
PUBLICATIONS DE L'INSTITUT MATH�EMATIQUE
Nouvelle s�erie tome 45 (59), 1989, pp. 89-93

EXISTENCE AND UNIQUENESS THEOREM FOR SINGULAR

INITIAL VALUE PROBLEMS AND APPLICATIONS

Aleksandra Kurepa

Abstract. We prove the existence and the uniqueness of the solution to the nonlinear
singular initial value problem (1.1) below, and show that such a solution continuously depends
on the initial condition. This result is then applied to radially symmetric nonlinear Dirichlet
problems.

1. Introduction. We consider the singular initial value problem

v00 + nt�1v0 + g(v) = p(t) t 2 [0; T ]

v(0) = d; v0(0) = 0 (1.1)

where n 2 N; g : R ! R is a locally Lipschitzian function, T > 0; p 2 L1[0; T ]
and d 2 R.

Our main result is Theorem 2.1. below, that shows the existence and the
uniqueness of the solution to the problem (1.1) on the interval [0; T ] continuously
depending on the initial condition d.

The result plays a central role in the study of radially symmetric solutions
to nonlinear Dirichlet problems, since a \radially symmetric setting" reduces the
N -dimensional problem to a one dimensional. In section 3 we show how radially
symmetric solutions for superlinear Dirichlet problems, and superlinear Dirichlet
problems with jumping can be obtained by combining Theorem 2.1 and the shooting
method. For more details and further applications the reader is refered to [1] and
[2].

2. Main Results. In this section we prove:

Theorem 2.1. Let a real number b > 0 be such that G(v) : =
R v
0 g(u)du � 0

for any v 2 R; j v j> b. If g is locally Lipschitzian, then for every d 2 R problem
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(1.1) has a unique solution v(t; d) on the interval [0; T ] continuously depending on

d.

Based on the contraction mapping arguments the following proposition gives
the continuous dependence of the solution on parameters.

Proposition 2.2. Let (X; d) be a complete metric space, (Y; Æ) a metric

space and S : X � Y ! X a function continuous in the second variable. If there

exists a real number k 2 (0; 1) such that d(S(x; y); S(x0; y)) � kd(x; x0), for all

x; x0 2 X; y 2 Y , then there exists a continuous function f : Y ! X such that

S(f(y); y) = f(y).

Proof . By the contraction mapping principle (see [3, 4]) for every y 2 Y
there exists a unique x = f(y) such that S(f(y); y) = f(y). Now we will prove that
the function f is continuous.

Let fyng be a sequence in Y converging to y. From

d(f(y); f(yn)) =d(S(f(y); y); S(f(yn); yn))

�d(S(f(y); y); S(f(y); yn)) + d(S(f(y); yn); S(f(yn); yn))

�d(S(f(y); y); S(f(y); yn)) + kd(f(y); f(yn));

we obtain
(1� k)d(f(y); f(yn)) � d(S(f(y); y); S(f(y); yn)) (2.1)

Since S is a continuous function in the second variable, we see from (2.1) that if
yn ! y then d(S(f(y); y); S(f(y); yn)) ! 0. Hence, f(yn) ! f(y). Thus f is
continuous, and this concludes the proof of the proposition.

The existence and the uniqueness theorem for problem (1.1) heavily uses the
fact that the function g is locally Lipschitzian.

De�nition. A function g : R! R is locally Lipschitzian if given any bounded
set R0 � R, there exists a real number a > 0, depending on R0, such that for all
r1; r2 2 R0 � R.

j g(r1)� g(r2) j� a j r1 � r2 j : (2.2)

Let now d1 2 R and let g be a locally Lipschitizian function with a Lipchitz
constant a, corresponding to the interval [d1 � 1; d1 + 1]. We de�ne

" : = minf(1=pa); "1g; (2.3)

where "1 is such that (kpk1+ j g(d) j +a)"21 < n, and d; p and n are as in Theorem
2.1.

Theorem 2.3. If g : R ! R is locally Lipschitzian, then there exists " > 0
such that the problem (1.1) has a unique solution v(t; d) on [0; ")�[d1�1=4; d1+1=4].
Moreover, v(�; d) continuously depends on d in the topology of C([0; "); R), de�ned
by the norm kxk� = sup

t2[0;")
j x(t) j.
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Proof . Let d1 2 R, and " be as in (2.3). We de�ne

X : = fv : [0; ")! R :j v(t)� d1 j� 1 for all t 2 [0; ")g;
and

Y : = [d1 � 1=4; d1 + 1=4]:

Now we de�ne the operator S : X � Y ! X in the following way

S(v(t); d) = d+

Z t

0

s�n
Z t

0

(p(r) � g(v(r)))rndrds: (2.4)

We see that S is well de�ned since

kS(v; d)� d1k� = sup
t2[0;")

j S(v(t); d) � d1 j

� sup
t2[0;")

Z t

0

s�n
Z s

0

j p(r) � g(v(r)) j rndrds+ j d� d1 j

� sup
t2[0;")

Z t

0

s�n
Z s

0

j p(r) � g(d) j rndrds

+ sup
t2[0;")

Z t

0

s�n
Z s

0

j g(d)� g(v(r)) j rndrds+ 1=2

�[(kpk1+ j g(d) j)"2 + akv � dk�"2]=(2n+ 2) = 1=2

�[(kpk1+ j g(d) j +a)=(2n+ 2)]"2 + 1=2 < 1;

(see (2.3)). Furthermore, for v1; v2 2 X we have

kS(v1; d)� S(v2; d)k� = sup
t2[0;")

j S(v1(t); d) � S(v2(t); d j

� sup
t2[0;")

Z t

0

s�n
Z s

0

j g(v1(r)) � g(v2(r)) j rndrds

�kg(v1)� g(v2)k� "2

2n+ 2
� a"2

2n+ 2
kv1 � v2k�

� 1

2n+ 2
kv1 � v2k� < 1

2
kv1 � v2k�:

Thus, for all d and for t 2 [0; ")S is a contraction in v. Hence, since X is a complete
metric space by the contraction mapping principle (see Proposition 2.2) for every d
there exists a unique solution v(t; d) on [0; ") such that S(v; d) = v(�; d), and v(�; d)
is a continuous function of d. Thus, Theorem 2.3. is proved.

In order to establish whether the solution v(t; d) can be extended past " or
not, it is necessary to consider its behaviour near ".

The following lemma roughly says that if a solution cannot be extended any
further than the interval [0; "), then there is a \blow up", which means that the
solution v(t; d) becomes unbounded as t! ".
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Lemma 2.4. Let v(t; d) be a solution to (1.1) on [�; �). If lim
t!�

sup j v(t; d) j
< 1. then there exists �" > 0 and �v : [�; � + �") ! R that satis�es (1.1) and �v � v
on [�; �).

Proof . Let tn ! �. Since sup j v(t; d) j< 1 and g is a continuous function
we see that there exists M > 0 such that

j v(tn)� v(tm) j�
Z tm

tn

s�n
Z s

0

rn(p(r) � g(v(r)))drds �M(tm � tn):

Hence fv(tn)g is a Cauchy sequence. Thus if we de�ne v(�) = lim
n!1

v(tn) 2 R,

then by Theorem 2.3. there exists �" > 0 such that there exists a unique solution
on [�; � + �"). Moreover, we see that there exists �v : [�; � + �") such that �v satis�es
(1.1) and �v � v on [�; �); thus the lemma is proven.

Proof of Theorem 2.1. From Theorem 2.3. and Lemma 2.4. we see that a
solution to (1.1) exists and that it can either be extended to the interval [0; T ]
or it blows up. Suppose that it blows up, i.e. that there exists �t 2 [0; T ] and an
increasing sequence ftng such that tn ! �t and v(tn; d)

2 ! 1. If (v0(tn; d))
2 does

not tend to in�nity, then by the mean value theorem a new increasing sequence
ft0ng exists such that t0n ! �t and v0(t0n; d) ! 1. Thus, without loss of generality,
we can assume that

(v0(tn; d))
2 !1 as tn ! �t: (2.6)

The energy of the solution to (1.1) is de�nd by

E(t; d) = (v0(t; d))2=2 +G(v(t; d)): (2.7)

From (2.6) and the assumption that G(v) � 0 for v suÆciently large we have

lim
n!1

E(tn; d) =1: (2.8)

On the other hand, from (2.7) we obtain

E0(t; d) =v0(t; d)p(t)� nt�1(v0(t; d))2

� j v0(t; d) j kpk1 �
p
2kpk1

p
E(t; d):

Thus, for every t 2 [0; T ]

E(t; d) � (
p
E(0; d) + (

p
2=2)kpk1t)2 � (

p
E(0; d) + kpk1T )2; (2.9)

which contradicts (2.8). Hence, there is no blow up. This fact together with
Proposition 2.2. proves the theorem.

Remark 2.5. We observe that the assumption that there exists a real number
b > 0 such that G(v) � 0 for all v 2 R and j v j> b holds if g(v)=v � M ,
for v suÆciently large and M > 0. Moreover, it holds if g is superlinear, i. e.
lim

jvj!1
g(v)=v =1, or if g is superlinear with jumping, i. e. lim

v!�1
g(v)=v =M > 0,

and lim
v!1

g(v)=v =1.
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3. Applications. Let 
 � RN be a bounded domain. Point in RN are
denoted by x = (x1; . . . ; xN ), and kxk = (x21 + � � �+X2

N )
( 1
2
). A function u = u(x)

de�ned on 
 is said to be radially symmetric if kxk = kyk implies that

u(x1; . . . ; xN ) = u(y1; . . . ; yN ): (3.1)

Hence
v(r) = u(x1; . . . ; xN ); r = (x21 + � � �+ x2N )

( 1
2
) (3.2)

are well de�ned. Using the notation v0 = @v=@r and n = N�1, a simple calculation
shows that

�u = �v = v00 + nt�1v0 (3.3)

Thus, the existence of radially symmetric solutions to a nonlinear Dirichlet problem

�u+ g(u) =p(kxk) x 2 


u =0 x 2 @
;
(3.4)

where 
 is the ball in RN of radius T , is equivalent to solving this o. d. e. problem

v00 + nr�1v0 + g(v) =p(r) r 2 [0; T ]

v0(0);=0; v(T ) = 0
(3.5)

If g is superlinear or superlinear with jumping (see Remark 2.5), then the singular
problem (3.5) can be solved by applying Theorem 2.1. for the initial value problem
(1.1), and combining this result with the shooting method (see (1) and (2)).
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