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ON CLOSE-TO-CONVEX FUNCTIONS

D. K. Thomas

Abstract. Well-known coeÆcient and length results for the class of univalent close-to-
convex functions are extended to a subclass of close-to-convex functions of high order.

1. Introduction. In [3] Goodman introduced the class K(�) of normalised
analytic functions which are close-to-convex of order � � 0, i.e. f 2 K(�) if f
is analytic in D = fz : j z j< 1g and if there exists ' 2 K(0) = C the class of
normalised convex functions, such that for z 2 D,????arg f

0(z)

'0(z)

???? � ��

2
:

When 0 � � � 1; K(�) consists of univalent functions, whilst if � > 1 f need not
even be �nitely valent.

Denote by Vk; (k � 2) the class of locally univalent functions with bounded
boundary rotation and by Rk the class of functions with bounded radial rotation.
Then ' 2 Vk if, and only if, z'0 2 Rk (see e.g. [2]). In [5] Noor considered the class
Tk de�ned as follows:

De�nition. Let f(z) = z +
P
1

n=2 anz
n be analytic and locally univalent in

D. Then for k � 2; f 2 Tk if there is a function ' 2 Vk such that for z 2 D,

Re
f 0(z)

'"(z)
> 0 (1)

Clearly T2 = K(1), the class of close-to-convex functions and it is easily seen [5]
that Tk � K(k=2) for k � 2

For f 2 K(1), Clunie and Pommerenke [1] showed that for n � 2; n j an j<
(2+

p
2)eM(n=(n+1)), where M(r) = max� j f(rei�) j and the author [7] showed

that L(r) < AM(r) log 1=(1 � r), where L(r) denotes the length of the image of
fz : j z j= rg by f(z) and where A is an absolute constant. The object of the
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present paper is to extend these results to the class Tk. The question of whether
the results remain valid in the winder class K(�) for � > 1 remains open.

2. Results. Theorem 1. Let f 2 Tk(k � 2), with f(z) = z +
P
1

n=2 anz
n.

Then for n � 2,
n j an j� 3 keM(n=(n+ 1)) (2)

Proof . We modify the method of Clunie and Pommerenke [1]. From (1) write

zf 0(z) = g(z)h(z); (3)

so that g 2 Rk; h(0) = 1 and <h(z) > 0 for z 2 D.

Thus we can write zf 0(z) = 2g(z)<h(z)� g(z)h(z). Now with z = rei� ,

nan =
1

2�rn

Z 2�

0

zf 0(z)e�in�d�

=
1

�rn

Z 2�

0

g(z)<[h(z)]e�in�d� � 1

2�rn

Z 2�

0

g(z)h(z)e�in�d�:

Therefore

n j an j� 1

�rn

Z 2�

0

j g(z) j < [h(z)]d� +
1

2�rn

????
Z 2�

0

g(z)h(z)e�in�d�:

????
=I1(r) + I2(r) say

Since < h(z) > 0 for z 2 D, (3) gives

j g(z) j <[h(z)] = <[zf 0(z)e�i arg g(z)]:

Thus integrating by parts

I1(r) =
1

�rn
<
Z 2�

0

f(z)e�1 arg g(z)d�(arg g(z)) � k

rn
M(r);

since Z 2�

0

????<zg
0(z)

g(z)

????d� � k� (4)

For I2(r), we have from (3)

I2(r) =
1

2�r2n

????
Z 2�

0

zn+1f 0(z)e�2i arg g(z)d�

????: (5)

Let fn(z) =
R z
0 t

nf 0(t)dt. Then integrating by parts gives

j fn(z) j� 2rnM(r): (6)

Finally integrating by parts in (5) shows that

I2(r) =
1

�r2n

????
Z 2�

0

fn(z)e
�2i arg g(z)<zg

0(z)

g(z)
d�
??? � 2k

rn
M(r)
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on using (4) and (6).

Choosing r = n=(n+ 1) gives (2).

Theorem 2. Let f 2 Tk(k � 2). Then for 0 < r < 1,

L(r) � A(k)M(r) log 1=(1� r);

where A(k) is a constant depending only upon k.

Proof . With z = rei�, (3) gives

L(r) =

Z 2�

0

???zf 0(z)
???d� �

Z r

0

Z 2�

0

???g0(�ei�)h(�ei�)
???d�d�

+

Z r

0

Z 2�

0

???g(�ei�)h0(�ei�)
???d�d� = J1(r) + J2(r) say:

Now J1(r) =
R r
0

R 2�
0

j f 0(�ei�)H(�ei�) j d�d�, where H(z) = zg0(z)
g(z) . Thus

J1(r) �
Z r

0

�Z 2�

0

j f 0(�ei� j2
� 1

2

�Z 2�

0

j H(�ei�) j2 d�
� 1

2

d�

� 2�

Z r

0

�
1 +

1X
n=2

n2 j an j2 �2n�2
� 1

2

�
1 + (k2 � 1)�2

1� �2

� 1

2

d�

(7)

where we have used the Cauchy-Schwartz inequality, Parseval's equality and Lemma
2 in [5].

If f 2 K(�); 0 � � � 1, then f is univalent in D [3]. However for � > 1; f
need nor be �nitely valent [4]. Thus to estimate the �rst expression in (7) we
proceed as follows.

With � = n=(n+ 1), (2) gives

1X
n=2

n2 j an j2 �2n�2 � 9k2e2M(
p
�)2

1X
n=2

�n�2: (8)

It follows immediately from the de�nition of Tk that the class Tk forms a
subset of a linear-invariant family of order k=2 + 1. Using Lemma 2.6 of [6] we
deduce that M(

p
�) < 2k+2M(�)=

p
�. Thus from (7) and (8) we have J1(r) <

A(k)M(r) log 1=(1� r).

To estimate J2(r) we note that since <h(z) > 0 for z 2 D; j h0(�ei�) j�
2<h(�ei�)=(1� �2). Thus

J2(r) � 2

Z r

0

Z 2�

0

j g(�ei�) j <h(�ei�)
1� �2

d�d� � 2k�

Z r

0

M(�)

1� �2
d�

as in the proof of Theorem 1. Combining the estimates for J1(r) and J2(r) gives
Theorem 2.
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Remark . The proof of Theorem 2 shows that in fact

L(r) � A(k)

Z r

0

M(�)

1� �
d�:

Thus if f 2 Tk andM(r) < 1=(1�r)�; � > 0, then L(r) < A(k; �)=(1�r)�, where
A(k; �) denotes a constant depending only upon k and �.
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