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GEODESIC LINES IN D RECURRENT FINSLER SPACES

Irena Comié

Abstract. A D recurrent Finsler space is defined as a Finsler space in which the absolute
differential of the metric tensor is recurrent. For some special cases of the parameter and the vector
of recurrency some interesting special cases are obtained. An example is the non-recurrent Finsler
space with Cartain connection coefficients. After introducing the so called Y connection [5], it is
examined in which special case of a D recurrent Finsler space the introduced Y connection will
give a recurrent Riemannian space. Finally different kinds of definition of a geodesic line are given.
The relation between them and the projective change of the metric function are examined. It is
prooved that in a D recurrent Finsler space the geodesic line does not depend on the connection
coefficients, but only on the metric function of the space.

1. D recurrent Finsler space. If in a Finsler space F, (M, L) the metric
function L(z, ) is as usually homogeneous of degree one in &, and it the metric
tensor is defined by

(1.1) gap (@, %) = 0a0pF (v,%),  f(z,&) =27 L2(x, ).
then the following definition can be given:

Definition 1.1. Finsler F, is D recurrent if there are vector fields A7 =
A (z,z) and p¥ = p”(z, &) homogeneous of degree zero in &, such that

(1.2) Dgop = (A\ydz” + pyD1")gop = K(z, %, dx, Dl)gas,

where D corresponds to the change of the line element (z,%) to (z + dx, 2 + di)
and

(1.3) 1 =L '~

From
(1.4) Dgap = dgas — (Fz‘; + Fg‘fyga(;)daﬂ — (A‘fwgag + Agvgm;)Dl”’
and

(1.5) DI = dI" + T} }dz” + A),DI",
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where “0” means the contradiction by I, we obtain

(16) Dgaﬁ = gaﬁ\’ydmﬁ + 9ap |’y DI”
where

(1.7) Gaply = OvGap — La.&gaﬁrzg - F;ﬁw - anw
(1.8) Japly = Laégaﬁ(ég - Ag,y) — Aapy — Agay

From the relation
(1.9) Jap(z,@)1°1° =1
using (1.2) we have
(1.10) Aydz” + (py +21,)DI” =0

This is the crucial relation which shows that dz” and DI are not linearly indepen-
dent. For A =0 and g =0, i. e. when Dg,3 = 0, (1.10) reduces to the well-known
relation

(1.11) 1,DI* =0

in the non-recurrent Finsler space

If we multiply (1.10) with 8,3 = 04(2, &) which is homogeneous od degree
zero in &, 0,3 = 034, and add this to the right-hand side of (1.2) and substitute
(1.6) we obtain

(112)  Gasydr” + gas |y DI = Ay (gap + Bapds” + [1gas + (1 + 215)60s] DI,

From (1.12) we get

(1-13) JaBly = A’Y(gaﬁ + eaﬁ)
(1.14) Japly = H~vGap t+ (p‘“/ + 2l7)004ﬁ'
In a D recurrent Finsler space we shall suppose that the connection coefficients

['* and A are not symmetric, i. e. there exist (h)h and (v)v torsion tensors different
from zero. Let us introduce the notation

(1.15) Ffw = Fif’; —I'ya 2lagy =I'gya —Igya + Tyap
(1.16) Ag’y = Agry - Aga 2Aaﬁw = Aapy — Aﬁva + Ayap

From (1.13) and (1.15) we obtain
(1.17)

(a) :;ﬁ’v =' Lapy — 271[>\'y(gaﬁ + eaﬁ) + Aa(gﬁv + eﬁ’v) - Aﬁ(g’va + 9705)] +Lagy,
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where

(®)  Tagy = Yasy =27 "L(059asTs) + 595, Tty — 0597aL'53)
(Yap~ is the Christoffel symbol)

(€) Tipy = Yosy — 2 0595, T — 27 Ay (I + 0op) +
- Xo(ga +83,) = As(l +6:0)] + Loy
(d) Thgo="os0 — 2 ' [2Xo(ls + 00p) — Ag(1 + 0,0)] + Foﬁtﬁ
(1.18)
(@) Aagy =" Aapy =27 1y 9ap + (ky + 2,)00p+
T Hagy + (o + 200)03, — 1590s — (15 + 23)00] + Aas,
where
(b) 'Aagy =27 L[05gap (85 — AD) + 0595, (0% — AL,) — Ds9va(63 — Ap)]
(€) Aopy = 27" L5gp, (=A%) — 27 [y ls + (1y + 21;) 005+

+ 1098y + (o +2)03y — pply — (g + 215)00y] + Aopy

(@) Ao = 2 {2tk + (110 +2005] — [ + (13 + 215)800]} + Ao
From (1.15) and (1.16) it is clear that

~ ~ ~

~
~ ~

~ ~

Lapy = Typa = Lapy, Aapy = Aypa = Aapy-
For generalized Wagner connection coefficients we have

(1.19) I8, =6py — 65pa, A8 =68q, — 0%qq,

«

where p, = p,(z, %) and ¢, = ¢,(z,2) are convariant vector fields homogeneous of
degree zero in &. From (1.19) it follows that

(1.20) Tafy = gagpy — 926Pas  Aagy = Gapty — 95rdas
From (1.15), (1.16) and (1.20) we obtain
(1.21) (@ Tagy =Tars = gr0D3 — 93,00
() Tosy = 1,05 — Pogins
(c) Foﬁo = ps — Polg;
(1.22) (a) zaﬁw = chﬁ = 9valp — 98v4a
(b) Zoﬁ*y = 1,qp — 4093+
(c) ZOBO = a3 — dolp-
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Definition 1.2. A D recurrent Finsler space in which the (h)h and (v)v torsion
tensors I and A are determined by (1.21) and (1.22) will be called D(W) space.

In this space the connection coefficients are determined by (1.17), (1.18),
(1.21) and (1.22).

THEOREM 1.1. In a D recurent Finsler space the metric tensor is | and |
recurrent if

(1.23) Oup(xi) = k(x,%)gap(z, T),
where k(xz,x) is a scalar function homogeneous of degree zero in &. Then we have

(1.24) 9aply = (L+ k)X gap
(1.25) Japly = [(1 + k)u»y + lew]gag,

i. e. the | and | vectors of recurrency are (L+k)\y and (14 k)p, + 2kl respectively.

Proof. 1t iz evident that (1.2)& (1.13)A (1.14). Substituiting (1.23) into
(1.13) and (1.14) we obtain (1.24) and (1.25) from which the statement follows.

Definition 1.3. A D recurrent Finsler space in which (1.23) is valid i. e. in
which (1.24) and (1.25) hold will be called a D(k) recurrent Finsler space.

THEOREM 1.2. Every D(k) recurrent Finsler space in D recurrent.

Proof. Substituing (1.24) and (1.25) into (1.6) and using (1.10) we obtain
the statement.

In a D(k) recurrent Finsler space the connectin coefficients have the form
(1.26)
(a) F;ﬁw :Taﬁv + 2_1(1 + k)o\vgaﬁ + Aagpy — Aﬁgva) + %aﬁv
(0) T5y =Yosy + 2_166967F32 —271(1+ k) (Al + Xogsy — Agly) + Igoﬁv

(€) i3, =Yoso — 27 (1 + k) (20l — Ag) + Togo
(1.27)
(a) A%p, ="Aapy + 27 (1 + k) (i Gap + Ha9sy — H3Gva)—

_k(l’vgaﬁ + lagﬁ’y - lﬁga'y) + Zlaﬁfy
(b) Aopy = _Q_ILéégﬁvAga_2_1(1+k)(lhgaﬁ+ Aalp+ogay—isly) _kgﬁﬂﬂ‘zom
(€) Aopo =— 27" (1+ k) (2polg — pg) — klg + Aogo

Definition 1.4. A D(k) recurrent Finsler space in which the (h)h and (v)v torsion
tensors are given by (1.21) and (1.22) or a D(W) space in which (1.23) holds, will
be called a D(k)(W) space.



Geodesic lines in D recurrent Finsler spaces 157

The connection coefficients in a D(k)(W) space are determined by (1.26),
(1.27), (1.21) and (1.22).

THEOREM 1.3. In D(k) recurrent Finsler space for k = —1 we have
(1.28) (a) Jap|y =0 (b) Japly = =2l gas,
(1.29) Dgop = — 2l,90pDIl" = (Aydz” + pyDI17)gags.

Proof. (1.28) follows from (1.24), (1.25) and k£ = —1. (1.29) follows from
(1.28) and (1.10).

In a D(k = —1) recurrent Finsler space the connection coefficients (1.26) and
(1.27) reduce to the form

(1.30) (@) iy = Tapy+Lag
(b) FZB»Y = YoBvy — 2_1559mFZ§ + ijoﬁ’%
() T30 =Yoo + Laso
(1.31) (a) Aapy =' Aapy +lagpy — lﬁgm) + ﬁvﬁ%
(b)  Aogy = —27"'LOsgp, A%5 + ga- + Zoﬁ%
)

(C Aogo = lﬁ + Foﬁo-

Definition 1.5. A space D(k = —1) in which the generalized Wagner torsion
tensors determined by (1.24) and (1.25) are used or a D(k)(W) space in which
k = —1 will be called a D(k = —1)(W) space.

The connection coefficients in a D(k = —1)(W) space are determined by
(1.30), (1.31), (1.21) and (1.22).

Definition 1.6 A D(k = —1) recurrent Finsler space in which we prescribe the
torsion free connection coefficients, i. e. which

X

R

(1.32) 5y =0, agy =0

afBy =
hold, will be called a D(k = —1)(T'F’) space
THEOREM 1.4. In a D(k = —1)(TF) space we have
(1.33) noy = Tay Tipy = Yooy = 27 '0598:Tog,  Tapo = Yoo
(1.34)
Aagy =" Aapy + 11905 +1agsy = lagar,  Aopy = gory = Ag, =05, Aogo =1s.

Proof. The proof follows from (1.30) and (1.31) if in these formulae we
substituite from (1.32) Top, = 0 and A,3, = 0. We can see that [, is the
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Cartain connection coefficient which follows from (1.28 a) and (1.33), but Aypy #
27110, gap because of (1.28 b).

In a D(k = —1)(TF) space DI’ cannot be determined by (1.5). In this space
(1.34) gives that (1.5) reduces to dI’ +T;%daz? = 0 from which di can be expressed

and DI° should satisfy (1.10).

2. Metrical spaces. Definition 2.1. A Finsler space will be called D,
| and | metrical if Dgag = 0, gagly = 0 and gag, = 0 respectively. (See (1.7),

(1.8)).
THEOREM 2.1. If a Finsler space is D metrical, i. e.
(2.1) Dg.s =0
then from (2.1) follows
(2.2) 9asly = M (gapy +0a8),  Gasly = 1y(gap + 0ap),
where 8,8 = 0ap(2, ) is homogeneous of degree zero in & and o5 = 043.

Proof. From Dg.s = 0 and (1.9) it follows (1.11) i. e. I, D!* = 0; so (1.10)
reduces to A,dz” + u,DI” = 0. From

Dgas = gapvdx” + gaply DI = Ay(gap + Oap)dz” + 1y (gas + 0ap DI
(2.2) follows.

THEOREM 2.2. In a D(k) recurrent Finsler space the metric tensor is D,
| and | metrical, i. e.

(23) Dgaﬁw =0, Japly = 0, Jap |W: 0,
when
(2.4) (A, = 0) A () = —2k(1 + k)~'1,).

Proof. The proof is obvious from (1.24), (1.25) and (1.6).

THEOREM 2.3. A D(k)(TF) space in which (2.4) holds is a non-recurrent
Finsler space supplied with Cartan connection coefficients.

Proof. The proof follows from

(2.5) (@) gy =—2k(L+k)"'y = po = —2k(1+ k)~
b A =0 =X =0
(C) eag = k‘gag = 905 = k‘lﬁ = 0,, = k.
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Substituing (2.5) into (1.17) and (1.18) after some calculation we get
(2.6)

(a) FZBO = YopBo>

(0)  Togy =Yosy =2 095,50

(€)  Thpy="Yasy — 2 "L(Osgapl) + 059550 — 05970155);

(a) Aypo =0,

() Aoy =0

(c) Aagy = 27 (0, 9ap + Oagary — Dgra) = 2710, 9as-
From (2.7. a) it follows that in this case (1.5) reduces to the form
(2.8) DI® = dI° + ;5 du”;
so the deflection tensor is equal to zero.

THEOREM 2.4. A D(k)(TF) space reduces to a non-recurrent Finsler space
supplied with Cartan connection coefficients if

(2.9) k=0, Ay =0, py = 0.
In this space (2.6)-(2.8) are valid.
Proof. The proof is obvious from (1.26), (1.27) and (2.9).

3. Y connection in D recurrent Finsler spaces. The name of these
connection coefficients is taken from [5]. Let the field of the tangent vector (1.3)

(3.1 P =Y*2) = 1" =L *z,Y(z))Y*(z)

in the domain of manifold M of a D recurrent Finsler space F, (M, L) be defined.
Then from (3.1)

(3.2) di® = 0gY *dz”
and (1.5) has the form
(3.3) [63 — L7' (2, Y (2)) A, (z,Y (2))Y P (2)|DI” =
=d[L(z,Y (2))Y*(z)] + L (z,Y (2))T52(2,Y (2))Y 7 (2)da”.
If we denote by IS the inverse matrix of
(3.4) gy =03 - A3, aet[ge] £0
from (3.2),(3.3) and (3.4) we obtain

(3.5) DI’ = 1)V} dx”,
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where
(3.6) LY O, LT + 0L, YY) + LTI Y + LTI Y
In this case we have a Riemannian metric tensor

(3.7) Gap(®) = gap(@,Y ().

If we denote by D the absolute differential which corresponds to the transla-
tion from (z) to (z + dx) from (1.4), (3.5), (3.6) and (3.7) we have

(3.8)  Dgag = Dgap = dgap — (Thgy + Thay)de” — (Aaps + Agas) )Y}, da”,
where dgas = (0 9ap + 059apd, Y% )dz" = dg,5 = 04Gapdz”. In (3.8)
Dopy(@,8) = Top, (2,Y (), Aapy(2,8) = Aapy(2,Y (2)),

where I'* and A are given by (1.17) and (1.18). Formula (3.8) determines in a D
recurrent Finsler space a Riemannian Y connection coefficient F, 3., where

(3.9) Fapy =Thg, — Aaps 1Y},

With connection coefficients so defined, from (3.8) we have
5?&5 = dgaﬁ — (Fapy + Fpary)da”,
where Fip, = nggw.

Definition 3.1. A D recurrent Finsler space supplied with ¥ Riemannian
connection coefficients (3.9) will be called a D(Y") space.

THEOREM 3.1. If in a D(Y") space we denote by T the convariant differential
with respect to the Y connection F' of a Riemannian tensor Tg(a:) =T§(»,Y(z))
and with | and | the h and v convariant differentials with respect to Finslerian
connection coefficients T*(z,Y (x)) and A(z,Y (x)), we have the relation

(3.10) T5(z)Todz” = T§(2,Y (), da” + TG (z,Y (x)) |, DI
where
(3.11) (a)  T3Ty=0,Ts+F2T)—F3,T;s

(b)  T§, =0,T§ LOSTST;) +T55T5° — TR T3

() T§ |y=LOsTg (8] — A)) + A3, TS — AY Ty
Proof . Substituting (3.11), (3.9) and (3.5) into (3.10) we obtain identity.
THEOREM 3.2. In a D(Y') space we have
(3.12) DYop = Jagrrdz” = Ay + psI) Y4 )d2" G5+

+[Ay + (s + 207 Y5) )Y} ] da" 0,
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where Go51y = 0905 — Fapy — Fpany-
Proof. In a D(Y) space (1.1), (3.10) and (3.5) we have
(3.13) DGo3 =Fap T+d2" = gaglydaz” + gap |y DIY =
=(A\yda" + (1, D1")gag = (A + ps I, Y} )d2" gos.
Relation (1.10) in a D(Y") space has the form
(3.14) (A + (s +2L7"Y5) DY) ]da” =0
If we multiply (3.14) with 8,3(0as = 03a (2, AZ) = O45(x, %)) and add the expression

so obtained to the right-hand side of (3.13) we get (3.12).

Definition 3.2. A D(k) recurrent Finsler space in which #% = Y*(z) i.e. a
D(Y') space in which 0,3 = kgap will be called a D(k)(Y") space.

In D(k)(Y) space the Riemannian connection coefficients F' are determined
by (3.9) in which I'* and A are given by (1.26) and (1.27) respectively.

THEOREM 3.3. In a D(k)(Y) space the Riemannian metric g is T recurrent
with respect to the connection coefficients F' in this space. The vector of recurrency
8

L+ k) + ps L)Y + 2k LT YSI0Y

Proof . In (3.12) we substitute 6,5 = kg,z we have

(3.15) Gogrs = (L4 K) O + s I0YE) + 26l Y10 |G

which proves the theorem.

Definition 3.3. A D(k)(Y) space in which L(z,Y (z)) = 1 will be called a
D(Yy) space.

In a D(Yy) space

(3.16) Lz Y(z)=1 = 1°=Y%=)
(3.17) Fapy = Thgy — Aaps 1Y,
where

(3.18) Y 0,V + Ty

and I'* and A are determined by (1.17) and (1.18).
THEOREM 3.4. In a D(Yy) space
(319)  Dfup = Gaprrdz” = Ay + 16 1Y )Gop + [Ny + (15 + 2Y5) Y 100

Proof. In D(Yp) from (3.16) it follows that Y. =Y. From this fact and

(3.12) we obtain (3.19) . Theorem 3.4. is the specal case of theorem 3.2., when
L(z,Y(z)) =1.
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Definition 3.4. A D(k) recurrent Finsler space in which % = Y(z),
L(z,Y (z)) = 1 will be called a D(k)(Yp) space.

In a D(k)(Yp) space the connection coefficients F are given by (3.17) in which
I 5, and Aap, are determined by (1.26) and (1.27) respecitively.

THEOREM 3.5. In a D(k)(Yy) space the Riemannian metric g is T recurrent
with respect to the connection coefficient F' in this space. The vector of recurrency
is given by

(3.20) Fagry = (L + )y + s [Y) + 2LV 1Y G
Proof. As in D(k)(Y") space the proof follows directly from (3.15).

THEOREM 3.6. In a D(k)(Y) and in a D(k)(Yo) space each of the conditions
(3.21 a) and (3.21Db)

(3.21) (@) A\y=0Ap,=0Ak=0
() A =0Ap, =—2k(1+k)",

leads to g, 51~ = 0, where T is the convariant differential with respect to the con-
nection coefficients (3.17); T* and A satisfy (1.26) and (1.27) respectively.

Proof . The proof follows from (3.15) and (3.20) and the condition of Theorem
3.6.

Definition. 3.5. A D(k)(TF) space in which 2% = Y*(z)i. e. a D(k)(Y") space
in which the torsions are zero (ijagv = 0,7104” = 0) will b called a D(k)(TF)(Y)
space.

A D(k)(TF) space in which 2% = T%(X) and L(z), Y(z) = 1,1. e. a D(k)(Yp)
space in which the torsion tensors are zero will be called a D(k)(TF)(Ys) space.

THEOREM 3.7. In a D(k)(TF)(Y) and a D(k)(TF)(Yo) space in which one
of the conditions (3.21 a) or (3,21 b) hold is T metrical, i. e., Gog7, = 0 with
respect to the connections Fog, which are determined by (3.9), (2.6), (2.7) and in
D(k)(TF)(Y) we have Y[’ determined by (3.6) whereas in D(k)(TF)(Yo) deter-
mined by (3.18).

This theorem is a special case of Theorem 3.6. when the torsion tensors are
7€ero0.

Proof. In Thorem 2.3. and 2.4. we proved that under conditions (3.21 a)
and (3.21b) in a D(k)(TF) space the condition coefficients I'* and A have the form
given by (2.6) and (2.7), i. e., they are Cartain connection coefficients.

Note. The Y connection examined in [5] is a special case of the connection
ina D(k)(TF)(Yp) space when (3.21 a) is valid.
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4. Geodesic lines in D recurrent Finsler spaces. Definition 4.1. The
geodesic line of a D recurrent Finsler space is the solution of the variation problem

P
6| F(z,&)dt =0.
P
From (1.1) we obtain
(4.1) F(z,i) =27 gopi®i® = 27 L2 (x, &).

The Euler Lagrange equation for this problem is
(4.2)
d .
(a) %(&;F) —-0sF=0&
(b) (0pOsF)i’ + (0p0sF)i? — O5F =0

(c) L<% In L) OsL + L[(050pL)i? + (9509 L)3% — 95L) = 0 &

(d) Es(L?) :L (i In L) dsL+ L P(&;L) - agL] =0.
dt dt
From (4.1) it follows that:

(%F :g(;gi?ﬁ =

(4.3) (0905 F)i" = Opgs5d” 3’

(4.4) (a.ga.gF)i‘e = ggefi’e

(4.5) OsF = 27" 05gapi®i’.

From (1.7) and (1.13) it follows that

(4.6) 09955 = L(Oxgss)Ty + Tiz0 + Dhsg + Xo (955 + Oap)-

Substituting (4.6) into (4.7) and (4.5) and then (4.3), (4.4), (4.5) into (4.2 b) we
obtain that the Euler Lagrange equation in a D recurrent Finsler space has the
form

(4.7) E&(L2) = gdefe“‘L2[F300+F260+F206+>‘0(16 +050) 271 _2_10%)‘6] =0
From (1.17) we obtain
(48) (a') FZO(S = Yoos — 2_1>\6 - 2_1>\6600 + F006

(b) Fgoo = Ys00 — 2_1>\6 - 2_1>\6600 + F600

(C) FZJO = Yodo — Ao(lé + 606) + 2_1>\6000 + 2_1>\6 + Fo(So-

Substituting (4.8) into (4.7) we obtain that the equation of the geodesic line is

(49) E’J(Lz) = 969&59 + L? (Féoo — L5 + Loso + '7060) =0
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Using (1.15) we have

I~ ~

(410) f(500 - I‘ooci + f‘050 = 271(?)%* I‘006 - F500 =0

odo

Now we can state the following:

THEOREM 4.1. The geodesic line (defined by Definition 4.1) in a D recurent
Finsler space is given by the solution of the differential equation

(4.11) Es(L?) = gso(L*)3% + 2G5(L?) =0  (2G5(L?) = vasp(L?)i%3")
i- e. the equation of the geodesic line does not depend on connection coefficients of
the space, only on the metric function L(x, ).

Proof . Substituting (4.10) into (4.9) we obtain (4.11).

Equation (4.11) may be written in the form

d?x? dz® dzP
E5(L?) = g5p(L*) — + Yass (L

2——:
( )dt dt 0

5. Projective change of metric in a D recurrent Finsler space. Defi-
nition 5.1. If the geodesic line of the Finsler space F},(M, L) is the geodesic line of
the Finsler space F,,(M, L) and the inverse is also true, then the change L — L of
the metric function is called projective.

We shall examine the change of the metric function of the form

(5.1) L(z, %) = L(z, %) + B(z,3),
where ((z, &) is homogeneous of degree one in . From (5.1) we obtain
(5.2) T =12+2LB+ B
and according to (4.2) we calculate
(5.3) (@) 85I = 85L2 + 2805L + 2L + 953>
(b) (9pDsL )i’ = (8p05L2)a’ + 2(9pd5L) 3"+
2(05L)(958)i" + 2(09L)(058)&" + 2(9p058)i” + (99058° )"
(©) (9p05L )i = (95 L) + 2(8pdsL)i? B + 2(J5L)(DpB) 7" +
2(89L) (95 8)&" + 2L(89053)%° + (8905 3%’
(d) —05L* = —05L* — 2B0sL — 2LIs/3 — 053°.
Using the notation

(5.4) Es(G) = 271 [(0905G)i? + (8505G)i’ — 85G]
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where G = G(z, %) is any function homogeneous of degree two in #, if we add
(5.3.b), (5.3.c) and (5.3.d) previously multiplied by 27!, after some calculations we
obtain

Es(L") = (14 BL™Y)Es(L?) + (1 + LA~ Es(8)+
+ LB(sIn L — 95 1n B)(dIn B/dt — dInl/dt).
On the other hand, it is known that
Yasp(L?)E%&7 = 27" (Bagsp + 03gas — Osgap)i®i’ =
= 27 10,0505 L% + 030005 1> — 050005 L%) i " .
So we have
(5.5) Yasp(L3)i%i? = 271 (0005 L) i — O5L7).

If we introduce the notations

(5.6) Yasp (G = 271 [0a(05G)i" — 095G

(5.7) 905(G) = 271 0y05G

then from (5.2) we obtain

(5.8) 905(L) = gos(L?) + 2g05(LB) + g0 (6°)

(5.9) Yags(L')i = [yasa(L?) + 2vas8(LB) + Yasa(82))i%3°
Using (5.6), (5.7) and (5.4) we have

(5.10) E5(Q) = gos(G)3% + Yasp(G)i*i".

THEOREM 5.1. If the geodesic line in the Finsler space F, (M, L) is defined by
Definition 4.1. then the change of the metric function L — L = L + (3 is projective
when Es(3%) = —2E5(Lp).

Proof . From (5.8) — (5.10) we obtain
—2
(5.11) Es(L") = Es(L?) + 2E5(LB) + E5(8%)
from which the theorem follows.

THEOREM 5.2. By the change of the metric function L — L, L = /L2 + (32
a curve is a geodesic line (in the sence of Definition 4.1) of the Finsler space

FE,(M,\/L? + 32) if it is at the same time the geodesic line in F,(M,L) and
Fo(M, ).

Proof. From (5.6), (5.7) and T~ = L2 + 3 we get

(5.12) Y08 (L )i = [asp(L?) + Yasa(89))i"3°
(5.13) 905 (L") = gos(L?) + gos(6%)
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From (5.12), (5.13) and (5.10) we obtain
—2
Es(L") = Es(L?) + E5(8°)

from which the theorem follows.

It is more usual to define the geodesic line by

Definition 5.2. The geodesic line in a D recurrent Finsler space is the solution

of the variation problem
P

) L(z,&)dt =0
Py

The Euler Lagrange equation for this problem is
(5.14) Es(L) = d(8s5L)/dt — O5L = (8305 L)&’ + (9g05L)i? — 05L =0
From (5.5) we obtain
(5.15) Yasp(L2) 25" = L(8yd5L)2’ — LOsL + (89 L)(5 L)z’ .
From (5.7) we have
(5.16) 905(L*)&" = (9pL)(9sL)3’" + L(Da0sL)i’.
If we add (5.15) and (5.16), and further use (5.14), we get
(5.17) 905(L?) 4+ Yasp(L*)2%3° = LEs(L) + L(dsL)d1n L/dt.
Now we can state

THEOREM 5.3. The geodesic line of Definition 4.1 coincides with the geodesic
line of Definition 5.2 iff

(5.18) (BsL)dIn L/dt =0
Proof . Using (5.10), (5.17) has the form
(5.19) Es(L?) = LEs(L) + L(dsL)dIn L/dt

from which the theorem follows.

When the normal parameter is used, i. e. when L(z,dz/ds) = 1, then (5.18)
is satisfied and the geodesic lines of Definition 4.1 and 5.2 coincide.

If we introduce the so called Randers change L — L = L + (8 we have the
following

THEOREM 5.4. In a D recurrent Finsler space the Randers change of the
metric function is projective iff

(5.20) E5(8) = (89058)i° + (99058)3° — 858 =0
where the geodesic line is defined by Definition 5.2.
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Proof. From (5.2) and (5.14) we obtain

(5.21) E;(L) = Es5(L) + Es(B)
from which the theorem follows.

A special case of Theorem 5.4. is the result of Hashiguchi and Ishijyo [5]
where 3 = bs(z) - 2. In this case (5.20) reduces to (9pbs — Os5bg)x? = 0.

THEOREM 5.5. Under the change L — L = L + 3 of the metric function in
a D recurrent Finsler space we have

(5.22) 2E;(LB) = BE;(L) + LEs(B) + (05 L)dB/dt + (058)dL/dt

Proof. From (5.19), (5.1), (5.21) and (5.11) we get
Es(T°) =619 TE(T) + (95L)dL/dt =51

(L + B)Es(L + B) + 0s(L + B)d(L + B)/dt =21

LEs(L) + BBs(L) + LEs(8) + BB5(8)+

(BsL)dl/dt + (D5 L)dB/dt + (858)dL/dt + (85 8)dB/dt =5

EJ(L2) + Eé(ﬁz) + BEs(L) + LEs(B) + (35L)dﬂ/dt + (35ﬁ)dL/dt _(5.11)
ES(L") — 2E5(LB) + BEs(L) + LEs(B) + (85 L)dp/dt + (9s8)dL/dt

from which (5.22) follows.

From (5.22) it follows that under the change of the metric function L — L =
L + (3 a curve is the geodesic line (by Definition 4.1) of the space F,,(M,+/Lj) iff

BE;s(L) + LEs(8) + (9sL)dB/dt + (9sB)dl/dt = 0

If (9sL)dB/dt + (958)dL/dt = 0 and a curve is the geodesic line in the sense
of Definition 5.2. of the space F,,(M.L) and F,,(Mp) (i.e. Es(L) =0 and E;(8) =
0) then it is also the geodesic line in the sense of Definition 4.1. in the space

Fu(M, VIB) (ie. ES(/IB) = 0).
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