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ON LINEAR TOPOLOGICAL RIESZ SPACES WITHOUT
CONVEXITY CONDITIONS

Stojan Radenovié

Abstract. We consider whether the space associated with an L.t.R.s. (E,C,t) is L.t.R.s. We
have shown that any I-ideal in an ultra-DF (resp. countably quasibarrelled, locally topological,
ultra-b-barrelled, ultra Dj) Riesz space is space of the same type with respect to the relative
topology.

Throughout this paper (E,C,t) will denote a separated linear topological
Riesz space (1.t.R.s.) over the field of real or complex numbers. The notions con-
cerning the theory of 1.t.s.’s. (resp. 1.t.R.s.’s.) without convexity conditions can be
found in [1] (resp [3] and [9]). We give here only the basic ones.

A string in (E,t) is a sequence (V,,)nen of subsets of E which are circled,
absorbing and satisfy V41 + Vip1 C Vi(n = 1,2,3,...). The strung (Vy)nen is
said to be topological (resp. closed, bornivorous) if each V,, is a t-neighbourhood of
0 in E (resp. t-closed, bornivorous). It is clear that each circled t-neighbourhood
of 0 in E generates a (non-uniquely determined) topological string. A string (resp.
closed string) (Vp)nen in an Lt.s. (E,t) is called locally topological (resp. closed
locally topological) if V,, N B is a neighbourhood of 0 for the topology induced by
t on B for all n € N and all ¢-bounded balanced sets B.

A function p: E — R satisfying the conditions:

(a) p(x) > 0 for each z € E,

(b) p(z +y) < p(z) +p(y) for each z,y € E,

(c) p(Az) < p(x) for each x € E and each A € K, | A |< 1,
(d)if A, € K, A\, > 0and z € E, then p(A,z) — 0,

is called an (F)-seminorm. If, moreover, p(x) = 0 implies x = 0, p is called
an (F)-norm. (F)-seminorms in a certain sense have a similar role in the theory
of L.t.s.’s as seminorms have in the theory of locally convex spaces (l.c.s.). Namely,
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each linear topology on a vector space can be determined by a family of continuous
(F)-seminorms.

It is known that to each topological string in an l.t.s. corresponds a continuous
(F')-seminorm and vice versa [1]. A o-barrel (resp. bornivorous o-barrel) in an

I.t.s.(E,t) is a closed string (resp. closed bornivorous string) V = (V1)) ;e which
)

Vi = ( é]))jeN are closed topological strings for each n € N. An Lt.s. (E,t) is
called countable barrelled (resp. countably quasibarrelled) if every o-barrel (resp.
bornivorous o-barrel) in it is topological. An l.t.s. (E,t) is an ultra-DF space, if it
is countable quasibarrelled and if it has a fundamental sequence of bounded sets.
An Lt.s. (E,t) is called locally topological (resp. ultra-b-barrelled) if each locally
topological (resp. closed locally topological) string in it is topological [1, 2]. An
Lt.s. (E,t) is called ultra-Dy if it is ultra-b-barrelled with a fundamental sequence
of bounded sets [2].

The string (Vp)nen in an Lt.R.s. (E,C,t) is said to be solid if each V,, is a
solid subset in the Riesz space (E, C).

is a countable intersection of closed topological strings, i.e. V) = mg‘;lv,gj , where

The rest of our terminology is taken from [1] or [9]. In particular, when we
say, for example “barrelled space”, that means “barrelled in the category of 1. t.

s.’s”.

Definition 1. An (F)-seminorm an a Riesz space (E,C) is called a Riesz
(F)-seminorm if from | z |<| y | with z and y in E it follows that p(z) < p(y).

From the following proposition it follows that Riesz (F')-seminorms have the
same role in the theory of 1.t.R.s. as Riesz seminorms have in the theory of locally
convex Riesz spaces [9, Theorem (6.3)].

ProroSITION 1. Let (E,C,t) be an ordered linear topological space. Then
(E,C,t) is a Lt.R.s. if and only if t is determined by a family of continous Riesz
(F)- seminorms on E.

Proof. Let (E,C,t) be a l.t.R.s. Then there exists a solid t-neighbourhood V'
of 0 which generates a solid topological string (V,,)nen, Vi = V. The associated
(F)-seminorm of (V,,)nen is given by: q(x) = inf{é | x € W, } for all x € E, where
W=31Vi+>erVit1, 6 =n+ Y727 ¥(n =0 orn € N), g, =1 for at
most finitely many k£ € N and ¢, = 0 otherwise [1, p. 11]. Since the subset Wj is a
solid ¢-neighbourhood of 0, it follows that ¢ is a t-continuous Riesz (F')-seminorm.
Conversely, if p is an arbitrary ¢-continuous Riesz (F')-seminorm, then (V;,)nen is
a solid topological string, where

Vi ={z € E|p(x) <1/2"}

COROLLARY 1. If (E,C,T°) is the l.t.R.s. from [3], where T is the finest
linear topology, then T is determined by a family of all Riesz (F)-seminorms on
(E,C).
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Similary as in [9] for the l.c.R.s. we say that the Lt.R.s. (E,C,t) is bar-
relled (resp. quasibarrelled, bornological,...)if (E, t) is barreled (resp. quasibarrelled,
bornological, - - -) in the category of 1.t.s.’s.

We know from [9 Proposition (11.2)(c)] that if (E, C,t) is an l.t.R.s. then the
solid hull of each ¢t-bounded subset of E is t-bounded. Therefore the question arises
naturally whether the converse is true, namely: if ¢ is a linear topology on (E,C)
such that the solid hull of each t-bounded set in E is t-bounded, is (E,C,t) an
1.t.R.s.? Example (3.15) from [9] shows that the answear is, in general, negative.
If (E,t) is a bornological space, we have the following result:

PROPOSITION 2. Let t be a linear topology on a Riesz space (E,C) such that
(E,t) is bornological. If the solid hull of each t-bounded subset of E is t-bounded,
then (E, C, t) is an l.t.R.s.

Proof. We shale show that t is a linear solid topology. For this, let U be a
t-neighbourhood of 0 in E. Since the solid hull of each t-bounded subset of E is
t-bounded, then sk(U) absorbs all t-bounded subset of E. If (Uy)pnen, U1 = U, is
a string which is generated by U, then (sk(U,))nen is a bornivorous string (this is
easy to verify). Since (E, C,t) is a bornological space, we have that (sk(U,))nen is
a topological string, i.e. sk(U) =sk(U;) C U is a solid t-neighbourhood of 0. Hence,
(E,C,t) is an L.t.R.s.

An immediate consequence of Proposition 2 is the following:

COROLLARY 2. The bornological space (E,C,t%) associated with an I.t.R.s.
(E,C,t) is always an L.t.R.s. [3, p. 7].

If (E,t) is an arbitrary Lt.s., then there exists a linear topology t° (resp.
2" 18t %) (see [1, pp. 32, 61, 70, 80 and 2, p. 24]) which is generated by all
closed (resp. closed bornivorous, bornivorous, locally topological, closed locally
topological) strings in (E,t). It is known that an Lt.s. (E,t) is barrelled (resp.
quasibarrelled, bornological, locally topological, ultra-b-barrelled) if and only if
t =1 (resp. t =t t =P t = 't t = %),

PROPOSITION 3. Let (E, C, t) be an I.t.R.s. Then (E, C,T*") (resp. (E, C,
th), (E, C, t*)) is an Lt.R.s.

Proof. Let (V,)nen be a closed bornivorous (resp. locally topological,
closed locally topological) string in the space (E,C,t). Since the bounded sets
in (E,t), (E,t")(E,t"%) and (E, ") are the same, it follows that (sk(Vy))nen is a
closed solid bornivorous (resp. solid locally topological, closed solid locally topo-
logical) string in E, i.e. (sk(V,))nen is t* -topological (resp. *-topological, -
topological). Hence, the spaces (E,C,t""), (E,C, ") and (E,C,t") are Lt.R.s.’s if
(E,C,t) is an L.t.R.s.

The following example shows that for the space (E,C,t") the conclusion of
Proposition 3 is not true.

Ezample 1. Let (E,C,Py) be an l.c.R.s., where P, is the finest l.c. solid
topology on a Riesz space (E,C) [9, p. 185], such that (E,P;) is not barrelled.
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Hence, (E,C,Pp) is not a barrelled l.c.R.s. It is known [3] that the l.c.s. (E,Pp)
is the l.c.s. associated with (E,T?), where T is the finest linear solid topology on
a Riesz space (E,C). Since (E,Pp) is not barrelled in the category of l.c.s.’s then
(E,T°) is not barreled in the category of 1.t.s. [1, p.109]. Hence, T° < (T°)*. From
this it follows that (E, C,(7°)) it not an 1.t.R.s.

It is know for each l.t.s. (E,t) there exists an l.t.s. (E, Rt) such that Rt is
the coarsest linear topology which is finer that ¢ and has the property R. In gen-
eral, R is a property invariant under passage to an arbitrary inductive limit and
the finest linear topology. For example, R is one of the properties being barrelled,
quasibarrelled, ... [1, pp. 36, 61, 71, 73, 81, 4, 5, 6]. Then, we say that Rt is
the topology associated with an l.t.s. (E,t). If (E,C,t) is an 1.t.R.s., the question
asises naturally whether (E, C, Rt) is an .t.R.s.? From Proposition 3 and Corollary
2, it follows that the answer is positive if (E, C, Rt) is the associated bornological
(resp. locally topological) space. Example 1 shows that the answer to the question
above is negative if (E,C, Rt) is the associated barrelled topology. For the quasi-
barrelled (resp. countably quasibarelled, ultra-b-barreled) associated space we have
the following proposition:

PROPOSITION 4. Let (E,C,t) be en l.t.R.s. Then space (E,C,t%) (resp.
(E,C,t%), (E,C,t"*) is an l.t.R.s., where t1¢ (resp. t°9%;t%%t) is the quasibarrelled
(resp. countably quasibarrelled, ultra-b-barrelled) topology associated with t.

Proof. The proof follows by using Proposition 3, transfinite induction and
[3, (1.2)] (see [7]).

If (E,C,t) is a bornological (resp. quasibarrelled) 1.t.R.s., then any l-ideal
in (E,C) is bornological (resp. quasibarrelled) with respect to the relative topol-

ogy [3, p. 7]. Here we show that this is also true for ultra-DF (resp. countably
quasibarrelled, locally topological, ultra—b-barrelled), ultra-Dj 1.t.R.s.’s.

First, in terms of the order structure, we are able to give some characteriza-
tions of these L.t.R.s.’s:

PRrOPOSITION 5. Let (E,C,t) be an l.t.R.s. and consider the following con-
ditions:

(i) (E,C,t) is countably quasibarrelled,

(11) each solid bornivorous o-barrel is topological,

(iii) (E,C,t) is locally topological,

(iv) each solid locally topological string is topological,

(v) (E,C,t) is ultra-b-barrelled,

(vi) each closed solid locally topological string is topological.

Then (i) < (ii), (iii) < (iv) and (v) < (vi).

Proof. We known already that (i) = (ii) holds. We shall show that (ii)
implies (i). Let (ﬂ;l"’:lVéj))jeN be a bornivours o-barrel where (Vn(j))neN is a
closed topological string for each j € N. Then (sk(VTSj)))ne ~ is a closed solid
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topological string and by fact that sk(ﬂ;’f:lV,Ej)) =N, sk(Vrgj)) it follows that
(NS, sk(Véj)))jeN is a solid bornivours o-barrel, i.e. (ii) = (i) holds, The proof
that (iii)< (iv) and (v) & (vi) is similar.

The following result shoud be compared with corollaries (15.4) and (15.7) of

[9].

PROPOSITION 6. Let V = (Vy)nen be a solid topological (resp. solid bor-
nivours, solid locally topological, closed solid locally topological) string in an ar-
bitrary l-ideal F of an l.t.R.s. (E,C,t). Then there exists in (E,C,t) a string
U= (Up)nen of the same type, such that U N F = V.

Proof. Let U, ={x € E:y € V,, whenever 0 <y <|z |and y € F}. Tt is
clear that U, N F =V, for each n € N. The proof that U, is a t-neighbourhood
of 0 (resp. closed, bornivorours) is the same as in [8] (resp. [9, pp. 181, 182]) for
the locally convex case. It remains to show that U,y1 + Upt1 C Un(n = 1,2,...)
and that & = (Up)nen is a locally topological string in (E,C,t). For this, let
x = a+b, where a,b € Up41 and y € F such that 0 < y <| z |. Now, we have
that 0 <y <[ a+b[<|a|+|bl Since [0, |a|+|b[=[0]al+[0bI it
follows that y = y1 + y2 € Viur1 + Vup1 C Vi, From this it follows that z € U,,
ie. U = (Up)nen is a string in E. We shall show that U/ is a locally topological
string. Suppose, on the contrary, that U, and a t-bounded solid subset B of E
exist, such that W N B ¢ U, N B for each W € W, where W denotes the family
of all solid t-neighbourhoods of 0. Therefore there exists a y,, € W N B such that
Yw & Uny N B, i. e. there is an z,, € F with 0 < z,, <| y | and z,, € V,,,. Note
that {y.,, W € W, D (f)} is a t-bounded net in (E,C,t) converging to 0, i. e. by
[9, Prop. (11.1)] the net {x,, : W € W, D} converges to 0 in (E, C,t). But this is a
contradiction with z,, & V,,,, because (V,,)nen is a solid locally topological string
in F. The proof of the proposition is complete.

By methods similar to those used in this proof, we can verify the following
result:

PROPOSITION 7. Let F be an l-ideal of an L.t.R.s. (E,C,t) and (VW)),en =
(ﬂ;’leVrgj))jeN a solid bornivorous o-barrel in F with respect to the relative topology.
There exists a solid bornivorours a-barrel (UY));en = (N2, Ur(Lj))jeN in (E,C,t)
, such that U N F =V is valid for each j € N.

COROLLARY 3.Any l-ideal in an ultra-DF (resp. countably quasibarrelled, lo-
cally topological, ultra-b-barrelled, ultra-Dy) I.t.R.s. is a space of the same type with
respect to the relative topology.
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