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ON SUMS INVOLVING RECIPROCALS
OF CERTAIN LARGE ADDITIVE FUNCTIONS (II)

Tizuo Xuan

Abstract. Let 8(n) =3, p and B(n) = 3, o, @p- Let p(n) denote the largest prime

factor of an integer n > 2. In the present paper we sharpen the asymptotic formula for the sum

> B(n)/B(n) and we derive an asymptotic formula for the sum > (B(n) — 8(n))/p(n).
2<n<z 2<n<z

1. Introduction and statement of results

Let B(n) = 3., p and B(n) = 3_ o, ap.
In [2] it was proved that

(1.1) Z B(n)/B(n) =z + O(zexp(—ci (log z logy 2)'/?)), ¢ >0,
and
(1.2) Z B(n)/B(n) =z + O(z exp(—ca(log z logy 2)'/?)), ¢ > 0.

The above results were slightly sharpened in [6]. Let us define p(n) as the largest
prime factor of n > 2, and p(1) = 1. In [3] it was proved that

>~ 1/p(n) = w6(2) (1 + O((log, 2/ 1og 2)*/?)),

n<z
* [logx
§(x) = t=2 dt.
(@) /2 p<10gt>

Here p(u) is the so-called “Dickman function”, which is the solution of the
differential-difference equation up'(u) + p(u — 1) = 0, (v > 1), with the initial

where
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condition p(u) =1, (0 < u < 1), p(u) continuous at v = 1. An approximation to
p(u) in terms of elementary functions is

(1.3) p(u) = exp{—u(logu + log, u — 1 +log, u/logu + O(1/logu)) },

where log, u = loglogu. The asymptotic formula (1.3) was established by Hua [5]
and de Bruijn [1], independently.

In [8], we proved that

(1.4) Y 1/8(n) = (D +O(log; z/log, ©)) Y 1/p(n),
2<n<z n<z
where 1/2 < D < 1 is an absolute constant.

One of the aimes of the present paper is to provide sharpenings of (1.1) and
(1.2). The results are contained in the following theorem.

THEOREM 1.
B(n) 1 log3 = 1
1.5 x+ Dlogm(l-{—O( 3 )) —_—,
(15) 2<2n:<w B(n) logyz /) = p(n)
and
B(n) < <log3w>> 1
1.6 ——x——Dloga: 1+0 —_—,
o 2 B g, ) 2= )

where D is the same as in (1.4).

Moreover, in [9] we proved that

wn ¥ %:mexp{—(eroga:log2a:)1/2< 2\&122?0(10;33))},

2<n<z
and
(1.8)
B(n) —pB(n) / \r logsx 1
2<2n;gc 71)(”) = xexp{—(2rlogmlog2 z)t 2< % 10gzx+0<log2x>> },

where r > 0 is arbitrary but fixed.

Another aim of the present paper is to provide sharpenings of (1.8). The
result is:

THEOREM 2.

> S e (o (5)) S

2<n<z
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By Theorem 1 and 2, we have

Bn) — fn) _ <~ Bln) ~ B(n)
2 ~am Pl T m

2<n<z

It seems interesting to compare the sums involving reciprocals of §(n) with the
sums involving reciprocals of p(n) [8]:

1yl s ) sl
K%xa(n) D gmn)’ g@ﬂ(n) D gpm)’

and

Qn) —wln Qn) —wln
) (n) ()NDZ (L(n)(),

ke P)

where Q(n) and w(n) denote respectively the number of prime factors of n counted
with and without multiplicities.

n<z

2. The necessary lemmas

LemMmA 1 [7]. Let

1 1/2 logs
Ly =exp 3 log z log, = 1- 210g sk and
2

1 12 logs =
LQ = exp §logm10g2m 1+210g—1’ .
2

Then we have

L lo(= ooz
%;p(n)— 2 pq’<p’p>(1+0(lg )

L1<p<La

where A > 0 is arbitrary but fized, and ¥(x,y) denotes the number of positive
integers not exceeding x, all of whose prime factors do not exceed y.

LeEMMA 2 [4]. For any fized e > 0 and z > 3, exp{(log, )%/} <y < z, we
have uniformly

ceamanfieo ()

Lemma 3 [8]. For any fized ¢ > 0 and 1 < d < y, exp{(log, )°/3+} <y <
z'/? we have uniformly

(2.1) U(z/d,y) = ¥(z,y)d " <1 +0(1/u) + <%>> :
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where | |
8= B(a,y) = 1 - SELL0EY),
here £(u) denotes the positive solution of the equation
(2.2) et =ul+1, (u>1),
and satisfies
(2.3) &(u) =logu + O(logy(u + 2)), u — oo.

LemMA 4 [8]. For any fized ¢ > 0 and
1<d<y, exp{(logyz)”**} <y<u,

we have uniformly
U(z/d,y) < (z,y)d~".

3. Proofs of the Theorems

We shall only give a detailed proof of Theorem 1, since Theorem 2 may be
obtained in a similar and simpler way.

By the definition of B(n) and 8(n) we have (p, ¢ denote primes):

B(n) — B(n 1
o= 3 SE s Te-m B g

2<n<z <z 2<n<z,q>||n
1
Gy =2 (a-be 3 2 T )
g« <z g<p1<z/q™ mi<z/q*p1,p(m1)<p1, (¢,m1)=1 1

+ O( Z (o — 1)‘P(mq‘°‘,q)> =W, + O(Wsy), say.

q><z
It is evident that

1
M= X @b X Sy

pi<z ¢*<z/p1, m1<z/q%p1
a<p1 p(m1)<p1,(g,;m1)=1

We may write
32 Wi= Y+ > o+ > o+ Y, =Wat Wi+ Ws+Ws,
p1<z1  z1<p1<Li Li<pi<Ls La<pi<z

where z; = exp{(1/10)(logzlog, z)*/?}, and L; and L, are defined in Lemma 1.
Let R = (logzlogs z/log, x) 3 -, <, 1/p(n); we have

1 o
Wy < Y o > (a=1)q¥(zqp ", p1)

p1<z1 ¢*<z/p1,q<p1
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(3.3) < 10g2:r< > p%) > qU(zg>,2)

p1<z1 9<z1
< zexp{—4(logzlog, r)'/*} < R,
since by Lemma 2 and (1.3) we have ¥ (zq~2, z;) < zq~2 exp{—4.5(log z log, z)'/?}.
Using Lemma 4 we have

i< > = > (a=1)q¥(zq °p;",p1)

z1<p1<L1 b q*<x/p1,q<p1

1 s
< > 1)—‘1’(50/1717171) Yo (a=1g)

z1<p1<Ll1 ¢*<z/p1,q<p1

1 _ /

< Y =U/pp) Y a7,
z1<p1<Ly p g<p1

where 0’ = (logp1)~'&(log(z/p1)/logp1). By (2.2) and (2.3) we have
' log(z/p1)
20 < ex <2 (gi < log zlog, ,
¢~ <exp{2¢ log 1 gz log,

for z; < p1 < L;. Therefore using Lemma 1 we obtain:

1
(3.4) Wy < 10g2m Z —I\Il(m/pl,pl) < R.

z1<p1<Ly
Similarly we have W5 < R.

Now we come to the estimation of Ws in (3.2). We consider separately the
cases p(my) < p1 and p(m;) = p1 and obtain

Ws= ) > (a-1)g

L1<p1<Lsq><az/p1,q<p1

1

(3:5) 8 q+pi+ B(my)

m1<z/q*p1,p(m1)<p1, (g,m1)=1
a—1)q Y
LD YD = )
Li<pi<L> g¢><z/p1,q<p1 P
Denoting by W the main term on the right-hand side of (3.5) we may write
RN >R VR »
Li<p(m1)<pi,p(mi)llmi Li<p(mi1)<pi,p?(m1)|lmi p(m1)<L;
Then we have

;L _ 1
Ws = Z Z Z (@ =1)g Z q+p1 +p2+ B(m2)

Li<p1<Lz L1<p2<p1 ¢*<z/pip2 ma<z/q%p1p2
q<p1,q#p2 p(mz2)<pz2, (¢,m2)=1
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+ 0( 3 > Y (a- l)qpll‘l’(w/q”‘plpg,m))

Li<pi<L> Li1<p2<p1 q*<z/pip2,q<p1

+ O( Z Z Z (a — l)qpfl‘l’(w/qamm,m))-

Li<pi<La p2<Li q~<z/pip2,q<p1

Proceeding as before, we obtain

s s s—1

(3.6) W5:Wg'+O<ZW7j>+O<ZWSj>+O<ZW9j>a

Jj=1 j=2 j=1
where
(3.7)

1
wr =y > (a-1) > ,
PlyesPs <z /p1...ps ms<z/q%p1...ps gHprte st ﬁ(ms)
q<p1 p(ms)<ps, (g,ms)=1

where the ranges of summation in the above sums py,... ,ps are Ly < p; < Lo,
Ly <py<p1,..., L1 <ps <ps—1, and s < log; x is a large number which will be

chosen later and

3 S M\P(x/qam - Dj—1P], D)),

D1
P1,---3Pj ¢ <z /p1...pj, 4<p1

(3.9) Ws; = Z Z Z M\P(x/qapl .. -Dj D),

1
P15 5Pj—1 pj<L1 q*<z/p1...pj, ¢<p1 p

(3.10) Woj= > > (C“;ill)q@(m/q““pl Dy Q)

P1ye- 5P ¢ <z /p1...pj, ¢<p1

(3.8) Wr;

Since

1 1
- +O 2 +O L ms)),
it Tp By g p, T Ol )+ 0@ A(ms)

and

xr X
1=9———p, ) — ¥ ——— p, | + O(Wr,),
Z <q”‘p1---psp> (q““m---psp) (Wzs)

ms<z/q%p1...ps
p(ms)<ps, (g,ms)=1

we have further

W” - Z Z #\I’(m/qapl---psvps)

1 + e +
P1sesPs ¢ <z/p1...ps p Ps
q<p1,a>2
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+0( 3 > wlﬁ(m/qapl...ps,ps)>

Pl 5Ps q*<x/p1...ps, ¢<P1 P1

oYy e )

p
PiyesPs g <z /pi...ps, 4<p1 ! ms<z/q%p1...ps
p(ms)<ps, (g,ms)=1

+ O(W73) = Wi + O(Wn) + O(W12) + O(W7s), say.

We estimate first Wy9. We consider separately the cases a = 2 and a > 3 and by
using Lemmas 3 and 4 we obtain

v s Psy Vs —
W= 3 TP PaP) S22 (1 4 O(1og, 2/ g, )

prows Pl Tt ps a<p1
+O Z \If(m/p1p35p8) Z ql—a(l—dl) ,
D1 +"'+ps a
P1y---5Ps ¢“<z/p1...ps
g<p1,a>3
where . |

5; = g(og(m/p""'pS)), i=1,2,... s

log ps log ps

Using partial summation and the prime number theorem we have

p1
Z g 2 = / 27120 og™! 2dz (1 + O(logs 2/ log, 7))

q<p1 et/
= (log, z)~'pi” (1 + O(logs x/ log, 7)).

Similarly

Z ql—a(l—él) << 1
q*<z/p1...ps,q<p1,a>3

Therefore we obtain

U(z/p1...ps,Ps)
Mo =iz 2 Pt Py (1+ O(logg z/ log, 7))

By (4.13) of [8] we have p% = p?(1 + O(log; z/log, x)) for Ly < p < Ls, where
d = ds. Moreover by (4.6), (4.16), (4.18) and (4.31) of [8], we have

Z \I’(x/pl---psyps) — <D+O<10g§m>> Z \I/(Z’/p,p)-
p1+ -+ ps log, x LS,

Piseer sPs p

Similarly, in a way analogous to the above we have for Wi

Wio = D(log, z) ™' (1L + Ologi z/log, x)) > p~ 't ¥(xp™',p)
L1<p<L2

1 1
= ~Dlogz(1+ O(log2 z/log, = —.
2 g ( (logz x/ log, ))ng;p(n)

(3.12)
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Now we come to the estimation of Wis in (3.11). By the definition of 8(m) and
Lemma 4 we have

Wi < Y > (agizl)q > p¥(z/q"pi-..psp,ps)

15-5Ps q*<x/p1...Ds, ¢<P1 1 pP<pPs

_p p—
< Y > SU(a/pr .. pep,ps)pi (logy )
P1y.-sPs P<Ps Py

By (4.19) of [8]

U(z/p,
> Y L@/ ) < — > Yelvp) o p
P1y--,Ps P<DPs P 82 L,1<p<L> p
Similarly
(3.13) Wiz < R.
Similarly we have also
(314) W11,W7j,W8j,W9j < R.

By putting (3.12)—(3.14) into (3.11) and (3.11), (3.14) into (3.6) and finally (3.3),
(3.4) and (3.6) into (3.2) we get

1 1
Wi = —Dlogz(1 + O(log; z/ log, = —.
2 ( ( 3 / 2 )) n2<; p(n)
Moreover, it is easy to prove that
Wy < R,

which completes the proof of Theorem 1.
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