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ASYMPTOTIC EXPANSIONS OF SCHWARTZ'S

DISTRIBUTIONS

S. Pilipovi�c

Abstract. We investigate the generalized asymptotic expansions of distributions and give
some applications, mainly for the Weierstrass transform.

0. We give four de�nitions of the asymptotic expansion of distributions (for
the third one see also [1] and [10]). Two of them are related to the shift operator and
the other two are related to the dilation of a distribution. We give several structural
assertions concerning these notions. In the last section we give applications of these
notions, mainly for the Weirstrass transform. The example given in part 5 shows
that for an ordinary function the generalized asymptotic expansion leads to a new
classical Abelian result for its classical Weierstrass transform.

For the basic de�nitions of distribution spaces, see [8], and for the de�nition
and properties of slowly varying functions at 1. see [9]. Note that D0+ and S 0+ are
spaces of Schwartz distributions with elements having supports in [0;1).

1. Denote by cm(k); m 2 N, a sequence of continuous positive functions
de�ned on (am;1); am > 0; such that

cm+1(k) = o(cm(k)); k !1; (m 2 N)

and by um; m 2 N, a sequence from D0 such that um 6= 0; m = 1; . . . ; p; p <
1; um = 0; m > p, or um 6= 0; m 2 N. Denote by � the set of pairs of sequences
(cm(k); um).

First, we reformulate Theorem and Corollary from [3]:

Proposition 1. Let (cm(k); um) 2 � and

(1) lim
k!1

h(kx)=cm(k); '(x)i = hgm(x); '(x)i; ' 2 D;

where gm 6= 0 if um 6= 0; m 2 N. Then for every m which um 6= 0 we have:
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(i) cm(x) = x�mLm(x); x 2 (am;1) for some �m 2 R and some slowly varying
function Lm;

(ii) gm is a homogeneous distribution with the orther of homogeneity �;

(iii) um 2 S 0

(iv) if � 2 Rnf�1;�2; . . .g then the limit in (1) exists in the sense of convergence
in S 0.

Remark 1. If we assume that (cm(k); um) 2 � and um 2 D0+(m = 1; . . . ,
p < 1 or m 2 N), then [11, x3. Theorem 3] implies that all the assertions in
Proposition 1 hold without the restriction on � in (iv) and with

gm(x) = Cmf�m+1(x); x 2 R; Cm 6= 0; m = 1; . . . ; p <1; or m 2 N:

Recall that [8],

f�+1(t) =

(
H(t)t�=�(�+ 1); � > �1

Dn f�+n+1(t); � � �1; �+ n > �1
(t 2 R):

Denote by �1 a subset of � such that (cm(k); um) 2 �1 if (1) holds for all
the m for which um 6= 0 and gm 6= 0 (m = 1; . . . ; p <1 or m 2 N), i. e. for which
Proposition 1 holds.

De�nition 1. Let f 2 D0 and (cm(k); um) 2 �1 such that

(2) lim
k!1

h((f(t) �

mX
i=1

ui(t))(kx))=cm(k); '(x)i = 0; ' 2 D

for m = 1; . . . ; p < 1 or m 2 N. Then we say that f has a quasiasymptotic
expansion at 1 of the �rst kind with respect to (cm(k); u+m) and we write

(3) f �q.e.

p(1)X
i=1

ui (cm(k)) at 1

Clearly, if (3) holds, then

f �q.e.

p(1)X
i=1

u0i (k�1cm(k)) at 1

Let f 2 D0 and (3) hold for some (cm(k); um) 2 �1. Proposition 1 implies
that for every m for which um 6= 0; cm(k) = k�mLm(k); (k > am).

With f satisfying De�nition 1 we have:

Proposition 2. (i) f 2 S 0; (ii) If �m 62 �N, then (2) exists in the sense of
convergence in S 0 (for every m for which um 6= 0).

Proof . Since f(kx)=c1(k) ! g1 6= 0 in D0, the Theorem from [3] mentioned
implies that f 2 S 0, whereas (ii) follows from Proposition 1 (iv).
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Remark 2. (Continuation of Remark 1). With the assumptions f 2 D0+; um 2
D0+(m = 1; . . . ; p <1 orm 2 N) De�nition 1 generalizes the de�nition of the open
quasiasymptotic expansion studied in [11, x10].

2. Another type of quasiasymptotic expansion at 1 is given by the following
de�nition:

De�nition 2. Let f 2 D0 and (cm(k); um) 2 �. We write

(4) f(kx) �q.e.

p(1)X
i=1

ui(x) (c1(k)) at 1

i� for every m � p <1 or m 2 N

(5) lim
k!1

h(f(kx) �

mX
i=1

ui(x)ci(k))=cm(k); '(x)i = 0; ' 2 D

In this case we say that f has a quasiasymptotic expansion at1 of the second type
with respect to (cm(k); um).

Let us restrict this de�nition to a simpler case:

De�nition 2'. Let f 2 S 0+ (cm(k); um) 2 � with um 2 S 0+(m = 1; . . . ; p <1
or m 2 N) and let the limit (5) exist in the sense of convergence in S 0 (i. e. for
' 2 S). Then we say that f has a quasiasymptotic expansion at 1 in S 0+ of the
second type with respect to (cm(k); um).

Proposition 3. Let (cm(k); um) 2 � and f 2 S 0+ satisfy the conditions of
De�nition 2'. Then:

(i) u1(t) = A1
1f�1+1(t); t 2 R; c1(k) = k�1L1(k); k > a1, for some a1 > 0, and

some L1, where A
1
1 6= 0;

(ii) for m = 2; . . . ; p < 1 (if p � 2) or m 2 N; m � 2; um is the solution of a
di�erential equation of the form

(6) l�m�1(� � � (l�1(um)) � � � ) = Amf�m+1(Am 2 R);

where l�(u) � xu0 � �u(� 2 R; u 2 D0).

If in (6) Am 6= 0, then cm(k) = k�mLm(k); k > am, for some am > 0 and
some Lm.

(iii) if �1 > �2 > � � � > �p (for p <1) or �i < �j for i > j; j 2 N, then for
m = 2; . . . ; p <1 or m 2 N; m � 2,

(7) um =

m�1X
j=1

Am
i f�j+1 +

�
Am=

m�1X
i=1

(�m � �i)

�
f�m+1;

where Am
j ; j = 1; . . . ;m� 1 are suitable constants.

Proof . (i) For m = 1 we have:

lim
k!1

hf(kx)=c1(k);  (x)i = hu1; 'i; ' 2 S:
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The well-known assertion [11], x3, Theorem 1] implies (i).

(ii) First note that f�+1 satis�es the di�erential equation l�(u) = 0.

For m = 2 we have

(8) lim
k!1

i(f(kx) � u1(x)c1(k))=c2(k); '(x)i = hu2; 'i 2 S:

This implies

lim
k!1

h(xkf 0(kx) � c1(k)xu
0

1(x))=c2(k); '(x)i(9)

= hxu02(x);  (x)i; ' 2 S:

Thus, multiptying (8) with ��1 and adding that to (9) we obtain

lim
k!1

h(l�1f)(kx)=c2(k); '(x)i = h(l�1u2)(x); '(x)i; ' 2 S:

If l�1u2 6= 0, then by the same arguments as for m = 1 we obtain

c2(k) = k�2L2(k) (k > a2) for some �2;

l�1u2 = A2f�2+1 for some A2 6= 0:

Instead of �nishing this part of the proof by induction, we give the proof for
m = 3. After that the proof by induction becomes trivial. We have

lim
k!1

h((l�1f)(kx)� (l�1u2)(x)c2(k))=c3(k); '(x)i

= h(l�1(u3)(x);  (x)i; ' 2 S:

Since l�1(u2) = A2f�2+1 we have

lim
k!1

h((l�2 (l�1f))(kx)=c3(k); '(x)i =

= h(l�2(l�1(u3))(x); '(x)i; ' 2 S:

Now, as in the case m = 2 we derive the necessary conclusions.

(iii) The particular solution of (5) is given by the last member in (6) because
of the identity l�(f�+1) = (�� �)f�+1, where �; � are arbitrary elements from R.

Note that l�(l�u) = l�(l�u); (u 2 D
0).

Remark 3. If for some m;�m = �m�1 and Am 6= 0, then equation (5) does
not have such a \nice" solution. If we assume that the sequence cm(k) satis�es the
stronger condition:

cm+1(k)=cm(k) = O(k�"m); "m > 0; m = 1; . . . ; p <1 or m 2 N;

then by using the properties of slowly varying functions one can deduce that

�1 > �2 . . . > �p or �i < �j ; i > j; i; j 2 N:
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Remark 4. Let us assume that De�nition 2 holds for f and (cm(k); um) and
that f 2 S 0+ and um 2 S 0+. The question is whether the limit in (5) can be extended
to the whole of S? Note that Proposition 3 does not give an answer to this question.

Remark 5. If we assume that the assumptions of Remark 1 are satis�ed for f
and (cm(k); um), and if cm(k) are polynomials, then the quasiasymptotic expansion
of the �rst type is equivalent to the quasiasymptotic expansion of the second type.
In general this does not hold. For example, we have:

x5 ln j x j +x4 �q.e. x5 ln j x j +x4 (c1(k) = k4 ln k; c2(k) = k4; k > 1);

(see De�nition 1) and

(kx)5 ln(k j x j) + (kx)4 �q.e. (x5 ln j x j)k5 ln k + (x5 ln j x j)k5 + x4k4

(see De�nition 2).

This example shows that De�nition 1 is more natural than De�nition 2 (or
2').

3. Let dm be a sequence of positive continuous functions di�erent from zero
in (am;1); am > 0, and dm+1(h) = o(dm(h)); h ! 1(m 2 N). Denote by um
a sequence from D0 such that um 6= 0; m = 1; . . . ; p < 1um = 0; m > p, or
um 6= 0; m 2 N. We denote by

P
the set pairs of sequences (dm(h); um).

The following de�nition is a slight modi�cation of a de�nition from [10]. We
adapt it in the sense of the notation given above.

De�nition 3. An f 2 D0 has an S-asymptotic expansion of second type with
respect to (dm(h); um) 2

P
if

(10) lim
h!1

h(f(x+ h)�

mX
i=1

ui(x)di(h))=dm(h); '(x)i; ' 2 D;

for m = 1; . . . ; p <1 or m 2 N.

In this case we write

f(x+ h) �s:e:

p(1)X
i=1

ui(x)di(h):

Remark 6. De�nition 3 is a generalization of a corresponding de�nition for
the space S 0 given in [1].

Proposition 4. Let f 2 D and (dm(h); um) 2
P

satisfy the condition of
De�nition 3. Then we have:

(i) u1(t) = A1
1 exp(�1t); t 2 R; A1

1 6= 0; �1 2 R; d1(h) = exp(�1h)L1
(exp h); h > a (for some a1 and some L1);

(ii) for m = 2; p <1 (if p � 2) or m 2 N; um is the solution of the equation

(11) L�m�1(� � � (L�1um) . . . ) = Am exp(�mt); Am 2 R;
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where L�u = u0 � �u(u 2 D0; � 2 R).

If in (11) Am 6= 0, then dm(h) = exp(�mh)Lm(exp h); h > am;

(iii) for m = 1; . . . ; p <1 or m 2 N,

(12) um(t) =

m�1X
i=1

Am
i exp(�it) + pm�1(t) exp(�mt); (t 2 R)

where Am
i ; i = 1; . . . ;m� 1, are suitable constants and pm�1 is a suitable polyno-

mial of degree � m� 1.

Proof. (i) This is a direct consequence of [6, Theorem 5].

(ii) We have

L�(exp �t) = (� � �) exp(�t); t 2 R; (�; � 2 R)

L�(L�u) = L�(L�u); (u 2 D
0):

Let m = 2. We have:

lim
h!1

h(f(x + h)� u1(x)d1(h))=d2(h); '(x)i = hu2(x); '(x)i; ' 2 D;(13)

lim
h!1

h(f 0(x+ h)� u01(x)d1(h))=d2(h); '(x)i = hu02(x); '(x)i; ' 2 D;(14)

Multiplying (13) by |�1 and adding that to (14) we obtain

lim
h!1

h(L�1f)(x+ h)=d2(h); '(x)i = h(L�1u2); '(x)i; ' 2 D:

As in (i) from [7, Theorem 5] the assertion for m = 2 follows. Then by induction
we complete the proof of (ii).

(iii) The proof follows from the fact that, for a suitable polynomial pm�1 of
order � m� 1; pm�1(t) exp(�mt); t 2 R, is the patricular solution of (11).

4. Denote by
P

1 a subset of
P

consisting of elements (dm(h); um) for which
we have

lim
h!1

h(um(x+ h)=dm(h); '(x)i = hgm(x); '(x)i;(15)

' 2 D; gm 6= 0; m = 1; . . . ; p <1 or m 2 N:

As remarked above, from [7, Theorem 5] it follows that

(16) dm(h = exp(�mh)Lm(exp h) 6= 0; h > am; �m 2 R;

where Lm is a suitable slowly varying function, m = 1; . . . ; p <1 or m 2 N, and

gm(x) = Cm exp(�mx); Cm 6= 0; m = 1; . . . ; p <1 or m 2 N:

So, we have that the �rst component of an element from
P

1 is a sequence for which
(16) holds m = 1; . . . ; p <1 or m 2 N.
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De�nition 4. Let f 2 D0 and (dm(h); um) 2
P

1. If

lim
h!1

h(f(x+ h)�

mX
i=1

u1(x+ h))=dm(h); '(x)i = 0;(17)

' 2 D; m = 1; . . . ; p <1 or m 2 N;

then we say that f has an S-asymptotic expansion at 1 of the �rst kind with
respect to (dm(h); um), and we write

(18) f(x) �s.e.

p(1)X
m=1

um(x) (dm(h)):

Clearly, if (18) holds, then

f 0(x) �s.e.

p(1)X
m=1

u0m(x) (dm(h)):

Recall the de�nition of the space K01, introduced by Hasumi:

K1 = f' 2 C1; sup
i<mx2R

fch(mx) j '(i)(x) j<1g; m = 0; 1; . . . g;

K01 is its dual. Denote by K01;ar the space of all f 2 L11os such that f ' 2 L1 for
every ' 2 K1 (see [4]).

Proposition 5. Let f satisfy (18).

(i) Assume f 2 K01; um 2 0
1 and let the slowly varying functions Lm in (16)

be monotonous (for suÆciently large arguments) m = 1; . . . ; p < 1 or m 2 N.
Then the limit in (17) may be extended from D to K1.

(ii) Asume, f 2 S 0; um 2 S 0 and dm(h) = h�mLm(h), where every Lm is
monotonous, m = 1; . . . ; p < 1 or m 2 N. Then the limit (17) may be extended
from D to S.

Proof . From [6] it easily follows that with the given assumptotions, (16) can
be extended from D to K1, i.e., S. This implies the assertions.

The ordinary asymptotic expansion implies this type of distributional asymp-
totic expansion. Namely, we have:

Proposition 6. Let f 2 K01;ar, and let um and dm;m = 1; . . . ; p < 1 or
p 2 N, satisfy the assumptions of Proposition 5 (i).

If

f(x) �

p(1)X
m=1

um(x) as x!1 (in the ordinary sense);
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then

f(x) �s.e.

p(1)X
m=1

um(x); (dm(h) = exp(�mh)Lm(exp h))

m = 1; . . . ; p or m 2 N:

The proof of this proposition is similar to the proof of Proposition 3 in [4],
so we shall omit it.

Let us give two examples. If

f(x) =
p
x2 + x; x > 0 and f(x) = 0; x � o;

then we have

(19) f(x) �s.e. x+

�
1=2

1

�
+

�
1=2

2

�
(1=x)+ + � � �

�
1=2

n

�
(1=x)n�1+ + � � � (dm);

where dm(h) = h2�m; h > 0; m 2 N. Formula (19) quite naturaly follows from the
ordinary asymptotic expansion of f at 1. Note that the S-asymptotic expansion
of f of the second type at 1 is much more complicate, and is not equal to (19).

In the example which follows we construct a function which has an S-
asymptotic expansion of the �rst type but has no ordinary asymptotic expansion.

Let  (t) = 1; t 2 (n � 2�n; n + 2�n); n 2 N, and  (t) = 0 outside of
these intervals. Let  �(x) = e�x

R x
0
 (t)dt; x 2 R; � 2 R. Since

R x
0
 (t)dt ! 2

as x ! 1, we have that  �(x) � 2e�x; x ! 1 but  0�(x) does not have an
ordinary asymptotic behaviour [4]. Let (�j) be a strictly decreasing sequence of
positive numbers � 2 C1 � 1 for x > 1; � � 0 for x < 1=2 and let f(x) =P
1

m=1 '�i(x)�(x � i); x 2 R. We have

f(x) �

1X
i=1

'�i(x); x!1

with respect to the sequence f2e�ix; i 2 Ng. This implies that

f(x) �s.e.
1X

m=1

'�i(x) with respect to f2e�ix; i 2 Ng

and

(20) F (x) = f 0(x) �s.e.
1X
i=1

'0�i(x) with respect to f2e�ix; i 2 Ng

but F (x) does not have an ordinary asymptotic expansion.

5. In this part we shall give some applications. First, we note that for the
distributional Laplace trasform the quasiasymptotic expansion of the �rst type of an
orginal at1 implies the ordinary asymptotic expansion of its Laplace transform at
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0. This is studied in [11, 12] and in a forthcoming paper of the author. Similary, for
the distributional Stieltjes transform we apply this notion, in a separate forthcoming
paper, for obtaining the corresponding Abelain type results at 1.

We shall give in this section some applications of the S-asymptotic expansivn
of the �rst kind. As a direct consequence of [5] we have:

Proposition 6. Let

f(x) �s.e.

pX
i=1

ui(x) (dm(h)); p <1:

Then

f(x) =

pX
i=1

ui(x) x > A for some A

i� for every positive continuous function d(h); h > A

lim
h!1

h(f �

pX
i=1

um)(x+ h)=d(h); '(x)i = 0; ' 2 D:

The Weiestrass kernel is de�ned by

k(s; t) = (4�t)�1=2e�s
2=(4t); s 2 C; t 2 (0; 1):

Obviously, for any s 2 C and t 2 (0; 1); k(s�x; t) 2 K1. The Weiestrass transform
of an f 2 K01 is de�ned by (Wtf)(s) = hf(x); k(s�x; t)i [4]. From [4, Proposition
4] the following proposition follows directly:

Proposition 7. Assume that the assumptions of Proposition 5 (i) are satis-
�ed. Then (in the ordinary sense) for any s 2 C

Wtf(s+ h) �

p(1)X
m=1

As;t;mdi(h); h!1;

where As;t;m = (Wtum)(s); m = 1; . . . p <1 or m 2 N.

Remark 7. Example (20) and this proposition show that for the classical
Weiestrass transform the notion of S-asymptotic expansion implies new classical
results for the behaviour of its transform.
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