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ON THE LARGEST EIGENVALUE OF BICYCLIC GRAPHS

Slobodan K. Simi�c

Abstract. Among bicyclic graphs (connected graphs with two independent cycles) we �nd
those graphs whose largest eigenvalue (index, for short) is minimal.

1. Introduction

We will consider only �nite, undirected graphs, without loops or miltiple lines.
Our basic terminology follows [6]; for everything about graph spectra, not given
here, see [4].

There is an increasing interest in literature for examining the largest eigen-
value or the index of a graph (according to [4]). For many families of graphs,
the problem of �nding all those graphs whose index is either minimal, or max-
imal, has already, been solved. In particular, see [4,8] for trees, or [3,4,12] for
unicyclic graphs. More generally, for connected, or even disconnected graphs, with
prescribed number of points and lines, the problem of �nding those graphs whose
index is maximal has been widely studied in literature (see [2,3,5,9], for example).
On the other hand, there are not too many results related to the minimal index
problem. Here we will provide a solution of the latter problem for bicyclic graphs,
i.e., connected graphs with two independent cycles. Acctually, we will prove some
facts already announced in [10]. For some accounts on tricyclic graphs see [1].

2. Bicyclic graphs with the minimal index

Consider the set of all bicyclic graphs on a prescribed number of points. Our
aim is to �nd a graph (or graphs) from this set whose index is minimal. As remarked
in [11] no such graph have a point of degree one; otherwise, we can remove that
point and reinsert it in any line belonging to some cycle (see also [7]). Thus the
candidates for the graphs we are looking for are of the types as depicted in Fig. 1.

According to [11], we in further have:
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Fig. 1�

(i) for the graphs of the �rst two types the index decreases monotonously as the
corresponding parameters become closer to each other, i.e. it is the smalest if
the related parameters are as equal as possible (max(m; p; n)�min(m; p; n) �
1 in the former case, or max(m;n)�min(m;n) � 1 in the latter case);

(ii) the index of the (unique) candidate of the �rst type is strictly less than the
index of the corresponding candidate of the second type.

So to end up with all graphs in question we have to examine the graphs of
the third type. In that respect, it is worthwhile to mention (see also [11]) that, if
m = n in some graph of the third type, then its index is the same as the index of
the graph of the �rst type with the same parameters. Thus the graphs of the third
type with m 6= n have to be examined.

Let G = B(m; p; n) (see Fig. 1) be any graph of the third type, and � =
�(G) = �(m; p; n) its index. For convencience let

x0; x1; . . . ; xm�1; z1; . . . ; zp�1; y0; y1; . . . ; yn�1

(with x0 = xm = z0 = a and y0 = yn = zp = b) be the coordinates of the
eigenvector corresponding to the index. Thus, the condition

(1) ��(v) =
X
u�v

�(u)

must hold for any point v of G.

Fig. 2

�
m;n; p denote path or cycle lengths.
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The following lemma can be easily veri�ed.

LEMMA 1. The di�erence equation

(2) ci+2 � rci+1 + ci = 0 (i = 0; . . . ; k � 2); c0 = a; ck = b

has the following solution

ci = Fi(t; k; a; b) = (b sh it+ a sh(k � i)t)= sh kt;

where t = ln
�
r +

p
r2 � 4

�
=2 (or r = 2 ch t ).

Now we �rst remark that if r = � and deg v = 2 then (1) is reduced to (2)
for an appropriate choice of k and initial conditions. So � is actually an eigenvalue
of G if, in addition, (1) holds for both points of degree three. Since � = 2 ch t (by
Lemma 1), this requirement gives

(3)
2a ch t = 2F1(t;m; a; a) + F1(t; p; a; b)

2b ch t = 2F1(t; n; b; b) + Fp�1(t; p; a; b);

where we have already used the fact that Fm�1(t;m; a; a) = F1(t;m; a; a) and
Fn�1(t; n; b; b) = F1(t; n; b; b). Putting

(4) f(t; k) = F1(t; k; 1; 1) = (sh t+ sh(k � 1)t)= sh kt

from (3) we get

(5)

f(t;m) +
1

2
f(t; p)� ch t =

a� b

2a

sh t

sh pt
;

f(t; n) +
1

2
f(t; p)� ch t =

b� a

2b

sh t

sh pt
:

Eliminating a and b from (5), and also putting

(6) g(t; k) = f(t; k) + (1=2)f(t; p)� ch t

we get our basic relation

(7)
1

g(t;m)
+

1

g(t; n)
= 2

sh pt

sh t
:

For convenience, we rewrite it in the form

(7') G(t;m; n) = H(t; p);

where

G(t;m; n) =
1

g(t;m)
+

1

g(t; n)
;(8)

H(t; p) = 2
sh pt

sh t
:(9)
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To examine the behaviour of �(m; p; n), we will �rst keep p �xed. The follow-
ing four lemmas, which immediately follow from the elementary calculus, will be
used in the sequel.

LEMMA 2. For p > 1 and t > 0, sh pt= sh t is increasing in t.

LEMMA 3. For k = 1, f(t; k) = 1; for k > 1 and t > 0, f(t; k) is decreasing

in t. Moreover, if j > i, then f(t; j) < f(t; i).

Remark 1. From (5) and the above lemma, it immediately follows that a > b,
whenever m < n.

LEMMA 4. For t > 0, g(t; k) is decreasing in t and tends to �1.

Denote by t2 (t1) the unique zero of g(t;m) (resp. g(t; n)); provided m < n,
according to Lemma 3, t1 < t2. From (5), since a and b are both positive (or
negative), it follows that g(t;m) and g(t; n) are of di�erent signs near a point
t = t� which is a solution in t of the equation (7) that corresponds to the index of
the observed graph. More precisely, we can take that t� > t0, where t0 is a point
where G(t;m; n) vanishes.

LEMMA 5. If t0 < t < t2, then G(t;m; n) is strictly increasing.

LEMMA 6. If m + n is �xed and m < n, then G(t;m; n) is increasing in m,

for any t belonging to (t0; t2).

Proof . Deriving G(t;m; n) with respect to m we get

@

@m
G(t;m; n) = �g(t;m)�2

@

@m
g(t;m)� g(t; n)�2

@

@m
g(t; n)

=
t

2
sh t

g2(t; n) ch2(nt=2)� g2(t;m) ch2(mt=2)

g2(t;m)g2(t; n) ch2(mt=2) ch2(nt=2)
:

The latter expression is positive since

(i) ch(nt=2) > ch(mt=2); (ii) jg(t; n)j > jg(t;m)j if t0 < t < t2. �

The following lemma is also useful. It is a direct consequence of the Lagrange's
theorem on �nite di�erences.

LEMMA 7. Let f; g : (a; b) ! R be di�erentiable functions satisfying : (i)
limx!a = 0, limx!b f(x) = +1; (ii) g(x) is bounded on (a; b) ; (iii) there exists a

unique point c (a < c < b) such that f(c) = g(c). Then f 0(c) > g0(c).

PROPOSITION 1. Let �(m; p; n) be the index of G. If p and m + n are �xed,

then provided m < n, �(m; p; n) is decreasing in m.

Proof . Since � = 2 ch t, it is suÆcient to show that the partial derivative of t
( = t(m; p; n)) with respect to m is negative. From (7) we get

@

@m
t = � @G=@m

@H=@t� @G=@t
:
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By Lemma 6, @G=@m is positive if m < n. Applying Lemma 7, we also get
that @H=@t� @G=@t is positive at the point t = t�. �

COROLLARY 1. If m + n is even ( = 2k), then �(k; p; k) � �(m; p; n) with

equality when k = (m + n)=2; otherwise, if m + n is odd ( = 2k + 1) and p 6= k,
then

(10) �(k; p; k + 1) >

�
�(k; p+ 1; k) if p < k

�(k + 1; p� 1; k + 1) if p > k.

Note that the latter part of the Corollary follows from Proposition 1 by mak-
ing use of �(k; p; k+1) > �(k+1=2; p; k+1=2) and a result from [11] which asserts
that �(x; y; z), provided x+ y+ z is �xed, is minimum if x, y and z are as equal as
possible.

Finally, we have to prove that

(11) �(k; k; k + 1) > �(k; k + 1; k)

which cannot be done by the arguments used above.

Let � = �(k; k; k + 1). Also, let t� = ln
�
� +

p
�2 � 4

�
=2. Consider then a

vector �0 constructed as follows

x0i = z0i = Fi(t0; k; a; a) (i = 0; . . . ; k � 1)

y0i = Fi(t0; k + 1; a; a) (i = 0; . . . ; k)

which corresponds to the graph G = B(k; k + 1; k), in accordance with Fig. 2.
By Lemma 1, (1) holds with each point of degree two no matter of the choice of
�. Observing any point of degree three (denote it by v), we will show that the
expression de�ned by

(12) '(v) := ��0(v)� P
u�v

�0(u)

is positive. Namely, due to (5) we have

'(v) = 2a ch t0 � 2aF1(t0; k; 1; 1)� aFk+1(t0; k + 1; 1; 1)

= 2a ch t0 � 2af(t0; k)� af(t0; k + 1)

= (a� b)2b�1 sh t0= sh pt0 > 0:

So, if A is the adjacency matrix of G, we have found a positive vector �0, and
a scalar �, such that A�0 � ��0 and A�0 6= ��0. Thus, the index of G is strictly less
than �, i.e. (11) holds.

Now we are in position to state our main result.

THEOREM 1. Let Bn (n � 7) be the set of all bicyclic graphs on n points, and

let k = dn=3e. There are two graphs in Bn whose index is minimal ; one of them is

P (k; n+ 1� 2k; k), while the other is B(k; n+ 1� 2k; k) (see Fig. 1.).
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Remark 2. According to [3], there is a unique graph in the above set whose
index is maximal. It is the star with two lines having a common point being added.
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