(q, m_{1}\right)=1}} \frac{1}{q+\beta\left(m_{1} p_{1}\right)} .
$$

We may write

$$
\begin{equation*}
W_{1}=\sum_{p_{1} \leq z_{1}}+\sum_{z_{1}<p_{1} \leq L_{1}}+\sum_{L_{1}<p_{1} \leq L_{2}}+\sum_{L_{2}<p_{1} \leq x}=W_{3}+W_{4}+W_{5}+W_{6}, \tag{3.2}
\end{equation*}
$$

where $z_{1}=\exp \left\{(1 / 10)\left(\log x \log _{2} x\right)^{1 / 2}\right\}$, and L_{1} and L_{2} are defined in Lemma 1 .
Let $R=\left(\log x \log _{3} x / \log _{2} x\right) \sum_{n \leq x} 1 / p(n)$; we have

$$
W_{3} \leq \sum_{p_{1} \leq z_{1}} \frac{1}{p_{1}} \sum_{q^{\alpha} \leq x / p_{1}, q<p_{1}}(\alpha-1) q \Psi\left(x q^{-\alpha} p_{1}^{-1}, p_{1}\right)
$$

$$
\begin{align*}
& \ll \log ^{2} x\left(\sum_{p_{1} \leq z_{1}} \frac{1}{p_{1}}\right) \sum_{q \leq z_{1}} q \Psi\left(x q^{-2}, z_{1}\right) \tag{3.3}\\
& \ll x \exp \left\{-4\left(\log x \log _{2} x\right)^{1 / 2}\right\} \ll R,
\end{align*}
$$

since by Lemma 2 and (1.3) we have $\Psi\left(x q^{-2}, z_{1}\right) \ll x q^{-2} \exp \left\{-4.5\left(\log x \log _{2} x\right)^{1 / 2}\right\}$. Using Lemma 4 we have

$$
\begin{aligned}
W_{4} & \leq \sum_{z_{1}<p_{1} \leq L_{1}} \frac{1}{p_{1}} \sum_{q^{\alpha} \leq x / p_{1},, q<p_{1}}(\alpha-1) q \Psi\left(x q^{-\alpha} p_{1}^{-1}, p_{1}\right) \\
& \ll \sum_{z_{1}<p_{1} \leq L_{1}} \frac{1}{p_{1}} \Psi\left(x / p_{1}, p_{1}\right) \sum_{q^{\alpha} \leq x / p_{1}, q<p_{1}}(\alpha-1) q^{1-\alpha\left(1-\delta^{\prime}\right)} \\
& \ll \sum_{z_{1}<p_{1} \leq L_{1}} \frac{1}{p_{1}} \Psi\left(x / p_{1}, p_{1}\right) \sum_{q<p_{1}} q^{-1+2 \delta^{\prime}}
\end{aligned}
$$

where $\delta^{\prime}=\left(\log p_{1}\right)^{-1} \xi\left(\log \left(x / p_{1}\right) / \log p_{1}\right)$. By (2.2) and (2.3) we have

$$
q^{2 \delta^{\prime}} \leq \exp \left(2 \xi\left(\frac{\log \left(x / p_{1}\right)}{\log p_{1}}\right)\right) \ll \log x \log _{2} x
$$

for $z_{1}<p_{1} \leq L_{1}$. Therefore using Lemma 1 we obtain:

$$
\begin{equation*}
W_{4} \ll \log ^{2} x \sum_{z_{1}<p_{1} \leq L_{1}} \frac{1}{p_{1}} \Psi\left(x / p_{1}, p_{1}\right) \ll R . \tag{3.4}
\end{equation*}
$$

Similarly we have $W_{6} \ll R$.
Now we come to the estimation of W_{5} in (3.2). We consider separately the cases $p\left(m_{1}\right)<p_{1}$ and $p\left(m_{1}\right)=p_{1}$ and obtain

$$
\begin{align*}
W_{5}= & \sum_{L_{1}<p_{1} \leq L_{2}} \sum_{q^{\alpha} \leq x / p_{1}, q<p_{1}}(\alpha-1) q \\
& \times \sum_{m_{1} \leq x / q^{\alpha} p_{1}, p\left(m_{1}\right)<p_{1},\left(q, m_{1}\right)=1} \frac{1}{q+p_{1}+\beta\left(m_{1}\right)} \tag{3.5}\\
& +O\left(\sum_{L_{1}<p_{1} \leq L_{2}} \sum_{q^{\alpha} \leq x / p_{1}, q<p_{1}} \frac{(\alpha-1) q}{p_{1}} \Psi\left(x q^{-\alpha} p_{1}^{-2}, p_{1}\right)\right) .
\end{align*}
$$

Denoting by W_{5}^{\prime} the main term on the right-hand side of (3.5) we may write

$$
W_{5}^{\prime}=\sum_{L_{1}<p\left(m_{1}\right)<p_{1}, p\left(m_{1}\right) \| m_{1}}+\sum_{L_{1}<p\left(m_{1}\right)<p_{1}, p^{2}\left(m_{1}\right) \| m_{1}}+\sum_{p\left(m_{1}\right) \leq L_{1}} .
$$

Then we have

$$
W_{5}^{\prime}=\sum_{L_{1}<p_{1} \leq L_{2}} \sum_{\substack{L_{1}<p_{2}<p_{1}}} \sum_{\substack{q^{\alpha} \leq x / p_{1} p_{2} \\ q<p_{1}, q \neq p_{2}}}(\alpha-1) q \sum_{\substack{m_{2} \leq x / q^{\alpha} p_{1} p_{2} \\ p\left(m_{2}\right)<p_{2},\left(q, m_{2}\right)=1}} \frac{1}{q+p_{1}+p_{2}+\beta\left(m_{2}\right)}
$$

$$
\begin{aligned}
& +O\left(\sum_{L_{1}<p_{1} \leq L_{2}} \sum_{L_{1}<p_{2}<p_{1}} \sum_{q^{\alpha} \leq x / p_{1} p_{2}, q<p_{1}}(\alpha-1) q p_{1}^{-1} \Psi\left(x / q^{\alpha} p_{1} p_{2}^{2}, p_{2}\right)\right) \\
& +O\left(\sum_{L_{1}<p_{1} \leq L_{2}} \sum_{p_{2} \leq L_{1}} \sum_{q^{\alpha} \leq x / p_{1} p_{2}, q<p_{1}}(\alpha-1) q p_{1}^{-1} \Psi\left(x / q^{\alpha} p_{1} p_{2}, p_{2}\right)\right) .
\end{aligned}
$$

Proceeding as before, we obtain

$$
\begin{equation*}
W_{5}=W_{5}^{\prime \prime}+O\left(\sum_{j=1}^{s} W_{7 j}\right)+O\left(\sum_{j=2}^{s} W_{8 j}\right)+O\left(\sum_{j=1}^{s-1} W_{9 j}\right) \tag{3.6}
\end{equation*}
$$

where
(3.7)

$$
W_{5}^{\prime \prime}=\sum_{p_{1}, \ldots, p_{s}} \sum_{\substack{q^{\alpha} \leq x / p_{1} \ldots p_{s} \\ q<p_{1}}}(\alpha-1) q \sum_{\substack{m_{s} \leq x / q^{\alpha} p_{1} \ldots p_{s} \\ p\left(m_{s}\right)<p_{s},\left(q, m_{s}\right)=1}} \frac{1}{q+p_{1}+\cdots+p_{s}+\beta\left(m_{s}\right)}
$$

where the ranges of summation in the above sums p_{1}, \ldots, p_{s} are $L_{1}<p_{1} \leq L_{2}$, $L_{1}<p_{2}<p_{1}, \ldots, L_{1}<p_{s}<p_{s-1}$, and $s \leq \log _{3} x$ is a large number which will be chosen later and

$$
\begin{align*}
W_{7 j} & =\sum_{p_{1}, \ldots, p_{j}} \sum_{q^{\alpha} \leq x / p_{1} \ldots p_{j}, q<p_{1}} \frac{(\alpha-1) q}{p_{1}} \Psi\left(x / q^{\alpha} p_{1} \ldots p_{j-1} p_{j}^{2}, p_{j}\right) \tag{3.8}\\
W_{8 j} & =\sum_{p_{1}, \ldots, p_{j-1}} \sum_{p_{j} \leq L_{1}} \sum_{q^{\alpha} \leq x / p_{1} \ldots p_{j}, q<p_{1}} \frac{(\alpha-1) q}{p_{1}} \Psi\left(x / q^{\alpha} p_{1} \ldots p_{j}, p_{j}\right) \tag{3.9}\\
W_{9 j} & =\sum_{p_{1}, \ldots, p_{j}} \sum_{q^{\alpha} \leq x / p_{1} \ldots p_{j}, q<p_{1}} \frac{(\alpha-1) q}{p_{1}} \Psi\left(x / q^{\alpha+1} p_{1} \ldots p_{j}, q\right) \tag{3.10}
\end{align*}
$$

Since

$$
\frac{1}{q+p_{1}+\cdots+p_{s}+\beta\left(m_{s}\right)}=\frac{1}{p_{1}+\cdots+p_{s}}+O\left(q p_{1}^{-2}\right)+O\left(p_{1}^{-2} \beta\left(m_{s}\right)\right)
$$

and

$$
\sum_{\substack{m_{s} \leq x / q^{\alpha} p_{1} \ldots p_{s} \\ p\left(m_{s}\right)<p_{s},\left(q, m_{s}\right)=1}} 1=\Psi\left(\frac{x}{q^{\alpha} p_{1} \ldots p_{s}}, p_{s}\right)-\Psi\left(\frac{x}{q^{\alpha+1} p_{1} \ldots p_{s}}, p_{s}\right)+O\left(W_{7 s}\right)
$$

we have further

$$
W_{5}^{\prime \prime}=\sum_{p_{1}, \ldots, p_{s}} \sum_{\substack{q^{\alpha} \leq x / p_{1} \ldots p_{s} \\ q<p_{1}, \alpha \geq 2}} \frac{q}{p_{1}+\cdots+p_{s}} \Psi\left(x / q^{\alpha} p_{1} \ldots p_{s}, p_{s}\right)
$$

$$
\begin{aligned}
& +O\left(\sum_{p_{1}, \ldots, p_{s}} \sum_{q^{\alpha} \leq x / p_{1} \ldots p_{s}, q<p_{1}} \frac{(\alpha-1) q^{2}}{p_{1}^{2}} \Psi\left(x / q^{\alpha} p_{1} \ldots p_{s}, p_{s}\right)\right) \\
& +O\left(\sum_{p_{1}, \ldots, p_{s}} \sum_{q^{\alpha} \leq x / p_{1} \ldots p_{s}, q<p_{1}} \frac{(\alpha-1) q}{p_{1}^{2}} \sum_{\substack{m_{s} \leq x / q^{\alpha} p_{1} \ldots p_{s} \\
p\left(m_{s}\right)<p_{s},\left(q, m_{s}\right)=1}} \beta\left(m_{s}\right)\right) \\
& +O\left(W_{7 s}\right)=W_{10}+O\left(W_{11}\right)+O\left(W_{12}\right)+O\left(W_{7 s}\right), \quad \text { say. }
\end{aligned}
$$

We estimate first W_{10}. We consider separately the cases $\alpha=2$ and $\alpha \geq 3$ and by using Lemmas 3 and 4 we obtain

$$
\begin{aligned}
W_{10}= & \sum_{p_{1}, \ldots, p_{s}} \frac{\Psi\left(x / p_{1} \ldots p_{s}, p_{s}\right)}{p_{1}+\cdots+p_{s}} \sum_{q<p_{1}} q^{-1+2 \delta_{1}}\left(1+O\left(\log _{3} x / \log _{2} x\right)\right) \\
& +O\left(\sum_{p_{1}, \ldots, p_{s}} \frac{\Psi\left(x / p_{1} \ldots p_{s}, p_{s}\right)}{p_{1}+\cdots+p_{s}} \sum_{\substack{q^{\alpha} \leq x / p_{1} \ldots p_{s} \\
q<p_{1}, \alpha \geq 3}} q^{1-\alpha\left(1-\delta_{1}\right)}\right)
\end{aligned}
$$

where

$$
\delta_{i}=\frac{1}{\log p_{s}} \xi\left(\frac{\log \left(x / p_{i} \ldots p_{s}\right)}{\log p_{s}}\right), \quad i=1,2, \ldots, s
$$

Using partial summation and the prime number theorem we have

$$
\begin{aligned}
\sum_{q<p_{1}} q^{-1+2 \delta_{1}} & =\int_{e^{1 / \delta_{1}}}^{p_{1}} z^{-1+2 \delta_{1}} \log ^{-1} z d z\left(1+O\left(\log _{3} x / \log _{2} x\right)\right) \\
& =\left(\log _{2} x\right)^{-1} p_{1}^{2 \delta_{1}}\left(1+O\left(\log _{3} x / \log _{2} x\right)\right)
\end{aligned}
$$

Similarly

$$
\sum_{q^{\alpha} \leq x / p_{1} \ldots p_{s}, q<p_{1}, \alpha \geq 3} q^{1-\alpha\left(1-\delta_{1}\right)} \ll 1
$$

Therefore we obtain

$$
W_{10}=\frac{1}{\log _{2} x} \sum_{p_{1}, \ldots, p_{s}} \frac{\Psi\left(x / p_{1} \ldots p_{s}, p_{s}\right)}{p_{1}+\cdots+p_{s}} p_{1}^{2 \delta_{1}}\left(1+O\left(\log _{3} x / \log _{2} x\right)\right)
$$

By (4.13) of [8] we have $p^{\delta_{i}}=p^{\delta}\left(1+O\left(\log _{3} x / \log _{2} x\right)\right)$ for $L_{1}<p \leq L_{2}$, where $\delta=\delta_{s}$. Moreover by (4.6), (4.16), (4.18) and (4.31) of [8], we have

$$
\sum_{p_{1}, \ldots, p_{s}} \frac{\Psi\left(x / p_{1} \ldots p_{s}, p_{s}\right)}{p_{1}+\cdots+p_{s}}=\left(D+O\left(\frac{\log _{3}^{2} x}{\log _{2} x}\right)\right) \sum_{L_{1}<p \leq L_{2}} \frac{\Psi(x / p, p)}{p} .
$$

Similarly, in a way analogous to the above we have for W_{10}

$$
\begin{align*}
W_{10} & =D\left(\log _{2} x\right)^{-1}\left(1+O\left(\log _{3}^{2} x / \log _{2} x\right)\right) \sum_{L_{1}<p \leq L_{2}} p^{-1+2 \delta} \Psi\left(x p^{-1}, p\right) \\
& =\frac{1}{2} D \log x\left(1+O\left(\log _{3}^{2} x / \log _{2} x\right)\right) \sum_{n \leq x} \frac{1}{p(n)} . \tag{3.12}
\end{align*}
$$

Now we come to the estimation of W_{12} in (3.11). By the definition of $\beta(m)$ and Lemma 4 we have

$$
\begin{aligned}
W_{12} & \leq \sum_{p_{1}, \ldots, p_{s}} \sum_{q^{\alpha} \leq x / p_{1} \ldots p_{s}, q<p_{1}} \frac{(\alpha-1) q}{p_{1}^{2}} \sum_{p<p_{s}} p \Psi\left(x / q^{\alpha} p_{1} \ldots p_{s} p, p_{s}\right) \\
& \ll \sum_{p_{1}, \ldots, p_{s}} \sum_{p<p_{s}} \frac{p}{p_{1}^{2}} \Psi\left(x / p_{1} \ldots p_{s} p, p_{s}\right) p_{1}^{2 \delta_{1}}\left(\log _{2} x\right)^{-1}
\end{aligned}
$$

By (4.19) of [8]

$$
\sum_{p_{1}, \ldots, p_{s}} \sum_{p<p_{s}} \frac{p}{p_{1}^{2}} \Psi\left(x / p_{1} \ldots p_{s} p, p_{s}\right) \ll \frac{1}{\log _{2} x} \sum_{L_{1}<p \leq L_{2}} \frac{\Psi(x / p, p)}{p} \ll R .
$$

Similarly

$$
\begin{equation*}
W_{12} \ll R \tag{3.13}
\end{equation*}
$$

Similarly we have also

$$
\begin{equation*}
W_{11}, W_{7 j}, W_{8 j}, W_{9 j} \ll R \tag{3.14}
\end{equation*}
$$

By putting (3.12)-(3.14) into (3.11) and (3.11), (3.14) into (3.6) and finally (3.3), (3.4) and (3.6) into (3.2) we get

$$
W_{1}=\frac{1}{2} D \log x\left(1+O\left(\log _{3}^{2} x / \log _{2} x\right)\right) \sum_{n \leq x} \frac{1}{p(n)}
$$

Moreover, it is easy to prove that

$$
W_{2} \ll R
$$

which completes the proof of Theorem 1.

REFERENCES

[1] N. G. de Bruijn, The asymptotic behaviour of a function occurring in the theory of primes, J. Indian Math. Soc. (N.S.) 15 (1951), 25-32.
[2] J.-M. De Koninck, P. Erdős and A. Ivić, Reciprocals of large additive functions, Canad. Math. Bull. 24 (1981), 225-231.
[3] P. Erdős, A. Ivić and C. Pomerance, On sums involving reciprocals of the largest prime factor of an integer, Glasnik Matematički 21 (41) (1986), 283-300.
[4] A. Hildebrand, On the number of positive integers $\leq x$ and free of prime factors $>y$, J. Number Theory 22 (1986), 289-307.
[5] L. G. Hua, Estimation of an integral, Scientia Sinica 2 (1951), 393-402, (in Chinese).
[6] A. Ivić and C. Pomerance, Estimates of certain sums involving the largest prime factor of an integer, in: Coll. Math. Soc. J. Bolyai 34, Topics in Classical Number Theory, North-Holland, Amsterdam, 1984, 769-789.
[7] A. Ivić, On some estimates involving the number of prime divisors of an integer, Acta Arith. 49 (1987), 21-33.
[8] T. Z. Xuan, On sums involving reciprocals of certain large additive functions, Publ. Inst. Math. (Belgrade) 41 (55) (1989), 41-55.
[9] T. Z. Xuan, Sums of certain large additive functions, J. Beijing Normal Univ. (N.S.) 1984, No 2, 11-18, (in Chinese).

[^0]
[^0]: Department of Mathematics
 (Received 1801 1989)
 Beijing Normal University
 100088 Beijing, China

