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LINEARLY SINGLY BI-k-SPACES

Ljubi�sa Ko�cinac

Abstract. We characterize and study the images, under two kinds of continuous mapings,
of topological spaces which are the perfect pre-images of � -metrizable spaces. We also give several
results concerning strongly radial spaces.

0. Introduction and basic de�nitions

From the early 1960's, when P. S. Alexandro� suggested the classi�cation
of topological spaces via mappings, many topologists have become increasingly
interested in nvestigating which classes of spaces are images or pre-images of \nice"
spaces under \nice" mappings. Usually \nice" spaces were metrizable spaces. Many
authors have obtained beautiful and important results of this sort, so that we
now have an extensive knowledge about these matters (see, for example, [4, 11]
and [12]). Clearly, these results have a cardinality restriction|countability. It is
interesting to study to what extent these results can be translated in the theory
of continuous images of � -metrizable or (generalized) orderable spaces. As might
be expected, many results in the theory of so-called \generalized metric spaces"
have their analogous, \linearly" of \higher cardinality" generalizations (even with
similar proofs), in the theory of continuous images of � -metrizable or orberable
spaces. This paper studies several problems of this type. For other investigations
with such intentions see, for example, [2, 5, 6, 8, 9, 15] and [16].

Notation and terminology in this paper are standard [3]. All spaces are
Hausdor� and all mappigs are continuous and onto, � always denotes an in�nite
(usually regular) cardinal, which is the smallest ordinal of a certain cardinality.
t(X) denotes the tightness of a space X , the smallest cardinal � such that for every

A � X and every x 2 ~A there exists a set B � A with j B j� � and x 2 B. For
any cardinal � , a � -sequence s = (x� : � 2 �) (or simply (x�)) in a space X is
a function from � into X . We use T (�) to denote a convergent � -sequence (x�)
together with its limit x toplogized so that every x� is isolated and a base at x is
the collection of all sets of the form fxg [ fx� : � � �g; � 2 � .
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We now de�ne some spaces and mappings which play an important role in
this paper.

0.1. A mapping f : X ! Y is called pseudo-open if for every B � Y and

every y 2 B; x 2 f�1B) for some x 2 f�1(y).

0.2. A space X is radial (or Fr�echet chain net) if for any A � X and any

x 2 ~A there is a � -sequence in A (for some �) converging to x [5]. Radial spaces
are exactly the pseudo-open images of orderable spaces ([2, 5]).

0.3. A space X is called strongly radial if there is some cardinal � such that
whenever (A� : � 2 �) is a decreasing � -sequence of subsets of X-accumulating at

x 2 X (i. e. x 2 ~A� for each � 2 �), then there are x� 2 A�; � 2 � , such that (x�)
converges to x [8].

0.4. If � is a regular cardinal, then a completely regular space X is called � -
metrizable (or linearly uniformizable) if its topology can be induced by a uniformity
having a well-ordered base of order type � .

These spaces were introduced by Kurepa [10] under the name pseudo-
distancial spaces; the present de�nition is one of the characterizations of these
spaces (for details see [7]).

0.5. A space X is said to be an lob-space if every one of its points has a
neighbourhood base which is linearly ordered by reverse inclusion.

1. Strongly radial spaces

In [8] the author has de�ned the notion of a � -bi-quotient mapping as a direct
generalization to higher cardinals of the notion of a countably bi-quotient mapping
introduced in [13] (see also [11] and [12]).

De�nition 1.1. Let � be a cardinal. A mapping f : X ! Y is called � -
bi-quotient if, whenever (B� : � 2 �) is a decreasing � -sequence of subsets of Y
accumulating at y 2 Y , then (f�1(B�)) accumalates at some x 2 f�1(y) [8].

In the same paper [8] strongly radial spaces were introduced and it was proved
that they are precisely the � -bi-quotient images (for suitable �) of orderable (and
lob-) spaces. In this section we shall give three further facts about these spaces,
the �rst of which is similar to Proposition 4.D.5. of [11] (which states that a space
X is strongly Fr�echet i� X � [0; 1] is Fr�echet) and the second is analogous to a
result obtained independently by Arhangel'skii [1] and Olson [13] (it says that
every countably compact Fr�echet space is strongly Fr�echet).

We begin with a few lemmas whose proofs can be obtained by minor modi�ca-
tions of the proofs of Propositions 4.3, 4.4, 8.1 and 8.6 of [11] concerning countably
bi-quotient mappings.

Lemma 1.2. If f : X ! Y is a �-bi-quotient mapping and g : A ! B is a

bi-quotient mapping [11] from a space A to a biradial space [9] B of tightness � ,

then the mapping f � g : X �A! Y �B is also �-bi-quotient.
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Lemma 1.3. A mapping f : X ! Y is �-bi-quotient if and only if the maping

f � iT : X � T (�) ! Y � T (�) is pseudo-open, where, iT is the identity mapping

on T (�).

Lemma 1.4. Let f : X ! Y be a quotient mapping. If Y is strongly �-radial,

then f is � -bi-quotient.

Lemma 1.5. Let f : X ! Y be a mapping and let t(X) � � . If the mapping

fB = f j f�1(B) : f�1(B) ! B is �-bi-quotient for every B � Y of cardinality

� � , then f is a �-bi-quotient mapping.

Theorem 1.6. If there exists a cardinal � such that X � T (�) is a radial

space of tightness � , then X is strongly radial.

Proof . We shall prove that X is strongly � -radial. Let (A� : ��) be a
decreasing � - sequence of subset of X accumulating at x 2 X . De�ne M � X by
M = [fA��f�g : � 2 �g. Obviously, (x; �) 2M . Since, by assumption, X�T (�)
is radial and t(X�T (�)) = � , there is a � -sequence (p�) in M converging to (x; �).
Without loss of generality we may assume that p� 2 A��f�g for every � 2 � . If �
denotes the projection of X � (�) onto X , then one easily sees that the � -sequence
(�(p�)) which converges to x witnesses that X is a strongly � -radial space. The
theorem is proved.

Recall now that a space X is initially � -compact, � is a cardinal, i� every
subset A � X with j A j� � has a complete accumulation point in X (as usual,
x is a complete accumulation point of A � X if for each neighbourhood U of x,
j A \ U j=j A j).

Theorem 1.7. regular initially � compact radial space X of tightness � is

strongly radial.

Proof . In fact, we prove that X is strongly � -radial. Let (A� : � 2 �) be a
decreasing � -sequence of subsets of X accumulating at p 2 X . Put

M = fx 2 X ; there are x� 2 A�; � 2 �; such that (x�); converges to xg:

We want to prove that p 2M which will mean that X is strongly � -radial.

Suppose, for a moment, that M is closed. Assuming, on the contrary, that
p 62 M we shall derive a contradiction. The regularity of X and closedness of M
imply the existence of a neighbourhood U of p for which �U \M = ?. Choose by
simple trans�nite induction distinct points a� 2 U \ A�; � 2 � . In this way we
obtain a subset of X of cardinality � . The initial � -compactness of X guaraties that
this set has a complete accumulation point, say a. Let A = fa� : � 2 �gnfag. Then

a 2 ~AnA, and since X is a radial space of tightness � , one can �nd a � -sequence
(a�� : � 2 �) in A converging to a. Of course, we can choose the points a�� in such
a way that �� � �; therefore, a�� 2 A�� � A� for every � 2 � . Putting a�� = b�
we have a � -sequence (b� : � 2 �); b� 2 A� , which converges to a. As M is closed
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(by our assumption) we have a 2M . But a 2 Û and we have a contradiction. So,
p 2M .

It remains to prove that M is closed. Let y 2 M . Using the fact that X
is radial and t(X) = � , choose a � -sequence (y�) in M which converges to y. If
some y� = y, then clearly there is nothing to prove. So we asume y� 6= y for every
� 2 � . By de�nition of the set M , for every � 2 � there are z�� 2 A� ; � 2 � , such

that (z�� : � 2 �), converges ta y�. It is understood that y 2 fz��;� � �g; � 2 � .
Again, radiality of X implies that there exists a � -sequence (z���� : � 2 �); �� �
�� , in (z��� � �) which converges to x. We may assume �� � �; �� � �, and
thus we have z���� 2 A�� � A� ; in other vords, for every � 2 � there is a point
z���� 2 A such that (z�nu ��) converges to y. By the de�nition of M we deduce
y 2M , i. e. M is closed. The theorem is proved.

Theorem 1.8 Let X be a space that t(X) � � and every one of its subspaces

of cardinality � � is strongly �-radial; then X is also strongly �-radial.

Proof . For every � -sequence s = (x� : � 2 �) in X which converges to a
point x 2 X , let Ys be a copy of s [ fxg toplogized in the same way as the space
T (�) (see the Introduction). Let Y be the topological sum of all such spaces Ys
and let f : Y ! X be the natural surjection. Clearly, Y is an lob-space. If M is
any subset of X of cardinality � � , then, by assumption, it is strongly � -radial.
Since f�1(M) is an lob-space, the mapping fM : f�1(M) ! M is � -bi-quotient
according to Theorem 1.3 of [8]. By Lemma 1.5 the mapping f : Y ! X is also
� -bi-quotinet. Again according to Theorem 1.3 of [8] X is strongly � -radial, which
completes the proof of the theorem.

2. Linearly singly bi-k-spaces

De�nition 2.1. A spaceX is called a linearly singly bi-k-space if for any A � X

and any x 2 ~A there exist a family S = S(A; �) of subsets of X linearly ordered by
(reverse) inclusion (S1 � S2 i� S1 � S2) such that:

(i) x 2 \fS : S 2 Sg and x 2 A \ S for each S 2 S,

(ii) \fS : S 2 Sg = C is compact,

(iii) S converges to C, i.e. for every neighbourhood U of C there is some
S 2 S tuch shat C � S � U .

If in our de�nition above S is a countable collection, we obtain the de�nition
of a singly bi-k-space [11]. It is clear from the de�nitions that every radial and
every linearly bi-k-space [8] is linearly singly bi-k.

For a topological space X let

 k(X) = !0 �minf� : every compact subset of X is the intersection of � �

open sets in Xg.

Theorem 2.2.1.If X is a non-discrete linearly singly bi-k-space, then the

1The authord would like to thank the referee and -D. Kurepa for several corrections con-
cerning this theorem
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family S in De�nition 2.1 can be chosen so that

(a) j S j�  k(X),

(b) j S j is

�
1; if A is compact

a regular in�nite cardinal, if A is non-compact:

Proof . (a) Let  k(X) = �; A � X; x 2 ~A. If A is compact, one can select
S = fAg; conditions (a) and (b) are satis�ed. If A is not compact, let S and C
be as in De�nition 2.1 and let fU� : � 2 �g be a collection of open subsets of X
such that \fU� : � 2 �g = C. For each � 2 � , by (iii), let S� be a member of
S for which C � S� � U�. We claim that there exists an S such that the family
S = fS� : � 2 �g satis�es the conditions of De�nition 2.1 Condition (i) is obviously
satis�ed, so we need only check that (ii) and (iii) hold. We have

C = \fS : S 2 Sg � \fS� : � 2 Sg � \fU� : � 2 �g = C

so that condition (ii) is satis�ed by S for every S. We now prove that S satis�es
(iii). If C 2 S, all is done: C is the minimal element in S. If C 62 S, suppose,
on the contrary, that there exists a neighbourhood U of C such that S�nU 6= ?,
and thus S�nC 6= ? (bacause U � C) for every � 2 � . By (iii) there is an S 2 S
with C � S � U . Since S is linearly ordered, S must be proper subset of S� for
each � 2 � , and consequently S � \fS� : � 2 �g = C: This relation together with
C � S implies C = S, which contradicts the assumption C 62 S. Statement (a) is
proved.

(b) Let � = minfj P j: P � S and S and P is co�nal in Sg. Then � is a
regular cardinal number and, as can easily be veri�ed, the corresponding family P
satis�es all the conditions of the de�nition of a linearly bi-k-space. The theorem is
proved.

If � is the smallest initial cardinal which can be used in the de�nition of a
linearly singy bi-k-space X , we shall say that X is a � -singly bi-k-space. So the
class of all linearly singly bi-k-spaces may be decomposed in subclasses of � -singly
bi-k-spaces. Of course, !0-singly bi-k-spaces coincide with singly bi-k-spaces.

From Theorem 2.2. we obtain:

Corollary 2.3. Every linearly bi-k-space X with  k(X) = !0 is singly bi-k

Theorem 2.4. If X is a space, then (1)) (2) ) (3) below:

(1) X is a linearly singly bi-k-space.

(2) For every A � X and every x 2 ~A there exist a compact set C � X and

a set B � A of regular cardinality such that j BnU j<j B j for every neighbourhood

U of C.

(3) For every A � X and every x 2 ~A there is a linearly ordered family S of

subsets of X which converges to a compact subset of X and S \ A 6= ? for every

S 2 S.
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Proof . (1)) (2) Let S be a family as in the de�nition of a linearly singly bi-k-
space, and let P be a well-ordered co�nal subcollection of S of minimal cardinality
� : P = fS� : � 2 �g. Choosing points x� 2 A \ S�; � 2 �; x� 6= x� , for � 6= �,
and putting B = fx� : � 2 �g, we obtain a subset of A of regular cardinality � .
Let U be a neighbourhood of C = \fS : S 2 'g = \fS� : � 2 �g. Denote by
S� the �rst element of P for which C � S� � U holds. Then x� 2 S� implies
x� 2 S� for each � � �, and consequently fx� : � � �g � U ; so that we have
j BnU j=j fx� : � < �g j< � =j B j.

(2) ) (3) Let A � X; x 2 ~A. By (2), one can �nd a compact set C � X and
a subset B of A of regular cardinality � satisfying the conditions of (2). Letting
S� = C [ fx� : � � �g; � 2 � one obatins a linearly ordered family fS� : � 2 �g
having the property that S� \ A 6= ? for each � 2 � , and converging to C. Let us
check the last assertion. If U is an arbitrary neighbourhood of C, then the fact that
j BnU j<j B j imlies the existence of some � 2 � for which one has fx� : � < �g 2
BnU , and hence fx� : � � �g � U . Therefore, C � S� = C [ fx� : � � �g � U .

The following result is a characterization of linearly singly bi-k-spaces and
may be considered as a higher cardinality version of the corresponding result about
singly bi-k-spaces [11].

Theorem 2.5. A space X is a linearly singly bi-k-space if and only if it is a

pseudo-open image of a space which admits a pefrect mapping onto a �-metrizable

space for some cardinal � .

Proof . ()) Let X be a � -singly bi-k-space for some regular cardinal � . Let
P (X) and C(X) be the set of all subsets of X with the discrete topology and the
collection of all compact subsets of X , recpectively. Identifying Sya 2 P (X) with
y� consider the set Y of all y = (y� : � 2 �) 2 P (X)� for which (Sya : � 2 �)
satis�es the conditions of the de�nition of a linearly singly bi-k-space (for some

A � X and x 2 ~A) with \fSya : � 2 �g = Cy 2 C(X). The topology on Y is
induced by the \natural topology" [14] on P (X)� de�ned by the base V consisting
of the sets

V�(y) = fp 2 Y : p� = y� for � � �g; y 2 Y; � 2 �

The collection B consisting of all sets of the form

B� = f((p); (y�)) 2 Y � Y : p� = y� for � � �g; � 2 �;

is a well-ordered base of a unifority on Y which generates the \natural topology";
since j B j= �; Y is a � -metrizable space. Put

Z = f(x; y) 2 X � Y : x 2 Cy; Cy 2 C(X)g

Let f and g be the projections of Z onto X and Y respecitively.

Claim. f is a pseudo-open surjection.

Let A 2 X; x 2 ~A. Since X is a � -singly bi-k-space, there is a decreasing
� -sequence (S� : � 2 �) of subsets of X satisfying conditions (i)|(iii) of De�nition
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2.1 (with \fS� : � 2 �g = C). Consider y 2 Y de�ned by y = (y� � S� : � 2 �).
Then fV�(y) : � 2 �g is a monotone base at y 2 Y for which one has

(�) fg�1(V�(y)) = S�; � 2 �:

Indeed, if p 2 V�(y), then fg
�1 = Cp � Sp� = Sy� � S�, i. e. fg

�1(V�(y)) � S�).
Conversely, let q 2 S�. Then q belongs to some K 2 C(X) with q 2 K � S�. Let
(Sa� : � 2 �) be a decreasing � -sequence converging to K. We may assume a� = y�
for � � �. If we take a = (a� : � 2 �), we shall have a 2 V�(y); q 2 K = fg�1(a)
and hence S� � fg�1(v�(y)). The equality (�) is proved.

Let z = (x; y). Then z 2 Z; f(z) = x and z 2 f�1(A), as can be veri�ed
without diÆculty. This means that f is pseudo-open and because, by (*), it is a
surjection, the proof of Claim 1 is complete.

Claim 2. g is a perfect surjection.

From the de�nition of g it follows that g is a compact surjection. Let us
prove that it is closed. Let y 2 Y and let W � Z be a neighbourhood of the set
g�1 = Cy�fyg. By a well-known theorem of Wallace, there are neighbourhoods U
of Cy and V�(y) of y such that Cy�fyg � U�V�(y)\Z �W . Let (Sy� : � 2 �) be
a decreasing � - sequence converging to Cy. One can �nd � 2 �; � � �, for which
Cy � Sy� � U . Then, using (*), we have

g�1(V�(y)) = (Sy� � V�(y)) \ Z � (U � V�(y)) \ Z �W

which means that g is closed. The claim is proved.

(() Since very � -metrizable space is linearly bi-k [8] (more precisely, � -bi-k)
and these spaces are preserved by perfect pre-images, we deduce that every perfect
pre-images of a � -metrizable space is � -singly bi-k. But, as can easily be veri�ed,
linearly singly bi-k-spaces are preserved by psudo-open mappings, and the theorem
is proved.

The preceding proof shows that the following result holds:

A space X is a linearly singly bi�k-space if and only if it is a pseudo-open
image of a space which admits a perfect mapping onto an lob-space.

From the fact that every � -metrizable space is a generalized orderable (GO)
space we obtain:

Corollary 2.6. Every linearly singly bi-k-space is a pseudo-open image of

a space which admits a perfect mappiing onto a GO-space.

3. Monotonically bi-k-spaces

In this section we shall de�ne one subclass of the class of linearly singly bi-
k-spaces. These space we call monotonically bi-k-spaces and they are a \linearly"
generalization of countably bi-k-spaces [11]. Let us note that we use this terminol-
ogy because the term \linearly bi-k-space" is reserved for the concept introduced
in [8].
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De�nition. 3.1. A space X is called monotonically bi-k if there is a cardinal
� such that for every decreasing � -sequence (A� : � 2 �) of subsets of X and every

x 2 \f ~A� : � 2 �g there exists a decreasing family S = fS� : � 2 �g of subsets of
X having the following properties:

(i) x 2 \fS� : � 2 �g and x 2 A� \ S� for every � 2 �

(ii) \fS� : � 2 �g = C is a compact set,

(iii) S converges to C.

If � is the smallest cardinal which can be used in the de�nition above (it may
be assumed to be regular; see Theorem 2.2), we say that the space is monotonically
� -bi-k. When � = !0 we have the notion of a countably bi-k-space.

Every linearly bi-k-space (= a bi-quotient image of a perfect pre-image of a
� -metrizable space [8]), and every �nite product of such spaces, is monotonically
bi-k. These spaces are preserved by closed subspaces and � -biquotient images.

The proof of the following result is entirely analogous to the proof of Theorem
2.5, and thus it will be omitted.

Theorem 3.2. A space X is a monotonically bi-k-space if and only if it is a

�-bi-quotient image of a perfect pre-image of a �-metrizable space for suitable � .

The next result gives an interesting connection between linearly singly bi-
k and monotonically bi-k-spaces. At the same time it is a characterization of
monotonically bi-k-spaces.

Theorem 3.3. A space X is a monotonically bi-k-space if and only if there

exists a cardinal �such that X � T (�) is a linearly singly bi-k-space.

Proof . ()) Let X be a monotonically � -bi-k-space. According to Theorem
3.2 there is a space Z which admits a perfect mapping g onto a � -metrizable space
Y such that X = f(Z), where f is a � -bi-quotient mapping. Like any �nite product
of � -metrizable spaces, the space Y � T (�) is � -metrizable; on the other hand, the
mapping g � iY : Z � Y (�) ! T � T (�) is perfect and, by Lemma 1.3, f � iT is a
pseudo-open mapping. According to Theorem 2.5, X�T (�) is a � -singly bi-k-space.

(() Let now X � T (�) be a � -singly bi-k-space. We are going to prove
that X is monotonically � -bi�k. Let (A� : � 2 �) be any decreasing � -sequence
accumulating at x 2 X . Let us de�ne

M = [fA� � f�g : � 2 �g � X � T (�):

It is clear that (x; �) 2 M . Since X � T (�) is � -singly bi-k, there exists a family
P = fP� : � 2 �g satisfying the conditions of the de�nition of a � -singly bi-
k-space. A straightforward checking shows that f�(P�) : � 2 �g; � being the
projection onto X , is the desired collection of subsets of X which witnesses that X
is a monotonically � -bi-k-space. This completes the proof of the theorem.
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