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CHEBYSHEV CENTRES IN NORMED SPACES

Lazar Pevac

Abstract. The existence of Chebyshev centres and best compact approximants supposing
special geometrical properties for the normed space in investigated. The positive results are
obtained using a slightly changed of quisi-uniform convexity noted in [1]

Let X be a normed space, A and B bounded subset of X and x an element
of X . Let us denote

d(x;A) = inf
Y 2A

kx� yk; K(A; r) = fx 2 X j d(x;A) � rg;

@(B;A) = inffr � 0 j B � K(A; r)g:

The number R(A) = inff@(A; x) j x 2 Xg is called Chebyshev radius of A
and the set (C(A) = fx� 2 X j @(A; x�)g is called Chebyshev centre set of A. We
say that X admits centre if for every bounded set A of X;C(A) 6= ?.

If K is the family of all compact subset of X then number RK(A) =
infK2K @(A;K) is a compact radius of A. If there exists a K� 2 K such that
@(K�; A) = RK(A) then we say that set A has the best compact approximant.

De�nition 1. We say that the normed space X is �-approximative i� 8"(0 <
" < 1)9(Æ)(") tending to 0 when " tends to 0 and 0 � Æ(") < 1 such that 8x 2
X 9y 2 X with kyk � Æ("), and such that if z 2 X and

kzk � 1 and kz � xk � 1� "

then also
kz � yk � 1� "(1� �):

The de�nition above has the following geometrical meaning. For every ball
K(x; 1� ") heaving nonempty intersection with the unit ball K(0; 1), there exists
a ball K(y; 1 � "(1 � �)) containg K(x; 1 � ") \ K(0; 1) so that the centre y of
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K(y; 1 � "(1 � �)) is not \so far away" from the origin, i. e. y is contained in
K(0; Æ(")). It is represented by Fig. 1.

Corollary 1.

(i) If � � 1 then every normed space is �-approximative.

(ii) If � < 0 then there is no normed space which would be �-approximative.

(iii) If X is �-approximative and Æ(") is not decreasing, we can replace the
function Æ(") with a decreasing function so that X remains �-approximative.

(iv) Æ(") � "(1� �).

(v) If X is �-approximative and r > 0 then 8"(0 < " < r)9Æ1(") tending to 0
when " tends to 0, and 0 < Æ1(" < r such that 8x 2 X 9y 2 X with kyk � Æ1("),
and such that if z 2 X and

kzk � r and kz � xk � r � " then also kz � yk � r � "(1� �)

where Æ1(") = rÆ("=r).

(vi) If X is �-approximative and 0 < R1 � r � R2 then 8"(0 < " <
R1)9Æ2(") tending to 0 when " tends to 0 and 0 < Æ2(") < R2 such that 8x 2
X 9y 2 X with kykÆ2("), and such that if z 2 X and

kzk � r and kz � xk � r � " then also kz � yk � r � "(1� �)

where Æ2(") = R2Æ("=R1).

Proof . The properties (i) and (ii) suggest that it is not interesting to consider
the cases � � 1 or � < 0. The proof of the properties is obvious. The property
(iii) suggests that we always may assume that Æ(") is decreasing, without loss of
generality. Suppose that Æ(") is not decreasing. Let us consider the function:

Æ1(") =
X

n

xJn sup
In

Æ(")

where Jn = ["n+1; "k]; In = [0; "n] and xJn is the characteristic function of Jn,
and �nally, ("n) is a sequence decreasing to 0. As Æ1(") � Æ("); X remains �-
approximative when we replace Æ(") with Æ1("). So the property (iii) is proved.
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For proving the property (iv), we shall choose z from the de�nition 1, such
that kzk = 1. When, further, we apply the triangle rule to the elements z; y and
z � y, we have kzk � kyk + kz � yk. So we get 1 � Æ(") + 1 � "(1 � �), whence
Æ(") � "(1� �) and (iv) is proved.

We have to map the given balls K(0; r) and K(x; r � ") homoteticaly with
factor 1=r. So we get balls K(0; 1) and K(x=r; 1 � "=r). Applying the de�nition
we get the element y 2 K(0; Æ("=r)). With the inverse homotetical map we are
going back to the starting position. Thus the element y1 = ry is contained in
K(0; rÆ("=r)) which proves (v). The property (vi) immediately follows form the
(iii) and (v) since for every r; R1 � r � R2 we have rÆ("=r) � R2Æ("=R1).

Corollary 2. If the space X is uniformly convex then X is 0�approximati-
ve.

Proof . From uniform convexity of the space X it is easy to show that 8" <
0 9�(") such that if x; y 2 X and kxk � 1 and kyk � 1 and kx � yk � " then also
k(x� y)=2k � 1� �("). When we replace x and y by x� z and y� z, respectively,
where z is an arbitrary element form X , we obtain

kx� zk � 1 ^ ky � zk � 1 ^ kx� yk � ") k(x� y)=2� zk � 1� �("):

The relation above has the simple geometrical meaning. IfK(x; 1) andK(y; 1)
are balls inX , having nonempty intersection, and kx�yk � ", thenK(x; 1)\K(y; 1)
is contained in the ball whose centre is the midpoint between x and y and whose
radius is equal to 1��("). Let X , be uniformly convex and K(0; 1) and let K(x; 1�
") are given balls in X . Put

Æ1(") = minf� j (0; 1) [K(x; 1� ") � K(�x=kxk; 1� ")g:

The Æ1(") is well de�ned because �kxk is contained in the set at the right-
hand side. Let us prove that Æ1(") tends to zero when " tends to zero. On the
contrary, let us suppose that Æ1(")! Æ0 > 0. Then we can choose " such that

(1) 1� " > 1� �(Æ0):

Thus we have K(0; 1)[K(x; 1� ") � K(Æ1(")x=kxk; 1� ") and K(Æ1(")x=kxk; 1�
") � K(Æ1(")x=kxk; 1) [ K(0; 1). Now we apply the geometrical consequence of
uniform convexity, noted before, to balls on the right-hand side of the last relation:
K(0; 1) [ K(x; 1 � ") � K(Æ1(")x=k2xk; 1 � Æ(Æ("))). Taking into account the
inequality (1) we get K(0; 1) [ K(x; 1 � ") � K(Æ1(")x=k2xk; 1 � "). Using the
de�nition 1. we �nally obtain Æ1(")=2 � Æ1(") which is the contradiction.

Examples . We shall mention some examples of di�erent degrees of approxi-
mativity.

The space C[0; 1] of continous functions on [0; 1] is 0-approximative with
Æ(") = ".

Let us consider the space R3 with the norm k(x; y; z)k = (x2 + y2 + z2)1=2.
This space is 0-approximative with Æ(") = (2")1=2.
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If we de�ne norm k(x; y; z)k =j x j + j y j + j z j then for some " and

k(x; y; z)k = 1; ; no k(x1; y1; z1)k < 1 satisfy

K(0; 1) \K((x; y; z); 1� ") � K((x1; y1; z1); 1� "):

Consequently R3 cannot be 0-approximative. It is easy to see that in this case R3

is 0.5-approximative with Æ(") � 3".

The space l1 of all absolutely convergent series is not �-approximative for any
� < 1.

Theorem. Let X be an �-approximative Banach space with 0 � � < 1. If
the series

P1
n=1 Æ(�

n) converges, then

(a) every bounded set M in X has a Chebyshev centre,

(b) every bounded set M in X has a best compact approximant.

Proof . Let R1(M) = r0 and K(xn; rn) be the sequence of balls containingM
so that rn decreasing and tends to r0. The case r0 = 0 is not of interest. On the
other hand we can suppose that rn is less than the diameter of M . We construct
the sequence K(yn; �n) inductively. K(y1; �1) = K(x1; r1).

Suppose that we already have the ball K(yn�1; �n�1), where n � 2. Applying
corollary 2. (vi) to K(yn�1; �n�1) and K(xn; rn) we get K(yn; �n) so that

�n = rn + �(�n�1 � rn) = ��n�1 + (1� �)rn; d(yn; yn�1) � Æ(�n�1 � rn):

After solving the system of the di�erence equalities we get

�n = rn + �"n�1 + �2"n�2 + � � �+ �n�1"1;

d(yn; yn�1) � Æ("n + �"n�1 + �2"n�1 + � � �+ �n�1"1):

where "n = rn�1 � rn. If � = 0 then �n = rn and d(yn; yn�1) = Æ("n). When we
choose "n so that Æ("k) � 1=2n, the sequence (yn) converges. If 0 < � < 1, then
we choose the starting sequence K(xn; rn) so that "n < �2n. Then �n obviously
converges to 0, and moreover, d(yn; yn�1 � Æ(�n+1(�n � 1)=(� � 1)). Therefore,
because of 0 < � < 1 there exists a integer k so that �k=(1��) < 1. Consequently
d(yn; yn�1) � Æ(�n+1�k), and so we conclude that (yn) converges to the Chebyshev
centre of M .

In order to prove the second part of the theorem, we suppose that RK(M) =
r0. Then there exists a real sequence (rn) tending to r0, and sequence of nets
(Nn j Nn � X ^ @(M;Nn) = rn ^ card(Nn) < 1). If r0 = 0 then cl(M) is the
best compact approximant of M . If r0 is di�erent from 0, then we will repeat
a procedure similar to the proof of the �rst part of the theorem. Naimelly, we
construct the sequences (�n) and (Kn) as follows.

Let �1 = r1 and K1 = N1. Suppose that the members of sequences of indices
less than n are already done. Let us consider the pairs (x; y) 2 Nn �Mn�1 such
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that K(x; rn) \K(y; �n�1) \M 6= ?. Applying the corollary 2 (vi) to balls noted
above, we get the set Kn such that.

@(M;Kn) = �n; �n = rn + �(�n�1 � rn) = ��n�1 + (1� �)rn

@(Kn�1;Kn) � Æ(�n�1 � rn); card(Kn) � card(Nn)card(Kn�1):

Finally, when we chose the starting sequences so that "n < �2n we get
@(Kn�1;Kn) � Æ(�n+1�k). Then the set K = [nKn is totally bounded, hence
cl(K) is a compact set. As �n tends to r0 we have @(M; cl(K)) = r0 and the
second part of theorem is proved.
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