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VERTEX DEGREE SEQUENCES

OF GRAPHS WITH SMALL NUMBER OF CIRCUITS

Ivan Gutman

Abstract. Necessary and suÆcient conditions are determined for the numbers p1; p2;

. . . ; pn to be the vertex degrees of a connected graph with n vertices and cyclomatic number c,
c = 0; 1; 2; 3; 4; 5.

Introduction

A partition p = (p1; p2; . . . ; pn) of the number 2m is said to be graphic if
there exists a graph G with n vertices and m edges, such that the degree of the i-th
vertex of G is equal to pi, i = 1; 2; . . . ; n. The characterization of graphic partitions
and the study of graphs with prescribed degree sequences is a well elaborated part
of graph theory [1,2].

Denote by PN the set of all partitions of the integer N . If a 2 PN then we
say that a is of order N . Further, we present a as (a1; a2; . . . ; a�) and assume that
a1 � a2 � � � � � a� > 0. Of course, a1 + a2 + � � �+ a� = N .

If a 2 PN then the conjugate partition of a is denoted by a� and is de�ned
as a� = (a�1; a

�

2; . . . ; a
�

��) where �
� = a1 and a

�

j = maxfi j ai � jg, j = 1; 2; . . . ; ��.
Then a� 2 PN and a�1 � a�2 � � � � � a��� > 0.

The partition a can be visualized by means of a Ferrers diagram [1] which is
obtained by setting ai dots in the i-th row, i = 1; 2; . . . ; �. This Ferrers diagram
has then a�j dots in the j-th column, j = 1; 2; . . . ; ��.

On Fig. 1 we present as an example the Ferrers diagram of the partition
(7; 4; 4; 1). It is immediately clear that the partition conjugate to (7; 4; 4; 1) is
(4; 3; 3; 3; 1; 1; 1).

De�nition. Let a; b 2 PN . If
Pr

i=1 ai �
Pr

i=1 bi holds for all values of
r 2 N, then we write a S b and say that a is S-greater than b.

If neither a S b nor b S a, then the partitions a and b are said to be S-
incomparable. S-incomparable partitions exist in PN , N � 6.
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� � � � � � �
� � � �
� � � �
�
(7; 4; 4; 1)

Fig. 1

If a is S-greater than b, then the Ferrers diagram of a can be obtained from
the Ferrers diagram of b by moving some dots upwards [4].

The relation S induces a partaial ordering of the set PN . Furthermore,
hPN ;Si is a lattice. This lattice has been introduced and examined by Snapper [5]
and somewhat later by Ruch [3].

In [4] the following result has been proved.

LEMMA 1. If a is a graphic partition and a S b, then b is a graphic partition

too.

A proper consequence of Lemma 1 is that some graphic partitions are maximal
with respect to the relation S. Maximal graphic partitions are necessarily mutually
S-incomparable. Their structure is determined by the below lemma [4].

Let a = (a1; a2; . . . ; a�) be a partition of order m, such that a1 > a2 >
� � � > a� > 0. Associate to a another partition g = g[a] = (g1; g2; . . . ; gn) via
gj = aj + j � 1 and g�j = aj + 1, j = 1; 2; . . . ; �. Note that n = a1 + 1.

LEMMA 2. If a is a partition of the integer m into unequal parts, then g[a] 2
P2m and g[a] is a maximal graphic partition. All maximal graphic partitions in

P2m are of the form g[a].

According to Lemma 2 the number of maximal graphic partitions of order
2m is equal to the number of partitions of m into unequal parts.

In Fig. 2 are presented the Ferrers diagrams of the six only possible maximal
graphic partitions of order 16.

In [4] it has also been shown that the graph having a vertex degree sequence
g[a] is unique. This graph is connected and has cyclomatic number c = m� a1 =
a2 + � � � + a�. (Recall that the cyclomatic number of a connected graph with n
vertices and m edges is equal to m� n+ 1.)

Two auxiliary results

LEMMA 3. Let the partition p = (p1; p2; . . . ; pn) of order 2m be graphic. Then

there exists a graph G with vertex degree sequence p, such that (a) G is connected

if m � n� 1, (b) G has n�m components if m � n� 1.
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Fig. 2

Proof . Assume �rst that m � n � 1 and H is a disconnected graph with
degree sequence p. Let e1 and e2 be edges belonging to two di�erent components
of H and let e1 belong to a cycle. Such edges necessarily exist in a disconnected
graph with m � n � 1. Then the transformation H ! H 0 will not change the
degree sequence, but will decrease by one the number of components of H .

If H 0 is disconnected, we can repeat the procedure until a connected graph is
obtained.

The proof for the case m � n� 1 is analogous. �

LEMMA 4. A connected graph with cyclomatic number c, c > 0, has at least

mc edges where

(1) mc = c+ 1 +
��
1 +

p
8c� 7

�
=2
�
:

Proof is based on the observation that the graph with cyclomatic number c
of the form

(2) c = x(x � 1)=2 + y; x 2 N; y 2 f1; 2; . . . ; xg
and the least number of edges is the graph G(x; y) obtained by joining y+1 vertices
of Kx+1 to the (unique) vertex of K1. Here Kn denotes the complete graph on n
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vertices; note that G(x; x) = Kx+2. The number of edges of G(x; y) is

(3) mc = x(x + 1)=2 + y + 1; x 2 N; y 2 f1; 2; . . . ; xg:

Eq. (1) is obtained from (2) and (3) by simple arithmetic reasoning. �

For the considerations which follow it is purposeful to extend the de�nition
of the quantity mc, eq. (1), by mc = 1 for c = 0.

The main results

In this section we determine the conditions which a partition p of order 2m
must satisfy in order to correspond to the degree sequence of a connected graph with
given cyclomatic number c. Such a graph has m� c+ 1 vertices and consequently
its degree sequence p must have the property p�1 = m� c+ 1.

Denote by P2m(c) the class of all partitions of the number 2m into exactly
m� c+ 1 parts. Hence, if p 2 P2m(c), then p�1 = m� c+ 1.

It is easy to verify that hP2m(c);Si is a lattice.

Bearing in mind Lemma 1, it is evident that if P2m(c) contains graphic parti-
tions, then some of them are maximal with respect to the relation P2m(c). Denote
by P2m(c; max) the set of maximal graphic partitions in P2m(c).

From Lemma 2 it follows that the elements of P2m(c; max) are of the form
g
�
(m�c; a2; . . . ; a�)

�
, where (a2; . . . ; a�) is a partition of the integer c into unequal

parts, c > 0. (If c = 0 then the unique element of P2m(c; max) is g[(m)].)

Because of Lemma 3, if m � mc then every graphic partition in P2m(c) is a
vertex degree sequence of a connected graph.

The above observations can be summarized as follows.

LEMMA 5. A partition p 2 P2m(c) is a vertex degree sequence of a connected

graph with cyclomatic number c if and only if q S p for some q 2 P2m(c; max).
P2m(c; max) is non-empty if m � mc.

With these preparations we are able to prove the main results of the present
paper, namely Theorems 1{5.

THEOREM 1. A partition (p1; p2; . . . ; pn) of order 2m, m � 1, is the vertex

degree sequence of a tree i� n = m+ 1.

THEOREM 2. A partition (p1; p2; . . . ; pn) of order 2m is the vertex degree

sequence of a connected unicyclic graph i� m � 3, n = m, p1 � m � 1 and

p1 + p2 � m+ 1.

THEOREM 3. A partition (p1; p2; . . . ; pn) of order 2m is the vertex degree

sequence of a connected bicyclic graph i� m � 5, n = m� 1, p1 � m� 2, p1+ p2 �
m+ 1 and p1 + p2 + p3 � m+ 3.
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THEOREM 4. A partition (p1; p2; . . . ; pn) of order 2m is the vertex degree

sequence of a connected tricyclic graph i� m � 6, n = m�2, p1 � m�3 and either

(p1 + p2 � m+ 1 and p1 + p2 + p3 � m+ 3) or p1 + p2 � m.

THEOREM 5. A partition (p1; p2; . . . ; pn) of order 2m is the vertex degree

sequence of a connected tetracyclic graph i� m � 8, n = m � 3, p1 � m � 4 and

either (p1 + p2 � m and p1 + p2 + p3 � m+ 3) or p1 + p2 � m+ 1.

Proofs

The general strategy in proving Theorems 1{5 is the following. From Lemma
2 we know the number and the structure of the elements of P2m(c; max). Bearing
in mind Lemma 5 we have just to �nd the condition(s) needed that an element of
P2m(c) is not S-greater than any element of P2m(c; max). In other words we have
to avoid the partitions whose Ferrers diagrams are obtained by moving upwards a
dot of the Ferrers diagram of p 2 P2m(c; max).

Denote by [i; j] the dot in a Ferrers diagram lying in the i-th row and in the
j-th column.

Proof of Theorem 1. Theorem 1 is a well known result [2]. We present its
proof for reasons of completeness.

The unique element of P2m(0;max) is g[(m)] = (m; 1; 1; . . . ; 1). In order to
construct a partition which is S-greater than (m; 1; 1; . . . ; 1) we would have to move
the dot [m+1; 1] of the respective Ferrers diagram into position [1;m+1]. Such a
transformation would, however, violate the condition n = m+ 1.

Hence (m; 1; 1; . . . ; 1) is S-greater than any element of P2m(0) i.e. every ele-
ment of P2m(0) is a vertex degree sequence of a tree. �

Proof of Theorem 2. The unique element of P2m(1;max) is g[(m � 1; 1)] =
(m � 1; 2; 2; 1; 1; . . . ; 1). A partition p 2 P2m(1) will become S-greater than
g[(m � 1; 1)] if the dot [3; 2] in the respective Ferrers diagram is moved either
into the position [1;m] or into the position [2; 3] (c.f. Fig. 2). The transformation
[3; 2] ! [1;m] would increase p1 by one. In order to avoid this we have to require
p1 � m � 1. The transformation [3; 2] ! [2; 3] would increase p2 by one, leaving
p1 unchanged. Bearing in mind the de�nition of the relation S we have to require
p1 + p2 � (m� 1) + (2). This immediately yields Theorem 2. �

Proof of Theorem 3 is analogous thanks to the fact that P2m(2;max) also has
a unique element g[(m� 2; 2)] = (m� 2; 3; 2; 2; 1; 1; . . . ; 1).

Proof of Theorem 4. P2m(3;max) has two elements: g[(m � 3; 3)] and
g[(m � 3; 2; 1)] (c.f. Fig. 2). In order to obtain a partition p 2 P2m(3) which
is S-greater than g[(m� 3; 3)] we have to make one of the following three transfor-
mations:

(a) [5; 1]! [1;m� 2] or [2; 4]! [1;m� 2]; (b) [5; 1]! [2; 5]; (c) [5; 1]! [3; 3].
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In order to avoid (a) we have to require p1 � m � 3. In order to avoid (b) we
have to require p1 + p2 � (m � 3) + (4). In order to avoid (c) we have to require
p1 + p2 + p3 � (m� 3) + (4) + (2).

In an analogous manner the conditions that p 2 P2m(3) is not S-greater than
g[(m�3; 2; 1)] = (m�3; 3; 3; 3; 1; 1; . . . ; 1) are p1 � m�3 and p1+p2 � (m�3)+(3).

All these conditions together result in Theorem 4. �

Proof of Theorem 5 is analogous to the proof of Theorem 4 since also
P2m(4;max) has two elements.

From the above proofs it is evident that by continuing a similar way of reason-
ing and applying Lemmas 2 and 5 one can characterize the vertex degree sequences
of connected graphs with cyclomatic numbers c � 5. These characterizations are
somewhat more complicated because for c � 5, jP2m(c; max)j � 3. A typical result
of this kind is Theorem 6 which we state without proof.

THEOREM 6. A partition (p1; p2; . . . ; pn) of order 2m is the vertex degree

sequence of a connected pentacyclic graph i� m � 9, n = m � 4 and either (a) or

(b) or (c) holds :

(a) p1 + p2 � m+ 1.

(b) p1 + p2 � m; p1 + p2 + p3 � m+ 3; p1 + p2 + p3 + p4 � m+ 6;
p1 + p2 + p3 + p4 + p5 � m+ 8.

(c) p1 + p2 � m� 1; p1 + p2 + p3 � m+ 3; p1 + p2 + p3 + p4 � m+ 6.
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