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THE LINEAR OPTIMAL CONTROL PROBLEM

WITH VARIABLE ENDPOINTS

Vladimir Jankovi�c

Abstract. A maximum principle, a uniqueness theorem and an existence theorem for
the linear optimal control problem with variable endpoints and with general class of admissible
controls are proved.

1. Introduction

Let us begin with framework of the optimal control problem which we are
going to study in this paper. The control set U is an arbitrary convex compact
set in Rr. Control is a function which maps some closed interval of the real line
into the control set. We shall deal with the class D of so-called admissible controls.
This is the class of controls which satis�es the following conditions:

1. each admissible control is measurable,

2. each piecewise constant control is admissible,

3. if the control u(�) : [t0; t1] ! U is admissible, then the control u0(�) :
[t0 + h; t1 + h]! U de�ned by u0(t) = u(t� h) is admissible too,

4. if the control u(�) : [t0; t1] ! U is admissible, then its restriction on an
arbitrary closed subinterval of [t0; t1] is admissible too,

5. if the restrictions of the control u(�) : [t0; t1] ! U on [t0; � ] and [�; t1]are
admissible, then u(�) is admissible too,

6. if controls u0(�); u00(�) : [t0; t1] ! U are admissible, and if 0 < � < 1, then
the control u(�) : [t0; t1] ! U de�ned by u(t) = (1� �)u0(t) + �u00(t) is admissible
too.

The phase space X is the n-dimensional Euclidean space Rn. Let A 2
L(Rn; Rn) and B 2 L(Rr; Rn). An absolutely continuous function x(�)[t0; t1]! X
is a trajectory which corresponds to the admissible control u(�) : [t0; t1] ! U if
_x(t) = Ax(t) + Bu(t) a. e. on [t0; t1]. Let us suppose that in the phase space X
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two convex, closed, disjoint sets X0 and X1 are given. We shall call them initial
and terminal set. The trajectory x(�) : [t0; t1]! X accomplishes the passage from
X0 to X1 if x(t0) 2 X0 and x(t1) 2 X1. The di�erence t1 � t0 is then called the
passage time.

The aim of this paper is to study the problem of minimization of the passage
time. The admissible control û(�) and the corresponding trajectory x̂(�) are optimal,
if trajectory x̂(�) accomplishes the passage from X0 to X1 in the shortest time.

In [2, 5, 3] and [1] some special cases on the mentioned optimal control
problem were investigated. Gamkrelidze [2] studied the problem with �xed end-
points, namely the case when the control set U is a rectangular parallelepiped and
the class of admissible controls D is the class of piecewise continuous controlos. A
similar problem was considered in the monograph [5] (chapter 3), were the control
set U was allowed to be an arbitrary convex polyhedral. In [3] the problem with
�xed endpoints was studied too, with the control set U being an arbitrary convex
compact set, and with measurable admissible controls. The problem with variable
endpoints was studied for the �rst time by Boltyanskii [1]. In [1], domain of con-
trol was an arbitrary convex compact set and admissible controls were piecewise
continuous controls.

In Section 2 of the present paper a maximum principle for our problem for-
mulated above is proved. Tha �rst maximum principle, for any optimal control
problem whatever, was proved by Gamkrelidze [2]. Maximum principles for ver-
sions of the linear optimal control problem in [5] and [3] were derived from the
maximum principle for the general optimal control problem, proved in Chapter 2
of [5]. For the linear optimal control problem with variable endpoints, a maximum
principle could not be derived from the corresponding theorem for the general prob-
lem, because the sets X0 and X1 need not have a smooth boundary. Boltyanski��[1]
proved a maximum principle for the linear optimal control problem with variable
endpoints under the additional assumption that the terminal set X1 is strongly
stable. Here we proe a maximum principle without this additional assumption.

In Section 3 two theorems are proved, the �rst of them being a generalization
of Theorem 9 of [5] about the �nite number of switchings. In the second theorem
suÆcient conditions for the uniqueness of optimal control are given.

In section 4 an existence theorem for the optimal control problem is proved
by re�ning the reasoning in the proofs of the existence theorems of Gamkrelidze
[2] and of the monograpf [5] (Chapter 3). The crucial role in this proof is played
by the proposition about the representation of a closed convex set in Euclidean
space. This proposition and its a application in the proofs of existence theorems
are presented in [4].

At the beginning of Sections 2, 3 and 4 three lemmas are proved, which are
used in the theorems which follows. Although these lemmas are known, their proofs
are repeated here for the sake of completeness.

The question of suÆcient conditions for optimality will not be considered in
this paper. The theory developed by Boltyanski��[1] concerning suÆcient conditions
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is fully applicable to the problems studied here.

2. Necessary condition for optimality

Lemma 2.1. If u(�) : [t0; t1]! U is an admissible control, x(�) : [t0; t1]! X is
the corresponding trajectory and p(�) : [t0; t1]! X� is o solution of the di�erential
equation _p = �pA, thenZ t1

t0

p(t)Bu(t)dt = p(t1)x(t1)� p(t0)x(t0):

Proof . The equlities

d

dt
p(t)x(t) =p(t)x(t) + p(t) _x(t)

=� p(t)Ax(t) + p(t)Ax(t) + p(t)Bu(t)

=p(t)Bu(t)

hold a. e. on [t0; t1]. Hence we haveZ t1

t0

p(t)Bu(t)dt = p(t)x(t)
???t1
t0
= p(t1)x(t1)� p(t0)x(t0):

�

Theorem 2.1 (Maximum principle) If û(�) : [t̂0; t̂1]! U and x̂(�) : [t̂0; t̂1]!
X are optimal control and corresponding optimal trajectory, there exists a function
p̂(�) : [t̂0; t̂1] ! X�, which is the nontrivial solution of the di�erential equation
_p = �pA, such that the following conditions are ful�lled:

1. maximum condition:

max
u2U

p̂(t)Bu = p̂(t)Bû(t) for a. a. t 2 [t̂0; t̂1];

2. condition of transversality at the left endpoint:

max
x2X0

p̂(t̂0)x = p̂(t̂0)x̂(t̂0);

3. condition of transversality at the right endpoint:

max
x2X1

p̂(t̂1)x = p̂(t̂1)x̂(t̂1):

Proof . The sphere of accessibility ST ; T > 0, is the set of phase points x0
from which the passage to the terminal set X1 can be accomplished in time T .
Let us prove that it is convex. Let x00; x

00

0 2 ST and x0 2]x00; x
00

0 [. There exist
two admissible controls u0(�); u00(�) : [0; T ]! U and the corresponding trajectories
x0(�); x00(�) : [0; T ]! X , such that x0(0)� x00 = x00; x

00(0) = x000 and x0(T ); x00(T ) 2
X1. There exists a real number �; 0 < � < 1, such that x0 = (1� �)x00 + �x000 . Let
us de�ne the functions u(�) : [t0; t1]! U and x(�) : [0; t]! X by

u(t) = (1� �)u0(t) + �u00(t); x(t) = (1� �)x0(t) + �x00(t):
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Here, u(�) is an admissible control and x(�) is the corresponding trajectory. Since

x(0) = (1� �)x0(0) + �x00(0) = (1� �)x00 + �x000 = x0

x(T ) = (1� �)x0(T ) + �x00(T ) 2 X1;

the trajectory x(�) accomplishes the passage from the point x0 to the terminal set
X1 and therefore x0 2 ST .

Let T̂ = t̂1 � t̂0; x̂0 = x̂(t̂0) and x̂1 = x̂(t̂1). Then x̂0 2 X0 \ST̂ . The convex
sets X0 and ST̂ can be separated by a hyperplane. Let us suppose the contrary.
Then relint X0\ relint ST̂ 6= ?. We can suppose that x̂0 2 relint X0\ relint ST̂ .
There exist two planes Y and Z in X such that Y � a� X0, Z � a�ST̂ ; Y \ Z =
fx̂0g and dim Y + dim Z = dim X . There exists a simplex �0 � Z\ relint ST̂ ,
with vertices x1; x2; . . . ; xm+1(m = dim Z), such that x̂0 2 relint �0. For each

i = 1; 2; . . . ;m + 1, there exists an admissible control ui(�) : [0; T̂ ] ! U with the

corresponding trajectory xi(�) : [0; T̂ ] ! X which accomplishes the passage from
the point xi to the terminal set X1. For suÆciently small � > 0, points xi(�); i =
1; 2; . . . ;m + 1, are vertices of the simplex �� which has a nonempty intersection
with the initial set X0. Because of convexity, the sphere of accessibility ST̂�� ,
together with its vertices, contains the whole simplex �� . Therefore X0\ST̂ � 6= ?,

which contradicts the fact that T̂ is the shortest passage time.

There exists a p̂0 2 X�; p̂0 6= 0, such that

X0 � fx 2 X j p̂0x � p̂0x̂0g; ST̂ � fx 2 X j p̂0x � p̂0x̂0g:

Let p̂(�) : [t̂0; t̂1]! X� be the solution of the di�erential equation _p = �pA, which
satis�es the condition p̂(t̂0) = p̂0.

Obviously, the condition of transversality at the left endpoint is ful�lled.

Let x1 2 X1 and let x(�) : [t̂0; t̂1] ! X be the trajectory corresponding to
the control û(�), which ends at the point x1. Let us denote by x0 its initial point.
According to Lemma 2.1, we have

p̂(t̂1)x1 � p̂(t̂0)x0 = p̂(t̂1)x̂1 � p̂(t̂0)x̂0 =

Z t̂1

t̂0

p̂(t)Bû(t)dt:

Since x0 2 ST̂ , it follows that p̂(t̂0)x0 � p̂(t̂0)x̂0. Therefore p̂(t̂1)x1 � p̂(t̂1)x̂1. It
follows that the condition of transversality at the right endpoint is satis�ed.

Let us suppose that the maximum condition is not satis�ed.

There exists a u 2 U such that mE > 0, where

E = ft 2 [t̂0; t̂1] j p̂(t)Bu > p̂(t)Bû(t)g:

Let us suppose the contrary. Let fuk j k 2 Ng be an everywhere dense set of points
in U . Then mEk = 0, where

Ek = ft 2 [t̂0; t̂1] j p̂(t)Buk > p̂(t)Bû(t)g
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Since
sup
k2N

p̂(t)Buk � p̂(t)Bû(t);

for t 2 [t̂0; t̂1]n [
k2N

Ek, then

max
u2U

p̂(t)Bu = p̂(t)Bû(t);

for almost all t 2 [t̂0; t̂1]. Contradiction!

There exists an interval I � [t̂0; t̂1] such thatZ
I

(p̂(t)Bu� p̂(t)Bû(t))dt > 0:

Let us suppose the contrary. LetZ
E

(p̂(t)Bu� p̂(t)Bû(t))dt = " > 0:

There exists a Æ > 0, such that???Z
�

(p̂(t)Bu� p̂(t)Bû(t))dt
??? < ";

for each � � [t̂0; t̂1]; m� < Æ. Since the set E is measurable, a sequence of
disjoint intervals Ik � [t̂0; t̂1]; k 2 N , exists, such that E � [

k2N
Ik; m� < Æ, where

� = [
k2N

IknE. Then

1X
k=1

Z
Ik

(p̂(t)Bu� p̂(t)Bû(t))dt =

=

Z
E

(p̂(t)Bu� p̂(t)Bû(t))dt +

Z
�

(p̂(t)Bu� p̂(t)Bû(t))dt > 0:

Contradiction!

Let u(�) : [t̂0; t̂1]! U be an admissible control de�ned by

u(t) =

(
û(t); t 2 [t̂0; t̂1]nI

u; t 2 I

and let x(�) : [t̂0; t̂1]! X be the corresponding trajectory which terminates at the
point x̂1. According to Lemma 2.1 we haveZ t̂1

t̂0

p̂(t)Bû(t)dt =p̂(t̂1)� p̂(t̂0)x̂0;

Z t̂1

t̂0

p̂(t)Bu(t)dt =p̂(t̂1)� p̂(t̂0)x(t̂0):
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It follows that

p̂(t̂0)x̂0 � p̂(t̂0)x(t̂0) =

Z t̂1

t̂0

(p̂(t)Bu(t) � p̂(t)Bû(t))dt

=

Z
I

(p̂(t)Bu� p̂(t)Bû(t))dt > 0:

On the other hand, we have p̂(t̂0)x̂0 � p̂(t̂0)x̂(t̂0) � 0, because x(t̂0) 2 St̂. Contra-
diction!

As we see, it turns out that if we suppose that the maximum condition does
not hold, we come to a contadiction, and hence, the maximum condition must hold.

�

3. The uniqueness of optimal control

Lemma 3.1. Let p(�) : [t0; t1]! X� be a nontrivial solution of the di�erential
equation _p = �pA and let Y be a subspace of the phase space X. If p(t)Y = f0g
for in�nitely many t 2 [t0; t1], then the subspace Y belongs to a proper subspace of
X, which is invariant under the operator A.

Proof . The set of points from the interval [t0; t1], for which p(t)Y = f0g has
at least one accumulatiom point. Let � be such a point. Let y 2 Y . Due to the
continuity of the function p(t)y, the equality p(�)y = 0 is valid. The derivative of
the function p(t)y is given by d

dtp(t)y = �p(t)Ay. Since between every two zeroes of
a di�erentiable function lies at least one zero of its derivative, the function p(t)Ay
vanishes on an in�nite subset of the interval [t0; t1], for which � is an accumulation
point. Continuity implies the equality p(�)Ay = 0. If we proceed with such a
reasoning, we can prove that p(�)Aky = 0 for every k 2 N . Since p(�) is a nontrivial
solution of a homogeneous linear di�erential equation, then p(�) 6= 0. It follows
that all vectors Aky; k = 0; 1; 2; . . . ; y 2 Y , belong to the hypersubspace Hfx 2
X j p(� x = 0g. These vectors generate the minimal subspace Z of the phase space
X , which is invariant under the operator A and contains Y . As Z � H , we have
that Z is a proper subspace of X .�

We shall say that the control set U is in the general position if there exists
a nonempty countable family S of subspaces of the space Rr, which satis�es the
following two conditions:

1. each hyperplane of support of the set U , which has more than one common
point with U , is parallel to some subspace from S,

2. if Z is a subspace from S, then BZ is not contained in any proper subspace
of X which is invariant under the operator A.

Theorem 3.1. Let the control set U be in the general position. If p(�) :
[t0; t1]! X� is a nontrivial solution of the di�erential equation _p = �pA, then the
control u(�) : [t0; t1]! U is uniquely determined by the maximum condition

max
u2U

p(t)Bu = p(t)Bu(t)
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in all but countably many points of the interval [t0; t1] The control u(�) is continuous
at every point at which it is uniquely determined.

Proof . Let Z 2 S. According to the preseding lemma, the equality p(t)BZ =
f0g is ful�lled for �nitely many t 2 [t0; t1]. So, the set of points t 2 [t0; t1], for which
there exists a Z 2 S such that p(t)BZ = f0g, is countable. Let � 2 [t0; t1] be a
point such that p(�)BZ 6= f0g, for each Z 2 S. The function u! p(�)Bu reaches
its maximum on the set U at the unique point u(�). Let " > 0. The function

u!
p(�)B(u � u(�))

ku� u(�)k

is continous and negative on the compact set UnB]u(�); "[. Therefore a � > 0
exists, such that

p(�)B(u� u(�)) � ��ku� u(�)k;

for every u 2 UnB]u(�); "[: There exists a Æ > 0, such that

kp(t)� p�)k < �=kBk

when j t� � j< Æ. Let j t� � j< Æ. For u 2 UnB]u(�); "[ we have

p(t)Bu = (p(t)� p(�))B(u � u(�)) + p(�)B(u� u(�)) + p(t)Bu(�)

< �ku� u(�)k � �ku� u(�)k+ p(t)Bu(�)

= p(t)Bu(�):

Since u(t) is the point at which the function u ! p(t)u reaches its maximum on
the set U , then u(t) 2 B]u(�); "[:�.

Remark . If the family S is �nite, then we can conclude that the set of points
at which the control u(�) is not uniquely determined is �nite too.

Theorem 3.2.. Let the control set U be in the general position. Then each
two optimal controls de�ned on the same interval coincide.

Proof . Let û(�) : [t̂0; t̂1] ! U and x̂(�) : [t̂0; t̂1] ! X� be the optimal control
and the corresponding optimal trajectory. Let p̂(�) : [t̂0; t̂1]! X� be the nontrivial
solution of the di�erential equation _p = �pA, such that conditions 1,2 and 3 of
Theorem 2.1 are ful�lled. Let û(�) : [t̂0; t̂1] ! U and x̂(�) : [t̂0; t̂1] ! X be another
optimal control and the corresponding optimal trajectory. Since

p̂(t̂0)x̂(t̂0) � p̂(t̂0)x(t̂0) p̂(t̂1)x̂(t̂1) � p̂(t̂1)x(t̂1);Z t̂1

t̂0

p̂(t)Bû(t)dt = p̂(t̂1)x̂(t̂1)� p̂(t̂0)x̂(t̂0);

Z t̂1

t̂0

p̂(t)Bu(t)dt = p̂(t̂1)x̂(t̂1)� p̂(t̂0)x̂(t̂0);
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then Z t̂1

t̂0

p̂(t)Bû(t)dt =�

Z t̂1

t̂0

p̂(t)Bu(t)dt

Besides, p̂(t)Bû(t) � p̂(t)Bu(t) a.e. on [t̂0; t̂1]. It follows that

max
u2U

p̂(t)Bu� p̂(t)Bû(t) = p̂(t)Bu(t)

a.e. on [t̂0; t̂1]. According to the previous theorem, we conclude that u(t)û(t) a.e.
on [t0; t1]:�.

4. Existence of optimal control

Lemma 4.1 Every closed convex set C in Euclidien space X can be represented
as an intersection of a coutable family of closed half- spaces.

Proof . Let fxk j2 Ng be an everywhere dense set of points in a� CnC.
According to a well-known theorem, for each k 2 N , there exists a closed half-
space Pk such that C � Pk and xk 62 Pk. Let us prove that C = (aggC) \ \

k2N
Pk.

Obviously, C � (a�C)\ \
k2N

Pk. Let us suppose that x 62 C. If x 62 a�C, it is clear

that x 62 ( a� C) \ [
k2N

Pk. Let x 2 (a�C)nC. Let us denote by ~C the convex hull

of the set C [ fxg. Let a 2 relint C and let b be the intersection of the segment

]a; x[ and relbd C. The set (relint ~C)nC is nonempty, since it contains the segment

]b; x[. An integer k 2 N exists, such that xk 2 ( relint ~C)nC. We have that x 62 Pk.

Otherwise we would have xk 2 ~C � Pk. It follows that x 62 (a� C) \ \
k2N

Pk. Thus

we have proved the equality C = ( a� C)\ \
k2N

Pk. It remains only to note that a�

C can be represented as the intersection of a �nite family closed half-spaces. �.

Theorem 4.1. Let the class D of admissible controls be maximal, i.e. let D
be the class of all measurable controls, and let one of sets X0 and X1 be compact. If
there exists at least one admissible control with the corresponding trajectory which
accomplishes the passage from the set X0 to the set X1 then the optimal control
exist.

Proof . We can suppose that the initial set X0 is compact.

Let T̂ be the in�mum over all passage times from the set X0 to the set X1.
There exists a sequence of admissible controls uk(�)[0; Tk]! U with corresponding
trajectories xk(�) : [0; Tk]! X accomplishing the passage from X0 to X1, such that

Tk ! ~T . Corresponding trajectories are given by

xk(t) = �(t)

�
xk(0) +

Z t

0

�(�)�1Buk(�)d�

�
;

where �(�) : R ! L(Rn; R) is the solution of the di�eretial equation � = A � �
satisfying the initial condition �(0) = I .
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Sequences xk(0) and xk(Tk) are bounded. We can suppose that they are
convergent. Let xk(0) ! x̂0 and xk(Tk) ! x̂1; k ! 1. Obviously x̂0 2 X0 and
x̂1 2 X1. Since

xk(T̂ )� x̂1 =[xk(T̂ )� xk(Tk)] + [xk(Tk)� x̂1]

=[�(T̂ )��(Tk)]

�
xk(0) +

Z T̂

0

�(��1Buk(�)d�

�

��(Tk)

Z Tk

T̂

�(�)�1Buk(�)d� + [xk(Tk � x̂1]

we have xk(T̂ )! x̂1; k !1. This implies T̂ > 0.

If we consider the sequence of controls (uk(�)) as a sequence of points in

the space Lr2[0; T̂ ], then it is a bounded sequence. It has a weakly convergent
subsequence. We may assume without loss of generality that the sequence (uk(�))
is weakly convergent. Let uk(�) ! û(�); k ! 1. As û(�) is a point in the space

Lr2[0; T̂ ], it is measurable function which maps [0; T̂ ] into Rr.

Let us prove that û(t) 2 U for almost all t 2 [0; T̂ ]. As, according to the
previous lemma, U is an intersection of a countable family of half-spaces, it suÆces
to prove that for each closed half-space P � U we have û(t) 2 P a. e. on [0; T̂ ].
The half-space P can be represented in the form P = fu 2 Rr j au � �g, where

a 2 X� and � 2 R. Let E� = ft 2 [0; T̂ ] j aû(t) � �g, for � 2 R. SinceZ T̂

0

KE�(t)auk(t)dt!

Z T̂

0

KE�(t)aû(t)dt; k !1; and

Z T̂

0

KE�(t)auk(t)dt!

Z
E�

auk(t)dt � �mE�; k 2 N;

we have Z T̂

0

KE�(t)aû(t)dt � �mE�

On the other hand, Z T̂

0

KE�(t)aû(t)dt =

Z
E�

aû(t)dt � �mE�:

Hence mE� = 0 for every � > �. Since the relation û(t) 2 P is not valid only on

the set \
s2N

E�+1=s, we conclude that it is valid a.e. on [0; T̂ ].

The change of the values of the function û(�) on a set of measure zero does
not a�ect the weak convergence of the sequence (ûk(�)) to u(�). Therefore, we may

assume that u(t) 2 U , for each t 2 [0; T̂ ], so that û(�) i an admissible control.

Let x̂(�) : [0; T̂ ]! X be the trajectroy corresponding to the admissible control
~u(�), satisfying the initial condition x̂(0) = x̂0. It can be represented in the form

x̂(t) = �(t)

�
x̂0 +

Z t

0

�(�)�1Bû(�)d�

�
:
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Since Z T̂

0

�(��1Buk(�)d� !

Z T̂

0

�(�)�1Bû(�)Æ�; k !1

we have xk(T̂ )! x̂(T̂ ), as k !1. On the other hand, xk(T̂ )! x̂1, as k !1. It

follows that x̂(T̂ ) = x̂1:�.
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