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ON THE QUOTIENT (
;m)-RINGOIDS

Sin-Min Lee

Abstract. Universal algebras considered in this paper are generalizations of rings, dis-
tributive lattices, semirings and composite rings. We consider the quotient ring construction of
(
;m)-ringoid and extend a result of Crombez and Timm about (n;m)-rings.

1. Introduction. An algebra A of a variety V is said to be simple if its
congruence lattice Con(A) is isomorphic to the two-element chain. A variety V of
algebras is said to have the simple extension property if any algebra A in V can
be embedded into a simple algebra B in V . For each integer m � 2, we denote
by G(m) the variety of all m-groupoids, i.e. algebras with m-ary operation. It was
shown in [5] that G(m) has the simple extension property.

However, there exist many varieties of algebras which do not have the simple
extension property for example, the variety of semilattices and the variety of asso-
ciative pk-rings. If V is such a variety then it is natural to investigate what kind
of algebras in V can be embedded in simple algebras. For the variety of commuta-
tive rings, Grell [4] introduced the construction of quotient rings of commutative
rings in 1927. The classical result in ring theory states that the quotient ring of an
integral domain is a simple ring.

In [2], Crombez introduced a variety of algebras of type hn;mi which he
called the (n;m)-rings. If n = m = 2, the (2; 2)-rings are the ordinary associative
rings. In [3], Crombez and Timm generalized the usual concept of integral domain
and �eld in ring theory to (n;m)-rings and they showed that any commutative
(n;m)-integral domain can be embedded into an (n;m)-�eld.

The purpose of this paper is to introduce a variety of algebras which we call
(
;m)-ringoids . The (
;m)-ringoids are a generalization of (n;m)-rings, distribu-
tive lattices, semirings and commutative composite rings of Irving Adler [1], etc. We
show that the result of Crombez and Timm can be generalized to (
;m)-ringoids.
However, an example is shown that the (
;m)-�eld need not be simple.
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2. De�nitions and Examples. Let m > 1 be an integer. We recall the
following concept (see [6]).

De�nition 2.1. An m-groupoid A = hA; [ ]i is called an m-semigroup if it
satis�es the following generalized associative law:

[[x1x2 . . .xn]xn+1 . . .x2n�1] = [x1[x2x3 . . .xn+1]xn+2 . . .x2n�1]

= . . .

= [x1x2 . . .xn�1[xnxn+1 . . .x2n�1]]:

For simplicity, we shall denote the element [x1 . . .xm] simply by x1 . . .xn.

De�nition 2.2. A universal aglebra hA;
; [ ]i is called an (
;m)-ringoid if

(1) hA; [ ]i is an m-semigroup,

(2) 
 is a set of operations such that each of them has arity greater than one,

(3) [ ] is distributive with resect to every w in 
 i.e. if w is an n-ary operation
then for any a2; a3; . . . ; am; b1; b2; . . . ; bn of elements of A, we have

a2a3 . . .ai w (b1; . . . ; bn)ai+1 . . . am

= w(a2 . . .aib1ai+1 . . . am; a2 . . .aib2ai+1 . . . am; . . . ; a2 . . . aibnai+1 . . .am)

for each i = 1; 2; . . . ;m.

De�nition 2.3. An (
;m)-ringoid is said to be commutative if for each
x1; . . . ; xm 2 A and any permutation � 2 S(m) of f1; . . . ;mg we have x1 . . .xm =
x�(1) . . .x�(m), i.e. hA; [ ]i is a commutative m-semigroup.

De�nition 2.4. Adler [1] called the following algebra hR;+; Æi a composi-

tion ring : (1) hR;+; Æi is a commutative ring; (2) hR; Æi is a semigroup such that
(f + g) Æ h = f Æ h+ g Æ h, (f � g) Æ h = f Æ h� g Æ h, for all f; g; h in R.

If hR; Æi is commutative then we have a commutative (f+;�g; 2)-ringoid.

Example 2.5. The (n;m)-ring hA;w; [ ]i of Crombez [2] is an (
;m)-ringoid
where 
 = fwg and

(1) hA;wi is commutative n-semigroup;

(2) for each g1; . . . ; gi�1; gi+1; . . . ; gn; h 2 A, a unique solution in the inde-
terminate xi exists for the equation w(g1; . . . ; gi�1; xi; gi+1; . . . ; gn) = h, for each
i = 1; . . . ; n.

For a more general theory of (n;m)-rings see [7] and [8].

Example 2.6. Any semiring hA;+; Æi is an (
; 2)-ringoid where 
 = f+g. In
particular, the distributive lattice hL;_;^i is a (f_g; 2)-ringoid.

Example 2.7. Let hA; +i be a group. De�ne a ternary operation w on A as
follows: w(x; y; z) = x � y + z; then hA;w;+i is an (
; 2)-ringoid where 
 = fwg.
For we have

w(x+ a; y+ a; z + a) = (x+ a)� (y+ a) + (z + a) = x� y + z + a = w(x; y; z) + a
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and also w(a+ x; a+ y; a+ z) = a+ w(x; y; z) for any x; y; z; a 2 A.

De�nition 2.8. A zero of (
;m)-ringoid is an element z such that
zx1 . . .xm�1 = x1z . . .xm�1 = . . . = x1x2 . . .xm�1z = z for all xi in A.

If a zero exists, it is unique and denoted by 0. Put R� = R n f0g if 0 exists
and R� = R otherwise.

Example 2.9. If hR;+; Æi is a (2; 2)-ring we de�ne w(x; y; z) = x+ y+ z; then
hR;w;+; Æi is an (
; 2)-ring with a zero.

Example 2.10. Let R be a set of all odd integers. We de�ne a ternary
operation w(x; y; z) = x+y+ z and a binary operation xÆy = x�y; then hR;w; Æi
is a (fwg; 2)-ringoid without a zero.

Example 2.11. An m-semigroup hA; [ ]i is called right (resp. left) cancellative
with respect to M � A, if for bj 2M and ai; ci in A, we have

(1) a1b2 . . . bm = c1b2 . . . bm implies a1 = c1;

resp.

(2) b1 . . . bm�1am = b1 . . . bm�1cm implies am = cm:

Crombez and Timm [3] showed that a right and left cancellative semigroup
(with respect to M) is cancellative (with respect to M) i.e. for i = 1; . . . ;m, we
have

b1 . . . bi�1aibi+1 . . . bm = b1 . . . bi�1cibi+1 . . . bm implies ai = ci:

3. A construction of quotient (
;m)-ringoids. Let hA;
; [ ]i be a
commutative (
;m)-ringoid such that hA; [ ]i is cancellative with respect to a (non-
empty) m-subsemigroup S. We de�ne a relation � on A� Sm�1 as follows:

(a; s2; . . . ; sm) � (b; s02; . . . ; s
0

m) if as02 . . . s
0

m = bs2 . . . sm:

LEMMA 3.12. The relation � is an equivalence relation.

Proof . Clearly � is reexive and symmetric. To see that � is transitive, we
let (a; s2; . . . ; sm) � (b; s02; . . . ; s

0

m) and (b; s02; . . . ; s
0

m) � (c; s002 ; . . . ; s
00

m); then we
have as02 . . . s

0

m = bs2 . . . sm and bs002 . . . s
00

m = cs02 . . . s
0

m.

Hence as002 . . . s
00

ms
0

2 . . . s
0

m = as02 . . . s
0

ms
00

2 . . . s
00

m = bs2 . . . sms
00

2 . . . s
00

m.

Therefore we have as002 . . . s
00

m = cs2 . . . sm, which shows that (a; s2; . . . ; sm) =
(c; s002 ; . . . ; s

00

m).

We shall denote the equivalence class of AS = A � Sm�1= � which contains

(a; s2; . . . ; sm) by
a

s2 . . . sm
.
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For each n-ary w 2 
 we de�ne

w

�
a1

s12 . . . s1m
; . . . ;

an
sn2 . . . snm

�

=
w(a1s22 . . . snm; . . . ; ans12 . . . s1m . . . s(n�1)2 . . . s(n�1)m)

s12 . . . s1m . . . sn2 . . . snm
;

and �
a1

s12 . . . s1m
; . . . ;

am
sm2 . . . smm

�
=

a1 . . . am
s12 . . . s1m . . . sm2 . . . smm

:

We have

THEOREM 3.13. The algebra hAS ; 
; [ ]i is an (
;m)-ringoid. If A has a zero

then AS has a zero and the map � : A 7! AS de�ned by �(a) =
as2 . . . sm
s2 . . . sm

is an

injective homomorphism.

We shall call hAS ; 
; [ ]i the quotient (
;m)-ringoid of A with respect to S.

A commutative (
;m)-ringoid is called a generalized integral domain if it is
cancellative. If for each w 2 
 the n-groupoid hA;wi is a commutative n-group
and the (
;m)-ringoid is a generalized integral domain then it is called an (
;m)-
integral domain.

THEOREM 3.15. Let hA; 
; [ ]i be a commutative (
;m)-ringoid such that

hA; [ ]i is cancellative with respect to an m-subsemigroup S. Then hAS ; [ ]i is can-

cellative with respect to its m-subgroup SS =

�
s1

s2 . . . sm
: si 2 S

�
.

THEOREM 3.16. Let hA; 
; [ ]i be an (
;m)-ringoid with zero 0 such that some

n-ary operation w in 
 is a commutative n-group operation. Then the following

statements are equivalent :

(1) hA; 
; [ ]i is cancellative.

(2) hA�; [ ]i is a cancellative m-semigroup.

(3) hA�; [ ]i is an m-subsemigroup.

De�nition 3.17. A commutative (
;m)-ringoid hA; 
; [ ]i is called an (
;m)-
�eld if A� is an m-group with respect to [ ].

THEOREM 3.18. Let hA; 
; [ ]i be a generalized integral domain such that there

exists an w in 
 such that hA;wi is a commutative n-group. Then hA; 
; [ ]i can be

embedded into an (
;m)-�eld and the quotient ringoid AA� is (up to isomorphism )
the unique minimal (
;m)-�eld with this property.

We omit the above proofs for they are similar to the case of (n;m)-rings (see
[3]).
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We shall give an example which shows that in general the (
;m)-�eld need
not be simple.

Example 3.20. Let A = hf1; 2; 3; 4g;w; Æi be the (3; 2)-�eld where the multi-
plication table of Æ is:

Æ 1 2 3 4
1 1 2 3 4
2 2 1 4 3
3 3 4 1 2
4 4 3 2 1

and the ternary operation w(x; y; z) = x Æ y Æ z.

Then the congruence lattice Con(A) is isomporphic to the �ve-element mod-
ular lattice N5. Thus A is not simple.

Hence, we propose the following:

Problem. Characterize those (
;m)-�elds which are simple.

Leeson and Butson [7] gave a solution for the (
;m)-rings, but we do not
know much about the general case.

Acknowledgement . The comments from the referee were helpful and greatly
appreciated.
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