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GEODESIC LINES IN D RECURRENT FINSLER SPACES

Irena �Comi�c

Abstract. A D recurrent Finsler space is de�ned as a Finsler space in which the absolute
di�erential of the metric tensor is recurrent. For some special cases of the parameter and the vector
of recurrency some interesting special cases are obtained. An example is the non-recurrent Finsler
space with Cartain connection coeÆcients. After introducing the so called Y connection [5], it is
examined in which special case of a D recurrent Finsler space the introduced Y connection will
give a recurrent Riemannian space. Finally di�erent kinds of de�nition of a geodesic line are given.
The relation between them and the projective change of the metric function are examined. It is
prooved that in a D recurrent Finsler space the geodesic line does not depend on the connection
coeÆcients, but only on the metric function of the space.

1. D recurrent Finsler space. If in a Finsler space Fn(M;L) the metric
function L(x; _x) is as usually homogeneous of degree one in _x, and it the metric
tensor is de�ned by

(1.1) g��(x; _x) = _@� _@�F (x; _x); f(x; _x) = 2�1L2(x; _x):

then the following de�nition can be given:

De�nition 1.1. Finsler Fn is D recurrent if there are vector �elds � =
�(x; _x) and � = �(x; _x) homogeneous of degree zero in _x, such that

(1.2) Dg�� = (�dx
 + �Dl)g�� = K(x; _x; dx;Dl)g�� ;

where D corresponds to the change of the line element (x; _x) to (x + dx; _x + d _x)
and

(1.3) l� = L�1 _x�:

From

(1.4) Dg�� = dg�� � (��Æ� + ��Æ�g�Æ)dx
 � (AÆ

�g�� +AÆ
�g�Æ)Dl

and

(1.5) Dl = dl + ��o�dx
� +A

o�Dl�;
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where \o" means the contradiction by l, we obtain

(1.6) Dg�� = g��jdx
 + g�� j Dl

where

g��j = @g�� � L _@Æg���
�Æ
o � ���� � ����(1.7)

g��j = L@Æg��(Æ
Æ
 �AÆ

o)�A�� �A��(1.8)

From the relation

(1.9) g��(x; _x)l
�l� = 1

using (1.2) we have

(1.10) �dx
 + (� + 2l)Dl = 0

This is the crucial relation which shows that dx and Dl are not linearly indepen-
dent. For � = 0 and � = 0, i. e. when Dg�� = 0, (1.10) reduces to the well-known
relation

(1.11) l�Dl� = 0

in the non-recurrent Finsler space

If we multiply (1.10) with ��� = ���(x; _x) which is homogeneous od degree
zero in _x; ��� = ���, and add this to the right-hand side of (1.2) and substitute
(1.6) we obtain

(1.12) g��jdx
 + g�� j Dl = �(g�� + ���dx

 + [�g�� + (� + 2l)��� ]Dl :

From (1.12) we get

g��j = �(g�� + ���)(1.13)

g��j = �g�� + (� + 2l)��� :(1.14)

In aD recurrent Finsler space we shall suppose that the connection coeÆcients
�� and A are not symmetric, i. e. there exist (h)h and (v)v torsion tensors di�erent
from zero. Let us introduce the notation

�
��� = ���� � �� 2

�
��� =

�
��� �

�
��� +

�
���(1.15)

�
A�
� = A�

� �A�
� 2

�
A�� =

�
A�� �

�
A�� +

�
A��(1.16)

From (1.13) and (1.15) we obtain
(1.17)

(a) ���� =0 ��� � 2�1[�(g�� + ���) + ��(g� + ��)� ��(g� + ��)] +
�

��� ;
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where

(b) 0��� = �� � 2�1L( _@Æg���
�Æ
o +

_@Æg��
�Æ
o� � _@Æg��

�Æ
o�)

(�� is the Christo�el symbol)

(c) ��o� = o� � 2�1 _@Æg��
�Æ
oo � 2�1[�(l� + �o�)+

+ �o(g� + ��)� ��(l + �o)] +
�

�o�

(d) ��o�o = o�o � 2�1[2�o(l� + �o�)� ��(1 + �oo)] +
�

�o�o;

(a) A�� =0 A�� � 2�1[�g�� + (� + 2l)���+

(1.18)

+ ��g� + (�� + 2l�)�� � ��g� � (�� + 2l�)�� ] +
�
A�� ;

where

(b) 0A�� = 2�1L[ _@Æg��(Æ
Æ
 �AÆ

o) +
_@Æg�(Æ

Æ
� �AÆ

o�)� _@Æg�(Æ
Æ
� �AÆ

o�)]

(c) Ao� = 2�1L _@Æg�(�AÆ
oo)� 2�1[�l� + (� + 2l)�o�+

+ �og� + (�o + 2)�� � ��l � (�� + 2l�)�o ] +
�

Ao�

(d) Ao�o = 2�1f2[�ol� + (�o + 2)�o� ]� [�� + (�� + 2l�)�oo]g+
�

Ao�o:

From (1.15) and (1.16) it is clear that

�
��� �

�
��� =

�
��� ;

�
A�� �

�
A�� =

�
A�� :

For generalized Wagner connection coeÆcients we have

(1.19)
�

��� = Æ��p � Æ� p�;
�

A�
� = Æ��q � Æ� q�;

where p = p(x; _x) and q = q(x; _x) are convariant vector �elds homogeneous of
degree zero in _x. From (1.19) it follows that

(1.20)
�
��� = g��p � g�p�;

�
A�� = g��q � g�q�;

From (1.15), (1.16) and (1.20) we obtain

(a)
�
��� =

�
��� = g�p� � g�p�(1.21)

(b)
�
�o� = lp� � pog� ;

(c)
�

�o�o = p� � pol� ;

(a)
�

A�� =
�

A�� = g�q� � g�q�(1.22)

(b)
�

Ao� = lq� � qog� ;

(c)
�

Ao�o = q� � qol�:
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De�nition 1.2. A D recurrent Finsler space in which the (h)h and (v)v torsion

tensors
�

� and
�

A are determined by (1.21) and (1.22) will be called D(W ) space.

In this space the connection coeÆcients are determined by (1.17), (1.18),
(1.21) and (1.22).

Theorem 1.1. In a D recurent Finsler space the metric tensor is j and j
recurrent if

(1.23) ���(x _x) = k(x; _x)g��(x; _x);

where k(x; _x) is a scalar function homogeneous of degree zero in _x. Then we have

g��j = (1 + k)�g��(1.24)

g��j = [(1 + k)� + 2kl]g�� ;(1.25)

i. e. the j and j vectors of recurrency are (1+k)� and (1+k)�+2kl respectively.

Proof . It iz evident that (1.2), (1.13)^ (1.14). Substituiting (1.23) into
(1.13) and (1.14) we obtain (1.24) and (1.25) from which the statement follows.

De�nition 1.3. A D recurrent Finsler space in which (1.23) is valid i. e. in
which (1.24) and (1.25) hold will be called a D(k) recurrent Finsler space.

Theorem 1.2. Every D(k) recurrent Finsler space in D recurrent.

Proof . Substituing (1.24) and (1.25) into (1.6) and using (1.10) we obtain
the statement.

In a D(k) recurrent Finsler space the connectin coeÆcients have the form

(a) ���� =0��� + 2�1(1 + k)(�g�� + ��g� � ��g�) +
�
���

(1.26)

(b) ��o� =o� + 2�1 _@Æg��
�Æ
oo � 2�1(1 + k)(� l� + �og� � ��l) +

�
�o�

(c) ��o�o =o�o � 2�1(1 + k)(2�ol� � ��) +
�
�o�o

(a) A�
�� =0A�� + 2�1(1 + k)(�g�� + ��g� � ��g�)�

(1.27)

�k(lg�� + l�g� � l�g�) +
�
A��

(b) Ao� =�2�1L _@Æg�A
Æ
oo�2�1(1+k)(�g��+��l�+�og����l)�kg�+

�
Ao�

(c) Ao�o =� 2�1(1 + k)(2�ol� � ��)� kl� +
�
Ao�o

De�nition 1.4. A D(k) recurrent Finsler space in which the (h)h and (v)v torsion
tensors are given by (1.21) and (1.22) or a D(W ) space in which (1.23) holds, will
be called a D(k)(W ) space.
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The connection coeÆcients in a D(k)(W ) space are determined by (1.26),
(1.27), (1.21) and (1.22).

Theorem 1.3. In D(k) recurrent Finsler space for k = �1 we have

(a) g��j =0 (b) g��j = �2lg��;(1.28)

Dg�� =� 2lg��Dl = (�dx
 + �Dl)g�� :(1.29)

Proof . (1.28) follows from (1.24), (1.25) and k = �1. (1.29) follows from
(1.28) and (1.10).

In a D(k = �1) recurrent Finsler space the connection coeÆcients (1.26) and
(1.27) reduce to the form

(a) ���� =0 ��� +
�

���(1.30)

(b) ��o� = o� � 2�1 _@Æg��
�Æ
oo +

�
�o� ;

(c) ��o�o = o�o +
�
�o�o

(a) A�� =0 A�� + l�g� � l�g�) +
�
��� ;(1.31)

(b) Ao� = �2�1L _@Æg�A
�Æ
oo + g� +

�
Ao� ;

(c) Ao�o = l� +
�
�o�o:

De�nition 1.5. A space D(k = �1) in which the generalized Wagner torsion
tensors determined by (1.24) and (1.25) are used or a D(k)(W ) space in which
k = �1 will be called a D(k = �1)(W ) space.

The connection coeÆcients in a D(k = �1)(W ) space are determined by
(1.30), (1.31), (1.21) and (1.22).

De�nition 1.6 A D(k = �1) recurrent Finsler space in which we prescribe the
torsion free connection coeÆcients, i. e. which

(1.32)
�
��� = 0;

�
A�� = 0

hold, will be called a D(k = �1)(TF ) space
Theorem 1.4. In a D(k = �1)(TF ) space we have

���� =0 ��� ; ��o� = o� � 2�1 _@Æg��
�Æ
oo; ��o�o = o�o;(1.33)

A�� =0 A�� + lg�� + l�g� � l�g� ; Ao� = g� ) A�
o = Æ� ; Ao�o = l�:

(1.34)

Proof . The proof follows from (1.30) and (1.31) if in these formulae we

substituite from (1.32)
�
��� = 0 and

�
A�� = 0. We can see that ���� is the
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Cartain connection coeÆcient which follows from (1.28 a) and (1.33), but A�� 6=
2�1L _@g�� because of (1.28 b).

In a D(k = �1)(TF ) space DlÆ cannot be determined by (1.5). In this space
(1.34) gives that (1.5) reduces to dlÆ+��Æo�dx

� = 0 from which d _xÆ can be expressed

and DlÆ should satisfy (1.10).

2. Metrical spaces. De�nition 2.1. A Finsler space will be called D,
j and j metrical if Dg�� = 0; g��j = 0 and g��j = 0 respectively. (See (1.7),
(1.8)).

Theorem 2.1. If a Finsler space is D metrical, i. e.

(2.1) Dg�� = 0

then from (2.1) follows

(2.2) g��j = �(g�� + ���); g��j = �(g�� + ���);

where ��� = ���(x; _x) is homogeneous of degree zero in _x and ��� = ���.

Proof . From Dg�� = 0 and (1.9) it follows (1.11) i. e. l�D!� = 0; so (1.10)
reduces to �dx

 + �Dl = 0. From

Dg�� = g��jdx
 + g��jDl = �(g�� + ���)dx

 + �(g�� + ���Dl

(2.2) follows.

Theorem 2.2. In a D(k) recurrent Finsler space the metric tensor is D,
j and j metrical, i. e.

(2.3) Dg�� = 0; g��j = 0; g�� j= 0;

when

(2.4) (� = 0) ^ (� = �2k(1 + k)�1l):

Proof . The proof is obvious from (1.24), (1.25) and (1.6).

Theorem 2.3. A D(k)(TF ) space in which (2.4) holds is a non-recurrent
Finsler space supplied with Cartan connection coeÆcients.

Proof . The proof follows from

(a) � = �2k(1 + k)�1l ) �o = �2k(1 + k)�1(2.5)

(b) � = 0 ) �o = 0

(c) ��� = kg�� ) �o� = kl� ) �oo = k:
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Substituing (2.5) into (1.17) and (1.18) after some calculation we get

(a) ��o�o = o�o;

(2.6)

(b) ��o� = o� � 2�1 _@Æg��
�Æ
oo

(c) ���� = �� � 2�1L( _@Æg���
�Æ
o +

_@Æg��
�Æ
o� � _@Æg��

�Æ
o�);

(a) Ao�o = 0;

(2.7)

(b) Ao� = 0

(c) A�� = 2�1L( _@g�� + _@�g� � _@�g�) = 2�1 _@g�� :

From (2.7. a) it follows that in this case (1.5) reduces to the form

(2.8) DlÆ = dlÆ + ��Æo�du
�;

so the deection tensor is equal to zero.

Theorem 2.4. A D(k)(TF ) space reduces to a non-recurrent Finsler space
supplied with Cartan connection coeÆcients if

(2.9) k = 0; � = 0; � = 0:

In this space (2.6){(2.8) are valid.

Proof . The proof is obvious from (1.26), (1.27) and (2.9).

3. Y connection in D recurrent Finsler spaces. The name of these
connection coeÆcients is taken from [5]. Let the �eld of the tangent vector (1.3)

(3.1) _x� = Y �(x)) l� = L�1(x; Y (x))Y �(x)

in the domain of manifold M of a D recurrent Finsler space Fn(M;L) be de�ned.
Then from (3.1)

(3.2) d _x� = @�Y
�dx�

and (1.5) has the form

[Æ� � L�1(x; Y (x))A�
�(x; Y (x))Y �(x)]Dl =(3.3)

=d[L�1(x; Y (x))Y �(x)] + L�1(x; Y (x))����(x; Y (x))Y
�(x)dx :

If we denote by IÆ� the inverse matrix of

(3.4) J �
 = Æ� �A�

o det
h
J �


i
6= 0

from (3.2),(3.3) and (3.4) we obtain

(3.5) DlÆ = IÆ� Y
�
jdx

 ;
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where

(3.6) Y �
j : Y �(@L

�1 + _@�L
�1@Y

�) + L�1@Y
� + L�1����Y

�:

In this case we have a Riemannian metric tensor

(3.7) g��(x) = g��(x; Y (x)):

If we denote by D the absolute di�erential which corresponds to the transla-
tion from (x) to (x+ dx) from (1.4), (3.5), (3.6) and (3.7) we have

(3.8) Dg�� = Dg�� = dg�� � (���� + ����)dx
 � (A��Æ +A��Æ)I

Æ
� Y

�
jdx

 ;

where dg�� = (@g�� + _@Æg��@Y
Æ)dx = dg�� = @g��dx

 . In (3.8)

����(x; _x) = ����(x; Y (x)); A��(x; _x) = A��(x; Y (x));

where �� and A are given by (1.17) and (1.18). Formula (3.8) determines in a D
recurrent Finsler space a Riemannian Y connection coeÆcient F�� , where

(3.9) F�� = ���� �A��ÆI
Æ
� Y

�
j :

With connection coeÆcients so de�ned, from (3.8) we have

Dg�� = dg�� � (F�� + F��)dx
 ;

where F�� = F Æ
�gÆ� .

De�nition 3.1. A D recurrent Finsler space supplied with Y Riemannian
connection coeÆcients (3.9) will be called a D(Y ) space.

Theorem 3.1. If in a D(Y ) space we denote by > the convariant di�erential

with respect to the Y connection F of a Riemannian tensor T
�

� (x) = T�
� (x; Y (x))

and with j and j the h and v convariant di�erentials with respect to Finslerian
connection coeÆcients ��(x; Y (x)) and A(x; Y (x)), we have the relation

(3.10) T
�

�(x)>dx
 = T�

� (x; Y (x))jdx
 + T�

� (x; Y (x)) j Dl

where

(a) T
�

�> = @T
�

� + F�
ÆT

Æ
� � F Æ

�T
�

Æ(3.11)

(b) T�
�j = @T

�
� L _@ÆT

�
� �

�Æ
o + ���Æ T

�Æ
� � ��Æ�T

�
Æ

(c) T�
� j= L _@ÆT

�
� (Æ

Æ
 �AÆ

o) +A�
ÆT

Æ
� �AÆ

�T
�
Æ :

Proof . Substituting (3.11), (3.9) and (3.5) into (3.10) we obtain identity.

Theorem 3.2. In a D(Y ) space we have

Dg�� = g��>dx
 = (� + �ÆI

Æ
� Y

�
j)dx

g��+(3.12)

+
�
� + (�Æ + 2L�1YÆ)I

Æ
� Y

�
j

�
dx��� ;
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where g��> = @g�� � F�� � F�� .

Proof . In a D(Y ) space (1.1), (3.10) and (3.5) we have

Dg�� =g��>dx
 = g��jdx

 + g�� j Dl =(3.13)

=(�dx
 + �Dl)g�� = (� + �ÆI

Æ
� Y

�
j)dx

g��:

Relation (1.10) in a D(Y ) space has the form

(3.14)
�
� + (�Æ + 2L�1YÆ)I

Æ
� Y

�
j

�
dx = 0

If we multiply (3.14) with ���(��� = ���(x; � _x) = ���(x; _x)) and add the expression
so obtained to the right-hand side of (3.13) we get (3.12).

De�nition 3.2. A D(k) recurrent Finsler space in which _x� = Y �(x) i.e. a
D(Y ) space in which ��� = kg�� will be called a D(k)(Y ) space.

In D(k)(Y ) space the Riemannian connection coeÆcients F are determined
by (3.9) in which �� and A are given by (1.26) and (1.27) respectively.

Theorem 3.3. In a D(k)(Y ) space the Riemannian metric g is > recurrent
with respect to the connection coeÆcients F in this space. The vector of recurrency
is

(1 + k)[� + �ÆI
Æ
� Y

�
j ] + 2kL�1YÆI

Æ
� Y

�
j :

Proof . In (3.12) we substitute ��� = kg�� we have

(3.15) g��> = [(1 + k)(� + �ÆI
Æ
� Y

�
j) + 2kL�1YÆI

Æ
� Y

�
j ]g��

which proves the theorem.

De�nition 3.3. A D(k)(Y ) space in which L(x; Y (x)) = 1 will be called a
D(Y0) space.

In a D(Y0) space

L(x; Y (x)) = 1 ) l� = Y �(x)(3.16)

F�� = ���� �A��ÆI
Æ
� Y

�
: ;(3.17)

where

(3.18) Y �
; : @Y

� + �����Y
�

and �� and A are determined by (1.17) and (1.18).

Theorem 3.4. In a D(Y0) space

(3.19) Dg�� = g��>dx
 = (� + �ÆI

Æ
� Y

�
;)g�� + [� + (�Æ + 2YÆ)I

Æ
� Y

�
; ]��� :

Proof . In D(Y0) from (3.16) it follows that Y �
j = Y �

; . From this fact and

(3.12) we obtain (3.19) . Theorem 3.4. is the specal case of theorem 3.2., when
L(x; Y (x)) = 1.
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De�nition 3.4. A D(k) recurrent Finsler space in which _x� = Y �(x);
L(x; Y (x)) = 1 will be called a D(k)(Y0) space.

In a D(k)(Y0) space the connection coeÆcients F are given by (3.17) in which
���� and A�� are determined by (1.26) and (1.27) respecitively.

Theorem 3.5. In a D(k)(Y0) space the Riemannian metric g is > recurrent
with respect to the connection coeÆcient F in this space. The vector of recurrency
is given by

(3.20) g��> = [(1 + k)(� + �ÆI
Æ
� Y

�
;) + 2kL�1YÆI

Æ
� Y

�
; ]g�� :

Proof . As in D(k)(Y ) space the proof follows directly from (3.15).

Theorem 3.6. In a D(k)(Y ) and in a D(k)(Y0) space each of the conditions
(3.21 a) and (3.21b)

(a) � = 0 ^ � = 0 ^ k = 0(3.21)

(b) � = 0 ^ � = �2k(1 + k)�1l

leads to g��> = 0, where > is the convariant di�erential with respect to the con-
nection coeÆcients (3.17); �� and A satisfy (1.26) and (1.27) respectively.

Proof . The proof follows from (3.15) and (3.20) and the condition of Theorem
3.6.

De�nition. 3.5. A D(k)(TF ) space in which _x� = Y �(x)i. e. a D(k)(Y ) space

in which the torsions are zero (
�
��� = 0;

�
A�� = 0) will b called a D(k)(TF )(Y )

space.

A D(k)(TF ) space in which _x� = T�(X) and L(x); Y (x) = 1, i. e. aD(k)(Y0)
space in which the torsion tensors are zero will be called a D(k)(TF )(Y0) space.

Theorem 3.7. In a D(k)(TF )(Y ) and a D(k)(TF )(Y0) space in which one
of the conditions (3.21 a) or (3,21 b) hold is > metrical, i. e., g��> = 0 with
respect to the connections F�� which are determined by (3.9), (2.6), (2.7) and in
D(k)(TF )(Y ) we have Y �

j determined by (3.6) whereas in D(k)(TF )(Y0) deter-

mined by (3.18).

This theorem is a special case of Theorem 3.6. when the torsion tensors are
zero.

Proof . In Thorem 2.3. and 2.4. we proved that under conditions (3.21 a)
and (3.21b) in a D(k)(TF ) space the condition coeÆcients �� and A have the form
given by (2.6) and (2.7), i. e., they are Cartain connection coeÆcients.

Note. The Y connection examined in [5] is a special case of the connection
in a D(k)(TF )(Y0) space when (3.21 a) is valid.
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4. Geodesic lines in D recurrent Finsler spaces. De�nition 4.1. The
geodesic line of a D recurrent Finsler space is the solution of the variation problem

Æ

Z P2

P1

F (x; _x)dt = 0:

From (1.1) we obtain

(4.1) F (x; _x) = 2�1g�� _x
� _x� = 2�1L2(x; _x):

The Euler Lagrange equation for this problem is

(a)
d

dt
( _@ÆF )� @ÆF = 0,

(4.2)

(b) (@� _@ÆF ) _x
� + ( _@� _@ÆF )�x

� � @ÆF = 0,

(c) L

�
d

dt
ln L

�
_@ÆL+ L[( _@Æ@�L) _x

� + ( _@Æ _@�L)�x
� � @ÆL] = 0,

(d) EÆ(L
2) : L

�
d

dt
ln L

�
_@ÆL+ L

�
d

dt
( _@ÆL)� @ÆL

�
= 0:

From (4.1) it follows that:

_@ÆF = gÆ� _x
� )

(@� _@ÆF ) _x
� = @�gÆ� _x

� _x�(4.3)

( _@� _@ÆF )�x
� = gÆ��x

�(4.4)

@ÆF = 2�1@Æg�� _x
� _x� :(4.5)

From (1.7) and (1.13) it follows that

(4.6) @�gÆ� = L( _@�gÆ�)�
��
o� + ��Æ�� + ���Æ� + ��(gÆ� + ���):

Substituting (4.6) into (4.7) and (4.5) and then (4.3), (4.4), (4.5) into (4.2 b) we
obtain that the Euler Lagrange equation in a D recurrent Finsler space has the
form

(4.7) EÆ(L
2) = gÆ��x

�+L2[��Æoo+��oÆo+��ooÆ+�o(lÆ+�Æo)�2�1�Æ�2�1�oo�Æ ] = 0

From (1.17) we obtain

(a) ��ooÆ = ooÆ � 2�1�Æ � 2�1�Æ�oo +
�
�ooÆ(4.8)

(b) ��Æoo = Æoo � 2�1�Æ � 2�1�Æ�oo +
�
�Æoo

(c) ��oÆo = oÆo � �o(lÆ + �oÆ) + 2�1�Æ�oo + 2�1�Æ +
�
�oÆo:

Substituting (4.8) into (4.7) we obtain that the equation of the geodesic line is

(4.9) EÆ(L
2) = gÆ��x

� + L2(
�

�Æoo �
�

�ooÆ +
�

�oÆo + oÆo) = 0



164 �Comi�c

Using (1.15) we have

(4.10)
�
�Æoo �

�
�ooÆ +

�
�oÆo = 2�1(3

�
��oÆo �

�
�ooÆ �

�
�Æoo = 0

Now we can state the following:

Theorem 4.1. The geodesic line (de�ned by De�nition 4.1) in a D recurent
Finsler space is given by the solution of the di�erential equation

(4.11) EÆ(L
2) = gÆ�(L

2)�x� + 2GÆ(L
2) = 0 (2GÆ(L

2) = �Æ�(L
2) _x� _x�)

i. e. the equation of the geodesic line does not depend on connection coeÆcients of
the space, only on the metric function L(x; _x).

Proof . Substituting (4.10) into (4.9) we obtain (4.11).

Equation (4.11) may be written in the form

EÆ(L
2) = gÆ�(L

2)
d2x�

dt2
+ �Æ�(L

2)
dx�

dt

dx�

dt
= 0

5. Projective change of metric in a D recurrent Finsler space. De�-
nition 5.1. If the geodesic line of the Finsler space Fn(M;L) is the geodesic line of
the Finsler space Fn(M;L) and the inverse is also true, then the change L! L of
the metric function is called projective.

We shall examine the change of the metric function of the form

(5.1) L(x; _x) = L(x; _x) + �(x; _x);

where �(x; _x) is homogeneous of degree one in _x. From (5.1) we obtain

(5.2) L
2
= L2 + 2L� + �2

and according to (4.2) we calculate

(a) _@ÆL
2
= _@ÆL

2 + 2� _@ÆL+ 2L _@Æ� + _@Æ�
2(5.3)

(b) (@� _@ÆL
2
) _x� = (@� _@ÆL

2) _x� + 2(@� _@ÆL) _x
�+

2( _@ÆL)(@��) _x
� + 2(@�L)( _@Æ�) _x

� + 2(@� _@Æ�) _x
� + (@� _@Æ�

2) _x�

(c) ( _@� _@ÆL
2
)�x� = ( _@� _@ÆL

2)�x� + 2( _@� _@ÆL)�x
�� + 2( _@ÆL)( _@��)�x

�+

2( _@�L)( _@Æ�)�x
� + 2L(@� _@Æ�)�x

� + ( _@� _@Æ�
2)�x�

(d) � @ÆL
2 = �@ÆL2 � 2�@ÆL� 2L@Æ� � @Æ�

2:

Using the notation

(5.4) EÆ(G) = 2�1[(@� _@ÆG) _x
� + ( _@� _@ÆG)�x

� � @ÆG]
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where G = G(x; _x) is any function homogeneous of degree two in _x, if we add
(5.3.b), (5.3.c) and (5.3.d) previously multiplied by 2�1, after some calculations we
obtain

EÆ(L
2
) = (1 + �L�1)EÆ(L

2) + (1 + L��1)EÆ(�
2)+

+ L�( _@Æ lnL� _@Æ ln�)(d ln �=dt� d ln l=dt):

On the other hand, it is known that

�Æ�(L
2) _x� _x� = 2�1(@�gÆ� + @�g�Æ � @Æg��) _x

� _x� =

= 2�1(@� _@Æ _@�L
2 + @� _@� _@ÆL

2 � @Æ _@� _@�L
2) _x� _x� :

So we have

(5.5) �Æ�(L
2) _x� _x� = 2�1[(@� _@ÆL

2) _x� � @ÆL
2]:

If we introduce the notations

�Æ�(G) _x
� _x� = 2�1[@�( _@ÆG) _x

� � @ÆG](5.6)

g�Æ(G) = 2�1 _@� _@ÆG(5.7)

then from (5.2) we obtain

g�Æ(L
2
) = g�Æ(L

2) + 2g�Æ(L�) + g�Æ(�
2)(5.8)

��Æ(L
2
) _x� _x� = [�Æ�(L

2) + 2�Æ�(L�) + �Æ�(�
2)] _x� _x� :(5.9)

Using (5.6), (5.7) and (5.4) we have

(5.10) EÆ(G) = g�Æ(G)�x
� + �Æ�(G) _x

� _x� :

Theorem 5.1. If the geodesic line in the Finsler space Fn(M;L) is de�ned by
De�nition 4.1. then the change of the metric function L! L = L+ � is projective
when EÆ(�

2) = �2EÆ(L�).

Proof . From (5.8) | (5.10) we obtain

(5.11) EÆ(L
2
) = EÆ(L

2) + 2EÆ(L�) +EÆ(�
2)

from which the theorem follows.

Theorem 5.2. By the change of the metric function L! L;L =
p
L2 + �2

a curve is a geodesic line (in the sence of De�nition 4.1) of the Finsler space

Fn(M;
p
L2 + �2) if it is at the same time the geodesic line in Fn(M;L) and

Fn(M;�).

Proof . From (5.6), (5.7) and L
2
= L2 + �2 we get

�Æ�(L
2
) _x� _x� = [�Æ�(L

2) + �Æ�(�
2)] _x� _x�(5.12)

g�Æ(L
2
) = g�Æ(L

2) + g�Æ(�
2)(5.13)
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From (5.12), (5.13) and (5.10) we obtain

EÆ(L
2
) = EÆ(L

2) +EÆ(�
2)

from which the theorem follows.

It is more usual to de�ne the geodesic line by

De�nition 5.2. The geodesic line in a D recurrent Finsler space is the solution
of the variation problem

Æ

Z P2

P1

L(x; _x)dt = 0

The Euler Lagrange equation for this problem is

(5.14) EÆ(L) = d( _@ÆL)=dt� @ÆL = (@� _@ÆL) _x
� + ( _@� _@ÆL)�x

� � @ÆL = 0

From (5.5) we obtain

(5.15) �Æ�(L
2) _x� _x� = L(@� _@ÆL) _x

� � L@ÆL+ (@�L)( _@ÆL)x
�:

From (5.7) we have

(5.16) g�Æ(L
2)�x� = ( _@�L)( _@ÆL)�x

� + L( _@� _@�L)�x
�:

If we add (5.15) and (5.16), and further use (5.14), we get

(5.17) g�Æ(L
2) + �Æ�(L

2) _x� _x� = LEÆ(L) + L( _@ÆL)d lnL=dt:

Now we can state

Theorem 5.3. The geodesic line of De�nition 4.1 coincides with the geodesic
line of De�nition 5.2 i�

(5.18) ( _@ÆL)d lnL=dt = 0

Proof . Using (5.10), (5.17) has the form

(5.19) EÆ(L
2) = LEÆ(L) + L( _@ÆL)d lnL=dt

from which the theorem follows.

When the normal parameter is used, i. e. when L(x; dx=ds) = 1, then (5.18)
is satis�ed and the geodesic lines of De�nition 4.1 and 5.2 coincide.

If we introduce the so called Randers change L ! L = L + � we have the
following

Theorem 5.4. In a D recurrent Finsler space the Randers change of the
metric function is projective i�

(5.20) EÆ(�) = (@� _@Æ�) _x
� + ( _@� _@Æ�)�x

� � @Æ� = 0

where the geodesic line is de�ned by De�nition 5.2.
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Proof . From (5.2) and (5.14) we obtain

(5.21) EÆ(L) = EÆ(L) +EÆ(�)

from which the theorem follows.

A special case of Theorem 5.4. is the result of Hashiguchi and Ishijyo [5]
where � = bÆ(x) � _xÆ . In this case (5.20) reduces to (@�bÆ � @Æb�) _x

� = 0.

Theorem 5.5. Under the change L ! L = L+ � of the metric function in
a D recurrent Finsler space we have

(5.22) 2EÆ(L�) = �EÆ(L) + LEÆ(�) + ( _@ÆL)d�=dt+ ( _@Æ�)dL=dt

Proof . From (5.19), (5.1), (5.21) and (5.11) we get

EÆ(L
2
) =(5:19) LEÆ(L) + ( _@ÆL)dL=dt =

(5:1)

(L+ �)EÆ(L+ �) + _@Æ(L+ �)d(L+ �)=dt =(5:21)

LEÆ(L) + �EÆ(L) + LEÆ(�) + �EÆ(�)+

( _@ÆL)dl=dt+ ( _@ÆL)d�=dt+ ( _@Æ�)dL=dt+ ( _@Æ�)d�=dt =
(5:9)

EÆ(L
2) + EÆ(�

2) + �EÆ(L) + LEÆ(�) + ( _@ÆL)d�=dt+ ( _@Æ�)dL=dt =
(5:11)

EÆ(L
2
)� 2EÆ(L�) + �EÆ(L) + LEÆ(�) + ( _@ÆL)d�=dt+ ( _@Æ�)dL=dt

from which (5.22) follows.

From (5.22) it follows that under the change of the metric function L! L =
L+ � a curve is the geodesic line (by De�nition 4.1) of the space Fn(M;

p
L�) i�

�EÆ(L) + LEÆ(�) + ( _@ÆL)d�=dt+ ( _@Æ�)dl=dt = 0

If ( _@ÆL)d�=dt+ ( _@Æ�)dL=dt = 0 and a curve is the geodesic line in the sense
of De�nition 5.2. of the space Fn(M:L) and Fn(M�) (i.e. EÆ(L) = 0 and EÆ(�) =
0) then it is also the geodesic line in the sense of De�nition 4.1. in the space
Fn(M;

p
L�) (i.e. EÆ(

p
L�) = 0).
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