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CAUSALITY AND STOCHASTIC REALIZATION PROBLEM

Ljiljana Petrovi�c

Abstract. The basic idea is to relate some concepts of causality to the stohastic realization
problem. Especially, a new de�nition of causality "F1 is a cause of F2 within F3", which is
a generalization of a corresponding de�nition from [3], is given. The problem of determining
possible states of the stohastic dynamic system S1 with known outputs, having a certain causality
relationship with another stohastic dynamic system S2 is considered. More precisely, problems
formulated in [1] are investigated in the sense of a new de�nition of cuasality.

1. Preliminary Notions and De�nitions. We forst give precise de�nitions
of all the terms used. These de�nitions are given in terms of Hilbert space.

Let F = (Ft); t 2 R, be a family of Hilbert spaces. We think about Ft as
about the information aviable at time t. Total information F<1 carried by F wll
be de�ned by F<1 = _t2RFt, while past and future information of F at t will
be de�ned as F�t = _s�tFs and F�t = _s�tFs, respectively. It should be clear
that F<t = _s<tFs and F > t = _s>tFs need not coincide with F�t and F�t
respectively; F�t and F>t are sometimes called the real past and the real future of
F at t.

If F1 and F2 are arbitrary subspaces of a Hilbert spaceH, then P (F1 j F2) will
denote the orthogonal projection of F1 onto F2 and F1 	 F2 will denote a Hilbert
space generated by all elements x� P (x j F2), where x 2 F1.

De�nition 1.1. We say that F1 is submitted to F2 (and write F1 � F2) if and
only if F 1

�t � F 2
�t for each t.

We say that families F1 and F2 are equivalent (and write F1 = F2) if and
only if F1 � F2 and F2 � F1.

De�nition 1.2. We say that F1 is strictly submitted to F2 (and write F1 � F2)
if and only if F 1

t � F 2
t for each t.
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It is easy to see that submission implies strict submission and that the con-
verse does not hold.

The notion of minimality of families of Hilbert spaces is speci�ed in the fol-
lowing de�nition.

De�nition 1.3. We say that F is a minimal (respectively, strictly minimal)
family having a certain property if and only if there is no family F� with the same
property submitted (respectively, strictly submitted) to F.

It should be clear that a minimal (respectively, strictly minimal) family having
a certain property is not necessarily unique.

De�nition 1.4. (cf. [4] and [6] If F1; F2 and F are arbitrary Hilbert spaces,
then we say that F is a splitting for F1 and F2 (and write F1 ? F2 j F ) if and only
if F1 	 F ? F2 	 F

De�nition. 1.5. (cf. [6]). The family F is called markovian if and only if
P (F�t j F�t) = Ft for each t.

It is easy to see that the family F is markovian if and only if F�t ? F�t j Ft,
for each t

De�nition 1.6. (cf. [4]) A stohastic dynamic system (s.d.s) is a set of two
families F1 (outputs) and F2 (states) which satisfy the condition

(1.1) F 1
<t _ F

2
<t ? F 1

>t _ F
2
>t j F

2
t

For a given family of outputs F1, any family F2 satisfying (1.1) is called a realization
of an s.d.s. with those outputs.

The following results concerning splitting and s.d.s. will be used later (for the
proofs of these results see the given references).

Lemma 1.1. (cf. [1] and [4]) F1 ? F2 j F if and only if P (Fi j Fj _ F ) � F ,
for i; j = 1; 2; i 6= j.

Proof . Let, for example, F1 ? F2 j F . Then, obviously, F1 	 F ? F2 (which
follows from F1 	 F ? F2 	 F and F1 	 F ? F ), which, together with the obvious
equality F1	F = (F1 _F )	F , implies P (F2 j F1 _F ) � F . The other half of the
statement is obvious

Corollary 1.1.1. F1 ? F2 j F if and only if F 01 ? F 02 j F for all F 0i �
Fi _ F; i = 1; 2.

Theorem 1.2. [2] The space F is a minimal one such that F1 ? F2 j F if
and only if F = P (F1 j S) for some space S such that F2 � S � (F2 _ P (F2 j
F1))� (F1 _ F2)

?.

Corollary 1.2.1. [2] The space F � F1 _ F2 is a minimal one such that
F1 ? F2 j F if and only if F = P (F1 j S) for some space S such that F2 � S �
F2 _ P (F2 j F1).
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Theorem 1.3. [2] A family F2 = (F 2
t ); t 2 R, is a strictly minimal realiza-

tion of a s.d.s. with outputs F1 = (F 1
t ); t 2 R, if only and if:

(1) F 2
t is a minimal space such that F 1

<t ? F 1
>t j F

2
t for each t;

(2) there exists a family F3 = (F 3
t ); t 2 R, with the property F 3

t � (F 1
<1 _

F 2
>t)

? for each t such that the family S = (St); St = (F 1
t _ F 2

t ) � F 3
t ; t 2 R, is

nondecreasing, i. e. St1 � St2 whenever t1 � t2.

This theorem has a simpler version if F 2
t � F 1

<1.

Corollary 1.3.1. [2] A family F2 = (F 2
t ); t 2 R, of subspaces from F 1

<1

is a strictly minimal realization of an s. d. s. with outputs F1 = (F 1
t ); t 2 R,

if and only if condition (1) of Theorem 1.3 holds and the family S = (St); St =
F 1
<t _ F

2
t ; t 2 R, is nondecreasing.

Now we shall give an intuitively plausible notion of causality. Let F1;F2 and
F3 be arbitrary families of Hilbert spaces. We may say that \F2 is a cause of F1

within F3" if

(1.2) F 1
<1 ? F 3

�t j F
2
�t

because the essense of (1.2) is that all information about F 1
<1 given by F 3

�t comes

via F 2
�t for arbitrary t; equivalently, for arbitrary t, the information about F 1

<1

proveded by F 3
�t is not \bigger" than that provided byF 2

�t, or,F
2
�t contains all the

informations from F 3
�t needed for predicting F 1

<1. According to Corollary 1/1/1,

(1.2) is equivalent to F 1
<1 ? F 3

�t_F
2
�t j F

2
t . The last relation, means that condition

F2 � F 3 does not represent an essential restriction. Thus, it is natural to introduce
the following de�nition of causality between familes of Hilbert spaces:

De�nition 1.7. We say that F2 is a cause of F1 within F3 (and write F1 j<
F2;F3) if and only if F2 � F3 and F 1

<1 ? F 3
�t j F

2
�t for each t.

A de�nition analogous to De�nition 1.7, formulated in terms of �-algebras,
was �rst given in [3]; however, a strict Hilbert space version of the de�nition from [3]
contains also the condition F1 � F3 which does not have an intuitive justi�cation.
Since De�nition 1.7 is more general than the Hilbert space version of the de�nition
in [3], all results related to causality in the sence of De�nition 1.7 will be also
true in the sense of the Hilbert space version of the de�nition in [3], when we add
condition F1 � F3 to them.

If F1 and F2 are such that F1 j< F1;F2 we say that F1 is its own cause
within F2 (cf. [3]). It should be mentioned that the notion of subordination (as
indroduced in [5]) is equivalent to the notion of being one's own cause as
de�ned here.

If F1 and F2 are such that F1 j< F1;F1_F2 (where F1_F2 is a family
determined by (F 1 _F 2)t = F 1

t _F
2
t ), we say that F2 does not cause F1. It

can be shown without diÆculties that this is identical to \F2 does not
anticipate F1" (as introduced in [6]).

We shall now prove some results which will be needed later.
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Lemma 1.4. From F 1
<1 � F 2

<1 and F2 j< F2;F 3 it follows that F1 j<
F 2;F3. The proof is quite similar.

Lemma 1.5. c.f. [1]) F1 j< F2;F3 if and only if F2 � F3 and P (F 1
<1 j

F 3
�t) = P (F 1

<1 j F 2
�t) for each t.

Proof . According to Lemma 1.1, F1 j F2;F3 is equivalent to P (F 1
<1 j

F 3
�t _ F 2

�t) � F 2
�t and F2 � F3 which implies P (F 1

<1 j F 3
�t) = P (P (F 1

<1 j

F 3
�t) j F

2
�t) = P (F 1

<1 j F 2
�t), so that one half of the statement is proved.

The other half is obvious.

Lemma 1.6. (cf. [1]) From F1 j< F2;F3 and F1 � F3 it follows that
F1 � F2.

Proof . If, for some t; xt is an arbitrary element from F 1
�t, then

xt � P (xt j F
2
�t) ? F 3

�t 	 F 2
�t;

which (because F1 � F3) implies xt � P (xt j F
2
�t) ? xt � P (xt j F

2
�t) that is,

xt = P (xt j F
2
�t). The proof is completed.

2. Main Results. The results of this section will tell us under which
conditions, concerning the relationship between (known) information E
about an s.d.s. S2 and (known) outputs H of an s.d.s. S1, it is possible
to �nd a realizations of an s.d.s. S1 which are in a certain causality rela-
tionship with E and H. More precisely, we shall consider the following
two cases (see [1]): (1) the available information E about S2 is a cause
of states of S1 within outputs H of S2; (2) states of S1 are a cause of the
available information E about S2 within outputs H of S1. The problem
of minimality and strict minimality is disscused and partially solved.

The next two theorems deal with case (1), while the other results
deal with case (2):

Theorem 2.1. [1] If G is its own cause within H, then G is a realization of
an s.d.s. with outputs H if and only if G is markovian and H<t ?>tj Gt for each
t.

For the proof of this theorem see [1].

The previous theorem gives conditions under which G is a realiza-
tion of an s.d.s. with known outputs H, while Lemma 1.4 and Lemma
1.6 (for G = F1; E = F2; H = F3) complete the solution of the problem
(1); i.e. Lemma 1.4 gives conditions under which G j< R; H holds and
conversely, Lemma 1.6 explains connections between families G;H;E if
G j< E; H holds.

An example which illustrates the results above and an example
which shows that a given realization is not a minimal realization of S1
are given in [1]. The problem of determining the minimal realization G
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of an s.d.s. with outputs H, which will be caused by a given E within H,
is still open.

The next result gives conditions under which G is stricly minimal
realization of an s.d.s. with outputs H so that G j< E; H holds.

Theorem 2.2. The family G is a unique strictly minimal realizatin (of an
s.d.s. with outputs H), such that G�t � H<t, for each t, if and only if it is de�ned
by

(2.1) Gt = P (H>t j H<t); t 2 R:

Every family E, such that E j< E; H and P (H>t j H<t) � E<1 for each t, is a
cause of the realization G, de�ned by (2.1), within H.

Proof . From Theorem 1.3 and Corollary 1.3.1 it follows that G
is a strictly minimal realization (of an s.d.s. with outputs H) such that
G�t � H<t for each t, if and only if G is de�ned by (2.1). To prove that G
is unique like this realization, let us suppose that G� is an other strictly
minimal realization (of an s.d.s. with outputs H such that G�<t � H<t.
According to Lemma 1.1, P (H> t _G��t j H<t) � G�t that is,

PH>t j H<t) _ P (G
�
�t j H<t) � G�t ;

and, thus Gt � G�t as we wanted to prove. The assumption P (H>t j H<t) �
E<1 implies G<1 � E<1, so that, according to Lemma 1.4 (for G =
F1; E = F2; H = F3), it follows that G j< E;H. The proof is completed.

If families G;H and E are such that E j< E; H and G � E, then
it can be shown (Corollary 1.1.1 and Lemma 1.1) that P (G�t j H�t =
P (G�t j E�t) for each t. Thus, in this case, the problem of predicting the
future behaviour of G has the same solution, no matter which one of the
families E or H is used.

In the remaining part of the paper we consider the problem of
determining possible realizations G (of an s.d.s. S1 with outputs H) which
are a cause of the information E (about the s.d.s. S2) within the family
E1 = H_E; especially, we consider the problem (2) above. More precisely,
solutions of the problem (2) are obtained as consequences of the following
more general result which gives conditions under which G is a minimal
realization such that E j< G; H _ E holds.

Theorem 2.3. Let H and E be such that P (Ht j E<1) � H�t and

H<t ? Hmt j P (Ht _Et j E<1)

for each t. If E1 = H _ E is markovian, then the family G, de�ned by

(2.2) Gt = P (Ht _ Et j E<1); t 2 R;

is minimal realization (of an s.d.s. with outputs H) which is a cause of E within
E1.
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Proof . From G�t = P (E1
�t j E<1) and Lemma 1.1 it follows that

E<1 ? E1
�t j G�t. Also, the de�nition of G and the assumption

P (Ht j E<1) � H� imply G�t � E1
�t which, together with the previous

conclusion, means that E j< G;E1. The minimality of G follows from
Corollary 1.2.1.

From E j< G; E1 and the obvious equality G<1 = E<1 it follows
that G j< G; E1 (and, in particular, G j< G; H). From G�t � E1

�t, the
fact that

P (G�t j G�t) = P (E1
�t j G�t)

(which follows from G<1 = E<1), and the assumption that E1 is mar-
kovian, we obtain:

(2.3) P (G�t j G�t) = P (P (E1
�t j E

1
�t) j G�t) = P (E1

t j G�t):

However, G j< G; E1 means in particular that E1
t ? G<1 	 G�t, so that

(2.3) becomes

P (G�t j G�t) = P (E1
t j G<1) = P (E1

t j E<1) = Gt

which means that G is markovian. Now, Theorem 2.1 completes the
proof.

The next example shows that the family G, de�ned by (2.2), is not
a strictly minimal realization (of an s.d.s. S1) such that E j< G; H _ E.

Example 2.1. Let A and B be arbitrary Hilbert spaces and let H =
(Ht) and E = (Et); t 2 f1; 2; 3g be de�ned by

H1 = A; H2 = B; H3 = A; E1 = A; E2 = A; E3 = B:

Family E1 = H _ E is then given by E1
1 = A; E1

2 = A _ B; E1
3 = A _ B. It

is easy to see that E1 is markovian and P (Ht j E;1) � H�t; H<t ? H>t j
P (Ht _ Et j E<1) for each t. If family G is dr�ned by (2.2), then

G1 = A; G2 = A _B; G3 = A _ B:

According to Theorem 2.3, G is a realization (of an s.d.s. with outputs
H) and E j< G; E1. However, the family G� = (G�t ); t 2 f1; 2; 3g de�ned
by G�1 = A; G�2 = A _ B; G�3 = f0g is another realization of the same s.d.s.,
and E j< G�; E1. Obviously, G� �G.

The problem of determining the realization G (of an s.d.s. with
outputs H) which is a cause of E1 within H, in the case when family
E1 = H _ E is not markovian, is still open. One way to try to solve
this problem is to �nd families E� � E such that H _ E� is markovian,
and then, analogously to what we had in Theorem 2.3, �nd a realization
G (of an s.d.s. with outputs H) such that E j< G; H _ E�. Thus, with
a \sacri�ce" of a part of an inforfation E it would be possible to �nd
a realization (of an s.d.s. with outputs H) which is in a certain causal
relationship with information thus \made smaller"
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The next corollary of Theorem 2.3 gives a partial solution (under
the condition that H is markovian) of problem (2).

Corollary 2.3.1. Let H and E be such that E<1 � H<1; P (Ht j E<1) �
H�t and H<t ? H>t j P (Ht j E<1) for each t. If H is markovian, then the family
G de�ned by Gt = P (Ht j E<1); t 2 R, is a minimal realization (of an s.d.s. with
outputs H) which is a cause of E within H.

We obtain a simpler version of the above result if E is its own cause
within H.

Corollary 2.3.2. Let E be its own cause within H and H<t ? H>t j P (Ht j
E�t) for each t. If H is markovian, then the family G, de�ned by Gt = P (Ht j
E�t); t 2 R, is a minimal realization (of an s.d.s. with outputs H) which is a cause
of E within H.

The assumption (in Corollary 2.3.1 and Corollary 2.3.2) that H
itself is markovian is rather strong, because H represent the outputs
of an s.d.s., and thus the properties of H could hardly be controlled.
The following result does not require H to be markovian, but provides a
realization whose present information at t is equal to its total information
accumulated up to t.

Theorem 2.4. Let H and E be such that E<1 � H<1; P (Ht j E<1) � H�t
and H<t ? H>t j P (H�t j E<1) for each t. The family G, de�ned by

(2.4) Gt = P (H�t j E<1); t 2 R;

is a minimal realization (of an s.d.s. with outputs H) which is a cause of E within
H.

Proof . Since Gt = G�t for all t, it is immediately clear that G
is markovian. From Lemma 1.1 it follows E<1 ? H�t j Gt; that is,
E<1 ? H�t j G�t, which, together with G � H, means that E j< G; H.
From the last relation and G<1 = E<1 it follows that G j< G; H. Now,
Theorem 2.1 implies that G is a realization (of an s.d.s. with outputs
H). The minimality of G follows from Corollary 1.2.1.

Corollary 2.4.1. Under the conditions of Theorem 2.4, the family G de-
�ned by (2.4) is such that Gt = E�t if and only if E j< E; H.

It would certainly be intresting to �nd conditions for the existence
of a realization with certain properties less restrictive than those ob-
tained in this paper.
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