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ON LINEAR TOPOLOGICAL RIESZ SPACES WITHOUT

CONVEXITY CONDITIONS

Stojan Radenovi�c

Abstract. We consider whether the space associated with an l.t.R.s. (E;C; t) is l.t.R.s. We
have shown that any l-ideal in an ultra-DF (resp. countably quasibarrelled, locally topological,
ultra-b-barrelled, ultra Db) Riesz space is space of the same type with respect to the relative
topology.

Throughout this paper (E;C; t) will denote a separated linear topological
Riesz space (l.t.R.s.) over the �eld of real or complex numbers. The notions con-
cerning the theory of l.t.s.'s. (resp. l.t.R.s.'s.) without convexity conditions can be
found in [1] (resp [3] and [9]). We give here only the basic ones.

A string in (E; t) is a sequence (Vn)n2N of subsets of E which are circled,
absorbing and satisfy Vn+1 + Vn+1 � Vn(n = 1; 2; 3; . . . ): The strung (Vn)n2N is
said to be topological (resp. closed, bornivorous) if each Vn is a t-neighbourhood of
0 in E (resp. t-closed, bornivorous). It is clear that each circled t-neighbourhood
of 0 in E generates a (non-uniquely determined) topological string. A string (resp.
closed string) (Vn)n2N in an l.t.s. (E; t) is called locally topological (resp. closed
locally topological) if Vn \ B is a neighbourhood of 0 for the topology induced by
t on B for all n 2 N and all t-bounded balanced sets B.

A function p : E ! R satisfying the conditions:

(a) p(x) � 0 for each x 2 E,

(b) p(x+ y) � p(x) + p(y) for each x; y 2 E,

(c) p(�x) � p(x) for each x 2 E and each � 2 K; j � j� 1,

(d) if �n 2 K;�n ! 0 and x 2 E, then p(�nx)! 0,

is called an (F )-seminorm. If, moreover, p(x) = 0 implies x = 0; p is called
an (F )-norm. (F )-seminorms in a certain sense have a similar role in the theory
of l.t.s.'s as seminorms have in the theory of locally convex spaces (l.c.s.). Namely,
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each linear topology on a vector space can be determined by a family of continuous
(F)-seminorms.

It is known that to each topological string in an l.t.s. corresponds a continuous
(F )-seminorm and vice versa [1]. A �-barrel (resp. bornivorous �-barrel) in an
l:t:s:(E; t) is a closed string (resp. closed bornivorous string) V = (V (j))j2N which

is a countable intersection of closed topological strings, i.e. V (j) = \1n=1V
(j)
n , where

Vn = (V
(j)
n )j2N are closed topological strings for each n 2 N. An l.t.s. (E; t) is

called countable barrelled (resp. countably quasibarrelled) if every �-barrel (resp.
bornivorous �-barrel) in it is topological. An l.t.s. (E; t) is an ultra-DF space, if it
is countable quasibarrelled and if it has a fundamental sequence of bounded sets.
An l.t.s. (E; t) is called locally topological (resp. ultra-b-barrelled) if each locally
topological (resp. closed locally topological) string in it is topological [1, 2]. An
l.t.s. (E; t) is called ultra-Db if it is ultra-b-barrelled with a fundamental sequence
of bounded sets [2].

The string (Vn)n2N in an l.t.R.s. (E;C; t) is said to be solid if each Vn is a
solid subset in the Riesz space (E;C).

The rest of our terminology is taken from [1] or [9]. In particular, when we
say, for example \barrelled space", that means \barrelled in the category of l. t.
s.'s".

De�nition 1. An (F )-seminorm an a Riesz space (E;C) is called a Riesz
(F )-seminorm if from j x j�j y j with x and y in E it follows that p(x) � p(y).

From the following proposition it follows that Riesz (F )-seminorms have the
same role in the theory of l.t.R.s. as Riesz seminorms have in the theory of locally
convex Riesz spaces [9, Theorem (6.3)].

Proposition 1. Let (E;C; t) be an ordered linear topological space. Then
(E;C; t) is a l.t.R.s. if and only if t is determined by a family of continous Riesz
(F )- seminorms on E.

Proof . Let (E;C; t) be a l.t.R.s. Then there exists a solid t-neighbourhood V
of 0 which generates a solid topological string (Vn)n2N ; V1 = V . The associated
(F )-seminorm of (Vn)n2N is given by: q(x) = inffÆ j x 2 W�g for all x 2 E, where
W =

Pn

1 V1 +
P
1

1 "kVk+1; Æ = n +
P
1

1 "k2
�k(n = 0 or n 2 N); "k = 1 for at

most �nitely many k 2 N and "k = 0 otherwise [1, p. 11]. Since the subset WÆ is a
solid t-neighbourhood of 0, it follows that q is a t-continuous Riesz (F )-seminorm.
Conversely, if p is an arbitrary t-continuous Riesz (F )-seminorm, then (Vn)n2N is
a solid topological string, where

Vn = fx 2 E j p(x) < 1=2ng

Corollary 1. If (E;C; T 0) is the l.t.R.s. from [3], where T 0 is the �nest
linear topology, then T 0 is determined by a family of all Riesz (F )-seminorms on
(E;C).
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Similary as in [9] for the l.c.R.s. we say that the l.t.R.s. (E;C; t) is bar-
relled (resp. quasibarrelled, bornological,...)if (E; t) is barreled (resp. quasibarrelled,
bornological, � � � ) in the category of l.t.s.'s.

We know from [9 Proposition (11.2)(c)] that if (E;C; t) is an l.t.R.s. then the
solid hull of each t-bounded subset of E is t-bounded. Therefore the question arises
naturally whether the converse is true, namely: if t is a linear topology on (E;C)
such that the solid hull of each t-bounded set in E is t-bounded, is (E;C; t) an
l.t.R.s.? Example (3.15) from [9] shows that the answear is, in general, negative.
If (E; t) is a bornological space, we have the following result:

Proposition 2. Let t be a linear topology on a Riesz space (E;C) such that
(E; t) is bornological. If the solid hull of each t-bounded subset of E is t-bounded,
then (E, C, t) is an l.t.R.s.

Proof . We shale show that t is a linear solid topology. For this, let U be a
t-neighbourhood of 0 in E. Since the solid hull of each t-bounded subset of E is
t-bounded, then sk(U) absorbs all t-bounded subset of E. If (Un)n2N ; U1 = U , is
a string which is generated by U , then (sk(Un))n2N is a bornivorous string (this is
easy to verify). Since (E;C; t) is a bornological space, we have that (sk(Un))n2N is
a topological string, i.e. sk(U) =sk(U1) � U is a solid t-neighbourhood of 0. Hence,
(E;C; t) is an l.t.R.s.

An immediate consequence of Proposition 2 is the following:

Corollary 2. The bornological space (E;C; t�) associated with an l.t.R.s.
(E;C; t) is always an l.t.R.s. [3, p. 7].

If (E; t) is an arbitrary l.t.s., then there exists a linear topology tb (resp.

tb
�

; t� ; tlt; tbt)(see [1, pp. 32, 61, 70, 80 and 2, p. 24]) which is generated by all
closed (resp. closed bornivorous, bornivorous, locally topological, closed locally
topological) strings in (E; t). It is known that an l.t.s. (E; t) is barrelled (resp.
quasibarrelled, bornological, locally topological, ultra-b-barrelled) if and only if
t = tb (resp. t = tb

�

; t = t� ; t = tlt; t = tbt):

Proposition 3. Let (E, C, t) be an l.t.R.s. Then (E, C,T b�) (resp. (E, C,
tlt), (E, C, tbt)) is an l.t.R.s.

Proof . Let (Vn)n2N be a closed bornivorous (resp. locally topological,
closed locally topological) string in the space (E;C; t). Since the bounded sets

in (E; t); (E; tb
�

)(E; tlt) and (E; tbt) are the same, it follows that (sk(Vn))n2N is a
closed solid bornivorous (resp. solid locally topological, closed solid locally topo-

logical) string in E, i.e. (sk(Vn))n2N is tb
�

-topological (resp. tlt-topological, tbt-
topological). Hence, the spaces (E;C; tb

�

); (E;C; tlt) and (E;C; tbt) are l.t.R.s.'s if
(E;C; t) is an l.t.R.s.

The following example shows that for the space (E;C; tb) the conclusion of
Proposition 3 is not true.

Example 1. Let (E;C;Pb) be an l.c.R.s., where Pb is the �nest l.c. solid
topology on a Riesz space (E;C) [9, p. 185], such that (E;Pb) is not barrelled.
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Hence, (E;C;Pb) is not a barrelled l.c.R.s. It is known [3] that the l.c.s. (E;Pb)
is the l.c.s. associated with (E; T 0), where T 0 is the �nest linear solid topology on
a Riesz space (E;C). Since (E;Pb) is not barrelled in the category of l.c.s.'s then
(E; T 0) is not barreled in the category of l.t.s. [1, p.109]. Hence, T 0 < (T 0)b. From
this it follows that (E, C,(T 0)b) it not an l.t.R.s.

It is know for each l.t.s. (E; t) there exists an l.t.s. (E;Rt) such that Rt is
the coarsest linear topology which is �ner that t and has the property R. In gen-
eral, R is a property invariant under passage to an arbitrary inductive limit and
the �nest linear topology. For example, R is one of the properties being barrelled,
quasibarrelled, ... [1, pp. 36, 61, 71, 73, 81, 4, 5, 6]. Then, we say that Rt is
the topology associated with an l.t.s. (E; t). If (E;C; t) is an l.t.R.s., the question
asises naturally whether (E;C;Rt) is an l.t.R.s.? From Proposition 3 and Corollary
2, it follows that the answer is positive if (E;C;Rt) is the associated bornological
(resp. locally topological) space. Example 1 shows that the answer to the question
above is negative if (E;C;Rt) is the associated barrelled topology. For the quasi-
barrelled (resp. countably quasibarelled, ultra-b-barreled) associated space we have
the following proposition:

Proposition 4. Let (E;C; t) be en l.t.R.s. Then space (E;C; tqt) (resp.
(E;C; tcqt); (E;C; tubt) is an l.t.R.s., where tqt (resp. tcqt; tubt) is the quasibarrelled
(resp. countably quasibarrelled, ultra-b-barrelled) topology associated with t.

Proof . The proof follows by using Proposition 3, trans�nite induction and
[3, (1.2)] (see [7]).

If (E;C; t) is a bornological (resp. quasibarrelled) l.t.R.s., then any l-ideal
in (E;C) is bornological (resp. quasibarrelled) with respect to the relative topol-
ogy [3, p. 7]. Here we show that this is also true for ultra-DF (resp. countably
quasibarrelled, locally topological, ultra�b-barrelled), ultra-Db l.t.R.s.'s.

First, in terms of the order structure, we are able to give some characteriza-
tions of these l.t.R.s.'s:

Proposition 5. Let (E;C; t) be an l.t.R.s. and consider the following con-
ditions:

(i) (E;C; t) is countably quasibarrelled,

(ii) each solid bornivorous �-barrel is topological,

(iii) (E;C; t) is locally topological,

(iv) each solid locally topological string is topological,

(v) (E;C; t) is ultra-b-barrelled,

(vi) each closed solid locally topological string is topological.

Then (i) , (ii), (iii) , (iv) and (v) , (vi).

Proof . We known already that (i) ) (ii) holds. We shall show that (ii)

implies (i). Let (\1n=1V
(j)
n )j2N be a bornivours �-barrel where (V

(j)
n )n2N is a

closed topological string for each j 2 N. Then (sk(V
(j)
n ))n2N is a closed solid
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topological string and by fact that sk(\1n=1V
(j)
n ) = \1n=1 sk(V

(j)
n ) it follows that

(\1n=1 sk(V
(j)
n ))j2N is a solid bornivours �-barrel, i.e. (ii) ) (i) holds, The proof

that (iii), (iv) and (v) , (vi) is similar.

The following result shoud be compared with corollaries (15.4) and (15.7) of
[9].

Proposition 6. Let V = (Vn)n2N be a solid topological (resp. solid bor-
nivours, solid locally topological, closed solid locally topological) string in an ar-
bitrary l-ideal F of an l.t.R.s. (E;C; t). Then there exists in (E;C; t) a string
U = (Un)n2N of the same type, such that U \ F = V.

Proof . Let Un = fx 2 E : y 2 Vn whenever 0 � y �j x j and y 2 Fg. It is
clear that Un \ F = Vn for each n 2 N. The proof that Un is a t-neighbourhood
of 0 (resp. closed, bornivorours) is the same as in [8] (resp. [9, pp. 181, 182]) for
the locally convex case. It remains to show that Un+1 + Un+1 � Un(n = 1; 2; . . . )
and that U = (Un)n2N is a locally topological string in (E;C; t). For this, let
x = a + b, where a; b 2 Un+1 and y 2 F such that 0 � y �j x j. Now, we have
that 0 � y �j a + b j�j a j + j b j. Since [ 0, j a j + j b j] = [0; j a j] + [0; j b j], it
follows that y = y1 + y2 2 Vn+1 + Vn+1 � Vn. From this it follows that x 2 Un,
i.e. U = (Un)n2N is a string in E. We shall show that U is a locally topological
string. Suppose, on the contrary, that Un and a t-bounded solid subset B of E
exist, such that W \ B 6� Un \ B for each W 2 W , where W denotes the family
of all solid t-neighbourhoods of 0. Therefore there exists a yw 2 W \ B such that
yw 62 Un0 \ B, i. e. there is an xw 2 F with 0 � xw �j yw j and xw 62 Vn0 . Note
that fyw;W 2 W ;� (f)g is a t-bounded net in (E;C; t) converging to 0, i. e. by
[9, Prop. (11.1)] the net fxw : W 2 W ;�g converges to 0 in (E;C; t). But this is a
contradiction with xw 62 Vn0 , because (Vn)n2N is a solid locally topological string
in F . The proof of the proposition is complete.

By methods similar to those used in this proof, we can verify the following
result:

Proposition 7. Let F be an l-ideal of an l.t.R.s. (E;C; t) and (V (j))n2N =

(\1n=1V
(j)
n )j2N a solid bornivorous �-barrel in F with respect to the relative topology.

There exists a solid bornivorours �-barrel (U (j))j2N = (\1n=1U
(j)
n )j2N in (E;C; t)

, such that U (j) \ F = V (j) is valid for each j 2 N.

Corollary 3.Any l-ideal in an ultra-DF (resp. countably quasibarrelled, lo-
cally topological, ultra-b-barrelled, ultra-Db) l.t.R.s. is a space of the same type with
respect to the relative topology.
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