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ON SUMS INVOLVING RECIPROCALS
OF CERTAIN LARGE ADDITIVE FUNCTIONS (II)

Tizuo Xuan

Abstract. Let �(n) =
P

pjn p and B(n) =
P

p�kn �p. Let p(n) denote the largest prime

factor of an integer n � 2. In the present paper we sharpen the asymptotic formula for the sumP

2�n�x

B(n)=�(n) and we derive an asymptotic formula for the sum
P

2�n�x

(B(n) � �(n))=p(n).

1. Introduction and statement of results

Let �(n) =
P

pjn p and B(n) =
P

p�kn �p.

In [2] it was proved that

(1.1)
X

2�n�x

B(n)=�(n) = x+O
�
x exp(�c1(logx log2 x)1=2)

�
; c1 > 0;

and

(1.2)
X

2�n�x

�(n)=B(n) = x+O
�
x exp(�c2(logx log2 x)1=2)

�
; c2 > 0:

The above results were slightly sharpened in [6]. Let us de�ne p(n) as the largest
prime factor of n � 2, and p(1) = 1. In [3] it was proved that

X
n�x

1=p(n) = xÆ(x)
�
1 +O((log2 x= logx)

1=2)
�
;

where

Æ(x) =

Z 1

2

�

�
logx

log t

�
t�2 dt:

Here �(u) is the so-called \Dickman function", which is the solution of the
di�erential-di�erence equation u�0(u) + �(u � 1) = 0, (u > 1), with the initial
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condition �(u) = 1, (0 � u � 1), �(u) continuous at u = 1. An approximation to
�(u) in terms of elementary functions is

(1.3) �(u) = exp
��u�logu+ log2 u� 1 + log2 u= logu+O(1= logu)

�	
;

where log2 u = log logu. The asymptotic formula (1.3) was established by Hua [5]
and de Bruijn [1], independently.

In [8], we proved that

(1.4)
X

2�n�x

1=�(n) =
�
D +O(log23 x= log2 x)

�X
n�x

1=p(n);

where 1=2 < D < 1 is an absolute constant.

One of the aimes of the present paper is to provide sharpenings of (1.1) and
(1.2). The results are contained in the following theorem.

THEOREM 1.

(1.5)
X

2�n�x

B(n)

�(n)
= x+

1

2
D logx

�
1 +O

�
log23 x

log2 x

��X
n�x

1

p(n)
;

and

(1.6)
X

2�n�x

�(n)

B(n)
= x� 1

2
D logx

�
1 +O

�
log23 x

log2 x

��X
n�x

1

p(n)
;

where D is the same as in (1.4).

Moreover, in [9] we proved that

(1.7)
X

2�n�x

1

pr(n)
= x exp

�
�(2r logx log2 x)1=2

�
1+

p
r

2
p
2

log3 x

log2 x
+O

�
1

log2 x

���
;

and
(1.8)X
2�n�x

B(n)� �(n)

p(n)
= x exp

�
�(2r logx log2 x)1=2

�
1+

p
r

2
p
2

log3 x

log2 x
+O

�
1

log2 x

���
;

where r > 0 is arbitrary but �xed.

Another aim of the present paper is to provide sharpenings of (1.8). The
result is:

THEOREM 2.

X
2�n�x

B(n)� �(n)

p(n)
=

1

2
logx

�
1 +O

�
log3 x

log2 x

��X
n�x

1

p(n)
:
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By Theorem 1 and 2, we have

X
2�n�x

B(n)� �(n)

�(n)
� D

X
n�x

B(n)� �(n)

p(n)
:

It seems interesting to compare the sums involving reciprocals of �(n) with the
sums involving reciprocals of p(n) [8]:

X
2�n�x

1

�(n)
� D

X
n�x

1

p(n)
;

X
2�n�x

!(n)

�(n)
� D

X
n�x

!(n)

p(n)
;

and X
2�n�x


(n)� !(n)

�(n)
� D

X
n�x


(n)� !(n)

p(n)
;

where 
(n) and !(n) denote respectively the number of prime factors of n counted
with and without multiplicities.

2. The necessary lemmas

LEMMA 1 [7]. Let

L1 = exp

��
1

2
logx log2 x

�1=2�
1� 2

log3 x

log2 x

��
; and

L2 = exp

��
1

2
logx log2 x

�1=2�
1 + 2

log3 x

log2 x

��
:

Then we have

X
n�x

1

p(n)
=

X
L1<p�L2

1

p
	

�
x

p
; p

��
1 +O(log�A x)

�
;

where A > 0 is arbitrary but �xed, and 	(x; y) denotes the number of positive

integers not exceeding x, all of whose prime factors do not exceed y.

LEMMA 2 [4]. For any �xed " > 0 and x � 3, expf(log2 x)5=3+"g � y � x, we
have uniformly

	(x; y) = x�(u)

�
1 +O

�
log(u+ 1)

log y

��
; u =

logx

log y
:

LEMMA 3 [8]. For any �xed " > 0 and 1 � d � y, expf(log2 x)5=3+"g � y �
x1=2 we have uniformly

(2.1) 	(x=d; y) = 	(x; y)d��
�
1 +O(1=u) +

�
log(u+ 1)

log y

��
;
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where

� = �(x; y) = 1� �(logx= log y)

log y
;

here �(u) denotes the positive solution of the equation

(2.2) e� = u� + 1; (u > 1);

and satis�es

(2.3) �(u) = logu+O(log2(u+ 2)); u!1:

LEMMA 4 [8]. For any �xed " > 0 and

1 � d � y; expf(log2 x)5=3+"g � y � x;

we have uniformly

	(x=d; y)� 	(x; y)d�� :

3. Proofs of the Theorems

We shall only give a detailed proof of Theorem 1, since Theorem 2 may be
obtained in a similar and simpler way.

By the de�nition of B(n) and �(n) we have (p, q denote primes):

W (x) : =
X

2�n�x

B(n)� �(n)

�(n)
=
X
q��x

(�� 1)q
X

2�n�x; q�jjn

1

�(n)

=
X
q��x

(�� 1)q
X

q<p1�x=q�

X
m1�x=q�p1; p(m1)�p1; (q;m1)=1

1

q + �(m1p1)
(3.1)

+O

� X
q��x

(�� 1)	(xq��; q)

�
= W1 +O(W2); say.

It is evident that

W1 =
X
p1�x

X
q��x=p1;
q<p1

(�� 1)q
X

m1�x=q
�p1

p(m1)�p1; (q;m1)=1

1

q + �(m1p1)
:

We may write

(3.2) W1 =
X
p1�z1

+
X

z1<p1�L1

+
X

L1<p1�L2

+
X

L2<p1�x

=W3 +W4 +W5 +W6;

where z1 = expf(1=10)(logx log2 x)1=2g, and L1 and L2 are de�ned in Lemma 1.
Let R = (logx log3 x= log2 x)

P
n�x 1=p(n); we have

W3 �
X
p1�z1

1

p1

X
q��x=p1; q<p1

(�� 1)q	(xq��p�11 ; p1)
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� log2 x

� X
p1�z1

1

p1

� X
q�z1

q	(xq�2; z1)(3.3)

� x expf�4(logx log2 x)1=2g � R;

since by Lemma 2 and (1.3) we have 	(xq�2; z1)� xq�2 expf�4:5(logx log2 x)1=2g.
Using Lemma 4 we have

W4 �
X

z1<p1�L1

1

p1

X
q��x=p1; q<p1

(�� 1)q	(xq��p�11 ; p1)

�
X

z1<p1�L1

1

p1
	(x=p1; p1)

X
q��x=p1; q<p1

(�� 1)q1��(1�Æ
0)

�
X

z1<p1�L1

1

p1
	(x=p1; p1)

X
q<p1

q�1+2Æ
0

;

where Æ0 = (log p1)
�1�
�
log(x=p1)= log p1

�
. By (2.2) and (2.3) we have

q2Æ
0 � exp

�
2�

�
log(x=p1)

log p1

��
� logx log2 x;

for z1 < p1 � L1. Therefore using Lemma 1 we obtain:

(3.4) W4 � log2 x
X

z1<p1�L1

1

p1
	(x=p1; p1)� R:

Similarly we have W6 � R.

Now we come to the estimation of W5 in (3.2). We consider separately the
cases p(m1) < p1 and p(m1) = p1 and obtain

W5 =
X

L1<p1�L2

X
q��x=p1; q<p1

(�� 1)q

�
X

m1�x=q�p1; p(m1)<p1; (q;m1)=1

1

q + p1 + �(m1)
(3.5)

+O

� X
L1<p1�L2

X
q��x=p1; q<p1

(�� 1)q

p1
	(xq��p�21 ; p1)

�
:

Denoting by W 0
5 the main term on the right-hand side of (3.5) we may write

W 0
5 =

X
L1<p(m1)<p1; p(m1)jjm1

+
X

L1<p(m1)<p1; p2(m1)jjm1

+
X

p(m1)�L1

:

Then we have

W 0
5 =

X
L1<p1�L2

X
L1<p2<p1

X
q��x=p1p2
q<p1; q 6=p2

(�� 1)q
X

m2�x=q
�p1p2

p(m2)<p2; (q;m2)=1

1

q + p1 + p2 + �(m2)
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+O

� X
L1<p1�L2

X
L1<p2<p1

X
q��x=p1p2; q<p1

(�� 1)qp�11 	(x=q�p1p
2
2; p2)

�

+O

� X
L1<p1�L2

X
p2�L1

X
q��x=p1p2; q<p1

(�� 1)qp�11 	(x=q�p1p2; p2)

�
:

Proceeding as before, we obtain

(3.6) W5 = W 00
5 +O

� sX
j=1

W7j

�
+O

� sX
j=2

W8j

�
+O

� s�1X
j=1

W9j

�
;

where
(3.7)

W 00
5 =

X
p1;... ;ps

X
q��x=p1...ps

q<p1

(�� 1)q
X

ms�x=q
�p1...ps

p(ms)<ps; (q;ms)=1

1

q + p1 + � � �+ ps + �(ms)
;

where the ranges of summation in the above sums p1; . . . ; ps are L1 < p1 � L2,
L1 < p2 < p1, . . . , L1 < ps < ps�1, and s � log3 x is a large number which will be
chosen later and

W7j =
X

p1;... ;pj

X
q��x=p1...pj ; q<p1

(�� 1)q

p1
	(x=q�p1 . . . pj�1p

2
j ; pj);(3.8)

W8j =
X

p1;... ;pj�1

X
pj�L1

X
q��x=p1...pj ; q<p1

(�� 1)q

p1
	(x=q�p1 . . . pj ; pj);(3.9)

W9j =
X

p1;... ;pj

X
q��x=p1...pj ; q<p1

(�� 1)q

p1
	(x=q�+1p1 . . . pj ; q):(3.10)

Since

1

q + p1 + � � �+ ps + �(ms)
=

1

p1 + � � �+ ps
+O(qp�21 ) +O(p�21 �(ms));

and

X
ms�x=q

�p1...ps
p(ms)<ps; (q;ms)=1

1 = 	

�
x

q�p1 . . . ps
; ps

�
�	

�
x

q�+1p1 . . . ps
; ps

�
+O(W7s);

we have further

W 00
5 =

X
p1;... ;ps

X
q��x=p1...ps
q<p1; ��2

q

p1 + � � �+ ps
	(x=q�p1 . . . ps; ps)
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+O

� X
p1;... ;ps

X
q��x=p1...ps; q<p1

(�� 1)q2

p21
	(x=q�p1 . . . ps; ps)

�

+O

� X
p1;... ;ps

X
q��x=p1...ps; q<p1

(�� 1)q

p21

X
ms�x=q

�p1...ps
p(ms)<ps; (q;ms)=1

�(ms)

�

+O(W7s) =W10 +O(W11) +O(W12) +O(W7s); say.

We estimate �rst W10. We consider separately the cases � = 2 and � � 3 and by
using Lemmas 3 and 4 we obtain

W10 =
X

p1;... ;ps

	(x=p1 . . . ps; ps)

p1 + � � �+ ps

X
q<p1

q�1+2Æ1
�
1 +O(log3 x= log2 x)

�

+O

 X
p1;... ;ps

	(x=p1 . . . ps; ps)

p1 + � � �+ ps

X
q��x=p1...ps
q<p1; ��3

q1��(1�Æ1)

!
;

where

Æi =
1

log ps
�

�
log(x=pi . . . ps)

log ps

�
; i = 1; 2; . . . ; s:

Using partial summation and the prime number theorem we haveX
q<p1

q�1+2Æ1 =

Z p1

e1=Æ1
z�1+2Æ1 log�1 z dz

�
1 +O(log3 x= log2 x)

�
= (log2 x)

�1p2Æ11

�
1 +O(log3 x= log2 x)

�
:

Similarly X
q��x=p1...ps; q<p1; ��3

q1��(1�Æ1) � 1:

Therefore we obtain

W10 =
1

log2 x

X
p1;... ;ps

	(x=p1 . . . ps; ps)

p1 + � � �+ ps
p2Æ11

�
1 +O(log3 x= log2 x)

�
:

By (4.13) of [8] we have pÆi = pÆ(1 + O(log3 x= log2 x)) for L1 < p � L2, where
Æ = Æs. Moreover by (4.6), (4.16), (4.18) and (4.31) of [8], we have

X
p1;... ;ps

	(x=p1 . . . ps; ps)

p1 + � � �+ ps
=

�
D +O

�
log23 x

log2 x

�� X
L1<p�L2

	(x=p; p)

p
:

Similarly, in a way analogous to the above we have for W10

(3.12)

W10 = D(log2 x)
�1
�
1 +O(log23 x= log2 x)

� X
L1<p�L2

p�1+2Æ	(xp�1; p)

=
1

2
D logx

�
1 +O(log23 x= log2 x)

�X
n�x

1

p(n)
:
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Now we come to the estimation of W12 in (3.11). By the de�nition of �(m) and
Lemma 4 we have

W12 �
X

p1;... ;ps

X
q��x=p1...ps; q<p1

(�� 1)q

p21

X
p<ps

p	(x=q�p1 . . . psp; ps)

�
X

p1;... ;ps

X
p<ps

p

p21
	(x=p1 . . . psp; ps)p

2Æ1
1 (log2 x)

�1:

By (4.19) of [8]X
p1;... ;ps

X
p<ps

p

p21
	(x=p1 . . . psp; ps)� 1

log2 x

X
L1<p�L2

	(x=p; p)

p
� R:

Similarly

(3.13) W12 � R:

Similarly we have also

(3.14) W11;W7j ;W8j ;W9j � R:

By putting (3.12){(3.14) into (3.11) and (3.11), (3.14) into (3.6) and �nally (3.3),
(3.4) and (3.6) into (3.2) we get

W1 =
1

2
D logx

�
1 +O(log23 x= log2 x)

�X
n�x

1

p(n)
:

Moreover, it is easy to prove that

W2 � R;

which completes the proof of Theorem 1.
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