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NECESSARY CONDITIONS IN A PROBLEM OF CALCULUS

OF VARIATIONS

Vladimir Jankovi�c

Abstract. Problem of the calculus of variations with Bolza functionals is considered.
Constraints are of both types: equalities and inequalities. The Lagrange multipler rule type
theorem, which gives necessary conditions for weak optimality, is proved. When applied to the
simplest problem of the calculus of variations , this theorem gives that every smooth minimizing
function must satisfy the well known Euler equation and also the di�erential equation

(d=dt) (L
_x _x� L) = �Lt:

It should be emphasized that both di�erential equations are obtained under the only condition
that integrand L is continuously di�erentiable.

1. Introduction. We shall start this section with the precise formulation
of the general Bolza problem of the calculus of variations, which is the object of
our present investigation. After that we shall state the theorem giving necessary
conditions for weak optimality.

Let V be an open set from R � Rn � Rr and let W be an open set from
R � Rn � R � Rn. Let functions f(t; x; u) : V ! Rn; L(t; x; u) : V ! Rm+1 and
l(t0; x0; t1; x1) : W ! Rm+1 be continuous.

The set of processes P is the set of quadruples (x(�)); u(�); t0; t1) of two func-
tions and two real numbers, satisfying the following conditions:

1. x(�) : [t0; t1]! Rn is a smooth function,

2. u(�) : [t0; t1]! Rr is a continuous function,

3. (t; x(t); u(t)) 2 V for all t 2 [t0; t1],

4. (t0; x(t0); t1; x(t1)) 2 W .

We shall deal with Bolza functionals Bi : P ! R; i = 0; 1; . . . ;m, de�ned by

Bi(x(�); u(�); t0; t1) =

Z t1

t0

Li(t; x(t); _x(t))dt+ li(t0; x(t0); t1; x(t1))
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where Li and li are components of functions L and l.

General Bolza problem that we shall investigate here is the following extremal
problem de�ned on the set P :

B0(x(�); u(�); t0; t1)! inf;

Bi(x(�); u(�); t0; t1) � 0; i = 1; . . . ; k;

Bi(x(�); u(�); t0; t1) = 0; i = k + 1; . . . ;m;

x(t) = f(t; x(t); u(t)); t 2 [t0; t1]:

The admissible process x̂(�); û(�); t̂0; t̂1) is weakly optimal if " > 0 exists such
that the inequality.

B0(x(�); u(�); t0; t1) � B0(x̂(�); û(�); t̂0; t̂1)

holds for each admissible process (x(�); u(�); t0; t1) satisfying the conditions:

j t0 � t̂0 j< "; j t1 � t̂1 j< ";

kx(t)� x̂(t)k < "; ku(t)� û(t)k < "

for all t 2 [t̂0; t̂1] \ [t0; t1].

Let us de�ne the functionsH : V �Rn��Rm+1� ! R and h : W�Rm+1� ! R

by
H(t; x; u; p; �) = pf(t; x; u)� �L(t; x; u)

h(t0; x0; t1; x1; �) = �l(t0; x0; t1; x1):

The function H is usually called Hamiltonian function.

Theorem. Let the functions f; L and l be continuously di�erentiable. If the

process (x̂(�); û(�); t̂0; t̂1) is weakly optimal, then there exists �̂ = (�̂0; . . . ; �̂m) 2
Rm+1�nf0g and a smooth function p̂(�) : [t̂0 t̂1] ! Rn�, such that the following

conditions hold:

(1) �̂i � 0; i = 0; 1; . . . ; k; (6) p̂(t̂0) = ĥx0

(2) �̂B̂i = 0; i = 1; . . . ; k; (7) p̂(t̂1) = �ĥx1 ;

(3) Ĥu(t) = 0; t 2 [t̂0; t̂1]; (8) Ĥ(t̂0) = �ĥt0 ;

(4) p̂(t) = �Ĥx(t); t 2 [t̂0; t̂1]; (9) Ĥ(t̂1) = ĥt1 :

(5) Ĥ(t) = Ĥt(t); t 2 [t̂0; t̂1];

Remark . Throughout this paper, we use short notation:

B̂i = Bi(x̂(�); û(�); t̂0; t̂1); Ĥu(t) = Hu(t; x̂(t); û(t); p̂(t); �̂);

ĥx0 = hx0(t̂0; x̂(t̂0); t̂1; x̂(t̂1); �̂);

etc., the meaning of which is quite clear from the three given examples.
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In the section 4.1. of the monograph [1] the same problem as here was
studied and a similar theorem, giving necessary conditions for the weak optimality,
was proved. In that theorem continuous partial derivatives with respect to x and
u of the functions f and L are requered, while we suppose that functions f and L

are continuously di�erentiable. But, as a result, we obtain one necessary condition
more|the di�erential equation 5.

2. Proof of the theorem. The general Mayer problem is de�ned to be a
special case of the general Bolza problem, the case when L = 0. On the other hand,
each general Bolza problem could be reduced to the general Mayer problem of the
following form:

y0(t1)� y0(t0) + l0(t0; x(t0); t1; x(t1)) ! inf;

yi(t1)� yi(t0) + li(t0; x(t0); t1; x(t1)) � 0; i = 1; . . . ; k;

yi(t1)� yi(t0) + li(t0; x(t0); t1; x(t1)) = 0; i = k + 1; . . . ;m;

_x(t) = f(t; x(t); u(t));

_y(t) = L(t; x(t); u(t)):

If the process (x̂(�); û(�); t̂0; t̂1) is weakly optimal for the general Bolza prob-
lem, then the process (x̂(�); ŷ(�); û(�); t̂0; t̂1) where

ŷ(t) =

Z t

t̂0

L(s; x̂(s); û(s))ds;

is weakly optimal for the corresponding general Mayer problem. Let us prove this
fact. If the process (x(�); y(�); u(�); t0; t1) is admissible for the corresponding general
Mayer problem, then we have

_yi(t) = Li(t; x(t); u(t));

i = 1; 2; . . . ;m and therefore

yi(t1)� yi(t0) + li(t0; x(t0); t1; x(t1)) =

=

Z t1

t0

Li(t; x(t); u(t))dt + li(t0; x(t0); t1; x(t1)) = Bi(x(�); u(�); t0; t1);

i = 1; 2; . . . ;m. It follows that the process (x(�); u(�); t0; t1) is admisible for the
initial general Bolza problem. If the process (x(�); y(�); u(�)t0; t1) satis�es the con-
ditions

j t0 � t̂0 j< "; j t1 � t̂1 j< ";

kx(t)� x̂(t)k < "; ky(t)� ŷ(t)k < "; ku(t)� û(t)k < "

for t 2 [t̂0; t̂1] \ [t̂0; t̂1], then the following relations are valid

y0(t1)� y0(t0) + l0(t0; x(t0); t1; x(t1)) =

= B0(x(�); u(�); t0; t1 � B0(x̂(�); û(�); t̂0; t̂1) =

= ŷ0(t̂1)� ŷ0(t̂0) + l0(t̂0; x̂(t̂0); t̂1; x̂(t̂1)):
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Let us suppose that our theorem holds for the general Mayer problem. The
Hamiltonian function for corresponding Mayer problem is the following mapping

(t; x; y; u; p; q; �)! pf(t; x; u) + qL(t; x; u);

(t; x; u) 2 V; y 2 Rm+1; p 2 Rn�; q 2 Rm+1�; � 2 Rm+1�. If we apply our theorem
to the corresponding Mayer problem and its optimal process (x̂(�); ŷ(�); û(�); t̂0; t̂1)

we get that there exist �̂ = (�̂0; �̂1; . . . ; �̂m) 2 Rm+1�nf0g and smooth functions
p̂(�) : [t̂0; t̂1] ! Rn� and q̂(�) : [t̂0; t̂1] ! Rm+1�, such that the following conditions
are valid:

(10) �̂i � 0; i = 0; 1; . . . ; k;

(20) �̂i[ŷi(t̂1)� ŷi(t̂0) + li(t̂0; t̂1; x̂(t̂1))] = 0 i = 1; . . . ; k;

(30) p̂(t)f̂u(t) + q̂(t)L̂u(t) = 0; t 2 [t̂0; t̂1];

(40) p̂(t) = �p̂(t)f̂x(t)� q̂(t)L̂x(t); t 2 [t̂0; t̂1];

(400) q̂(t) = 0; t 2 [t̂0; t̂1];

(50) d
dt
[p̂(t)f̂(t) + q̂(t)L̂(t)] = p̂(t)f̂t(t) + q̂(t)L̂t(t); t 2 [t̂0; t̂1];

(60) p̂(t̂0) = �̂l̂x0 ; (600) q̂(t̂0) = ��̂;

(70) p̂(t̂1) = ��̂l̂x1 ; (700) q̂(t̂1) = ��̂;

(80) p̂(t0)f̂(t0) + q̂(t̂0)L̂(t̂0) = ��̂l̂t0 ;

(90) p̂(t̂1)f̂(t̂1) + q̂(t̂1)L̂(t̂1) = �̂l̂t1 .

The conditions 1', 6' i 7' coincide with the conditions 1, 6 i 7 of our theorem.
Bearing in mind that

ŷi(t̂1)� ŷi(t̂0) =

Z t̂1

t̂0

Li(t; x̂(t); û(t))dt;

i = 0; 1; . . . ;m, we obtain the condition 2 of our theorem from the condition 2'.

From 4", 6" i 7" it follows that q̂(t) = ��̂; t 2 [t̂0; t̂1]. Using this, from 3', 4', 5',
8' i 9' we get the conditions 3, 4, 5, 8 i 9 of our theorem. Consequently, it suÆcies
to prove that our theorem is valid in the case when L = 0.

Let us denote by I the interval [t̂0; t̂1]. The set

� = f(z(�); x(�); u(�)) 2 C1(I)� Cn
1 (I)� Cr(I) j

8t 2 I)(z(t); x(t); u(t)) 2 V; (z(t̂0); x(t̂0); z(t̂1); x(t̂1)) 2Wg

is an open subset of the Banach space C1(I)� Cn
1 (I) � Cr(I) (where Cp

q (I) is the
space of functions mapping I into Rp, having continuous derivative of order q).
The functionals 'i : �! R; i = 0; 1; . . . ;m, de�ned by

'i(�) = li(z(t̂0); x(t̂0); z(t̂1); x; (t̂1));

where � = (z(�); x(�); u(�)) 2 �, are continuously di�erentiable. The operator
� : �! Cn(I), de�ned by

�(�)(t) = _x(t) _z(t)f(z(t); x(t); u(t))
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is continously di�erentiable too. Let �̂ = ẑ(�); x̂(�); û(�)) 2 �, where the function
ẑ(�) : I ! R is de�ned by ẑ(t) = t. As

�x(�)(�̂)x(�)(t) = _x(t)f̂x(t)x(t̂);

then, according to the theorem of existence of solution of the linear di�erential

equation, we have Im �̂x(�)(�̂) = Cn(I), and therefore Im�0(�̂) = Cn(I).

Let us prove that �̂ is a local solution of the problem

'0(�) ! inf; 'i(�) � 0; i = 1; . . . ; k;

'(�) = 0; i = k + 1; . . . ;m;

�(�) = 0:

There exist real Æ; 0 < Æ < 1, such that

Æ + !(x̂(�); Æ) < "; Æ + !(û(�); Æ) < ":

Let � = (z(�); x(�); u(�)), be an admissible point from � satisfying conditions

kz(�)� ẑ(�)k; kx(�)� x̂(�)k; ku(� � û(�)k < Æ:

From kz(�)� ẑ(�)k < 1 i follows that _z(t) > 0 for all t 2 I . Therefore, the continu-
ously di�erentiable inverse z�1(�) : [z(t̂0; z(t̂1)]! I exists. Let us consider the the
process (x Æ z�1(�); u Æ z�1(�); z(t̂0); z(t̂1)). Since

Bi(x Æ z
�1(�); u Æ z�1(�); z(t̂0); z(t̂1)) = 'i(�);

for i = 0; 1; . . .m and

d

dt
x Æ z�1(t) = _x(z�1(t))

d

dt
z�1(t)

= _z(z�1(t))f(z(z�1(t)); x(z�1(t)); u(z�1(t)))
1

_z(z�1(t))

=f(t; x Æ z�1(t); u Æ z�1(t));

then that process is admissible. As

j z(t̂0)� t̂0 j= j z(t0)� ẑ(t̂0) j< Æ < ";

j z(t̂1)� t̂1 j= j z(t1)� ẑ(t̂1) j< Æ < ";

and, for t 2 [t̂0; t̂1] \ [z(t̂0); z(t̂1)], we have

kx Æ z�1(t)� x̂(t)k �kx(z�1(t)) � x̂(z�1(t))k+ kx̂(z�1(t)) � x̂(t)k

�Æ + !(x̂(�); Æ) < ";

ku Æ z�1(t)� û(t)k �ku(z�1(t))� û(z�1(t))k+ kû(z�1(t))� û(t))k

�Æ + !(û(�); Æ) < ";

then
'0(�) = B0(x Æ z

�1(�); u Æ z�1(�); z(t0); z(t1)) � B̂0 = '0(�̂):
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All conditions of Lagrange principle for the smooth problem (see, for example,
theorem 3.2.1. from [1]) are ful�lled. So, we can assert that Lagrange multipliers

�̂ 2 Rm+1� and ŷ� 2 Cn(I)�; (�̂; ŷ�) 6= 0, exist, such that we have

�̂i � 0; i = 0; 1; . . . ; k; �̂i l̂i = 0; i = 1; . . . ; k;

(conditions 1 and 2), and such that �̂ is a stationary point of the Lagrange function

�̂'+ ŷ��:

When we di�erentiate the Lagrange function with respect to x(�) at the point �̂,
we obtain that

�̂l̂x0(t̂0) + �̂l̂x1x(t̂1) + ŷ�( _x(t)� f̂x(t)x(t)) = 0

for all x(�) 2 Cn
1 (I). Let the smooth function p̂(�) : [t̂0; t̂1] ! Rn� be a solution of

the problem

_p(t) = �p(t)f̂x(t); p(t̂0) = �̂l̂x0

(conditions and 6). Let y(�) 2 Cn(I) and x 2 Rn. There exists an (�) 2 Cn
1 (I),

such that
_x(t) = f̂x(t)x(t) + y(t); x(t̂1) = x:

Since
d

dt
p̂(t)x(t) = �p̂(t)f̂x(t)x(t) + p̂(t)(f̂x(t)x(t) + y(t)) = p̂(t)y(t);

then Z t̂1

t̂0

p̂(t)y(t)dt = p̂(t)x(t)
???t̂1

t̂0

= p̂(t̂1)x� �̂l̂x0x(t̂0):

It follows that

(p̂(t̂1) + �̂l̂x1)x+ ŷ�y(�)�

Z t̂1

t̂0

p̂(t)y(t)dt = 0:

Since the preceding equality is valid for all x 2 Rn and every y(�) 2 Cn(I), then

ŷ�y(�) =

Z t̂1

t̂0

p̂(t)y(t)dt; p̂(t̂1) = �̂l̂x1

(condition 7).

When we di�erentiate the Lagrange function with respect to u(�) at the point

�̂, we get that

ŷ�(�f̂u(t)u(t)) = 0

for all u(�) 2 Cr(I), i. e. that

Z t̂1

t̂0

p̂(t)f̂u(t)u(t)dt = 0
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for all u(�) 2 Cr(I). It follows that

p̂(t)f̂u(t) = 0

for all t 2 [t̂0; t̂1] (condition 3).

Di�erentiating the Lagrange function with respect to z(�) at the point �̂, we
obtain that

�̂l̂t0z(t̂0) + �̂ lt1z(t̂1)� ŷ�( _z(t)f̂(t) + z(t)f̂t(t)) = 0

for all z(�) 2 C1(I), i. e. that

�̂l̂t0z(t̂0) + �̂ lt1z(t̂1)

Z t̂1

t̂0

p̂(t)( _z(t)f̂(t) + z(t̂)ft(t))dt = 0

for all z(�) 2 C1(I). Since

z(t̂0) = z(t̂1)�

Z t̂1

t̂0

_z(t)dt;

Z t̂1

t̂0

z(t)p̂(t)f̂t(t)dt =

= z(t̂1)

Z t̂1

t̂0

p̂(t)f̂t(t)dt �

Z t̂1

t̂0

_z(t)

�Z t

t̂0

p̂(s)f̂t(s)ds

�
dt;

then

�
�̂l̂t0 + �̂l̂t1 �

Z t̂1

t̂0

p̂(t)f̂t(t)dt

�
z(t̂1)�

�

Z t̂1

t̂0

_z(t)

�
p̂(t)f̂ (t) + �̂l̂t0 �

Z t̂1

t̂0

p̂(s)f̂t(s)ds

�
dt = 0

for all z(�) 2 C1(I). It follows that

�̂l̂t0 + �̂l̂t1 �

Z t̂1

t̂0

p̂(t)f̂t(t)dt = 0

p̂(t)f̂ (t) + �̂l̂t0 �

Z t

t̂0

p̂(s)f̂t(s)ds = 0

for all t 2 [t̂0; t̂1]. From the last equation we obtain that

d

dt
p̂(t)f̂(t) = p̂(t)f̂t(t)

for all t 2 [t̂0; t̂1] (condition 5) and

p̂(t̂0)f̂(t̂0) = ��̂l̂t0
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(condition 8). And �nally

p̂(t̂1)f̂(t̂1) = ��̂l̂t0 +

Z t̂1

t̂0

p̂(t)f̂(t)dt = �̂l̂t1

(condition 9).

As �̂ = 0 implies p̂(�) = 0 which, in its turn implies ŷ� = 0, we have that

�̂ 6= 0: �.

3. Application to the simplest problem of the calculus of variations.
We chall consider here the simplest problem of the calculus of variations. First we
shall give its precise formulation, we shall show that it is a special case of the general
Bolza problem and we shall show that necessary conditions for weak minimum (from
the classical calculus of variations) are consequences of the preceding theorem.

Let V be an open set in R � R � R, let L(t; x; _x) : V ! R be a continuous
function and let t̂0; t̂1; x̂0 and x̂1 be real numbers, t̂0 < t̂1. The simplest problem
of the calculus of variations is the following extremal problem:

J(x(�) =

Z t̂1

t̂0

L(t; x(t); _x(t))dt! inf; x(t̂0) = x̂0; x(t̂1) = x̂1:

We shall investigate that problem of the following set of smooth functions:

fx(�) 2 C1[t̂0; t̂1] j (8t 2 [t̂0; t̂1])(t; x(t); _x(t)) 2 V g:

The admissible function x̂(�) 2 C1[t̂0; t̂1] furnishes the weak minimum if there exists
" > 0 such hat the inequality

J(x(�)) � J(x̂(�))

holds for each admissible function x(�) 2 C1[t̂0; t̂1] satisfying inequalities

j x(t)� x̂(t) j< "; j _x(t)�
:

x̂(t) j< "

for all t 2 [t̂0; t̂1].

We can treat the simplest problem as the general Bolza problem if we trans-
form it in the following from

Z t̂1

t̂0

L(t; x(t); u(t))dt! inf :

x(t0) = x̂0; x(t1) = x̂1; t0 = t̂0; t1 = t̂1;

_x(t) = u(t):

It is easy to prove that the process (x̂(�);
:

x̂(�); t̂0; t̂1) is weakly optmal for the pre-
ceding Bolza problem if the function x̂(�) furnishes the weak minimum for the initial
simplest problem.
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Let L be continuously di�erentiable function. Let x̂(�) be the weak solution of

the simplest problem. According to the preseding theorem, there exist �̂ 2 R5�nf0g
and smooth function p̂(�) : [t̂0; t̂1]! R, such that

(3) Ĥu(t) = 0; (7) p̂(t̂1) = ��̂2;

(4)
:

p̂(t) = �Ĥx(t); (8) Ĥ(t̂0) = ��̂3;

(5)
:

Ĥ(t) = Ĥt(t); (9) Ĥ(t̂1) = �̂4

(6) p̂(t̂0) = �̂1;

hold, where
H(t; x; u; p; �) = pu� �0L(t; x; u):

From 3 we get that

p̂(t) = �̂0L̂ _x(t):

If we had �̂0 = 0, there would be p̂(�) = 0 and Ĥ(�) = 0, and then from 6, 7, 8 and

9 we would have �̂1 = �̂2 = �̂3 = �̂4 = 0, which is impossible. Therefore, we can

suppose that �̂0 = 1. Hence
p̂(t) = L̂ _x(t):

From the preceding equation and from 4 and 5 we get the following two equations,
well known from the classical calculus of variations

d

dt
L̂ _x(t) = L̂x(t)

d

dt
[L̂ _x(t)

:

x̂(t)� L̂(t)] = �L̂t(t):

Now we can summarize our reasoning in the following

Theorem. Let the function L be continuously di�erentiale. If the function

x̂(�) 2 C1[t̂0; t̂1] furnishes the weak minimum in the simplest problem of the calculus

of variations, then the following equations

d

dt
L̂ _x(t) = L̂x(t)

d

dt
[L̂ _x(t)

:

x̂(t)� L̂(t)] = �L̂t(t):

hold on [t̂0; t̂1].
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