PUBLICATIONS DE L’INSTITUT MATHEMATIQUE
Nouvelle série tome 45 (59), 1989, pp. 85-88

ON CLOSE-TO-CONVEX FUNCTIONS

D. K. Thomas

Abstract. Well-known coefficient and length results for the class of univalent close-to-
convex functions are extended to a subclass of close-to-convex functions of high order.

1. Introduction. In [3] Goodman introduced the class K (8) of normalised
analytic functions which are close-to-convex of order § > 0, i.e. f € K(B) if f
is analytic in D = {z :| z |< 1} and if there exists ¢ € K(0) = C the class of
normalised convex functions, such that for z € D,

!
arg f'(2) < pr
¢'(2) 2
When 0 < 8 <1, K(B) consists of univalent functions, whilst if 8 > 1 f need not
even be finitely valent.

Denote by Vi, (k > 2) the class of locally univalent functions with bounded
boundary rotation and by Ry the class of functions with bounded radial rotation.
Then ¢ € Vi if, and only if, z¢' € Ry, (see e.g. [2]). In [5] Noor considered the class
Ty, defined as follows:

Definition. Let f(z) = z+ > .., a,2z" be analytic and locally univalent in
D. Then for k > 2, f € T} if there is a function ¢ € Vj, such that for z € D,

@)
Re(p” @) >0 (1)

Clearly T> = K(1), the class of close-to-convex functions and it is easily seen [5]
that Ty, C K(k/2) for k > 2

For f € K(1), Clunie and Pommerenke [1] showed that for n > 2, n | a,, |<
(2+v2)e M(n/(n+ 1)), where M (r) = max, | f(re?) | and the author [7] showed
that L(r) < AM(r)log 1/(1 — r), where L(r) denotes the length of the image of
{z :| z |= r} by f(z) and where A is an absolute constant. The object of the
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present paper is to extend these results to the class T;. The question of whether
the results remain valid in the winder class K () for § > 1 remains open.

2. Results. THEOREM 1. Let f € Ty(k > 2), with f(z) = z+ > o, anz™.
Then for n > 2,

n |ap |<3keM(n/(n+1)) (2)
Proof. We modify the method of Clunie and Pommerenke [1]. From (1) write
2f'(2) = g(2)h(2), 3)

so that g € Ry, h(0) =1 and Rh(z) > 0 for z € D.
Thus we can write 2 f'(2) = 2g(2)Rh(2) — g(2)h(2). Now with z = re®,

_ 1 /ZW f/( ) 7in9d0
nan sy ; z] (2)e
1 2w - 27 -
-— g(z)R[h(2)]e”"""dl — 27rr"/0 g(2)h(z)e™""d6.
Therefore
1 2 2 -
<— —in .
nlan |_7r7“” /0 | g(2) | R[h(2)]db + py /0 g(z)h(z)e ™" d

=Ii(r) + I(r) say
Since R h(z) > 0 for z € D, (3) gives
| 9(2) | RIR(2)] = Rlzf'(z)e " ¥& 9],

Thus integrating by parts

2m
L) = == [ () 5 dy arg g(2)) < =M (),
mrh 0 rh
since 5 /(o)
T z9' (2
R df < km 4
[ 1% @ W
For I»(r), we have from (3)
1 2w 1 9 ( )
- n+1 ¢t —2iarg g(z
h) = 5 / (e do‘ . (5)
Let fo(z) = [ t"f'(t)dt. Then integrating by parts gives
| fu(2) [< 20" M(r). (6)

Finally integrating by parts in (5) shows that

27

1

7r7-2n

) ! 2k
o (z)e2tare 9()pZI \2) (2) do| < —M(r
fa(2) o) @IS M)

IQ(T’) =
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on using (4) and (6).
Choosing r =n/(n + 1) gives (2).

THEOREM 2. Let f € Ti(k > 2). Then for0 <r <1,
L(r) < A(k)M(r)log1/(1—r),
where A(k) is a constant depending only upon k.

Proof. With z = re?, (3) gives

L(r):/o% zf’(Z)\dBS/OT/O%
s

Now Jy (r fO " | f'(pe?®)H (pe'?) | dfdp, where H(z) = Zg;g’)z). Thus

g'(pe'’)h(pe™) | dbdp

9(pe ) (pe'®) | dbidp = Ji(r) + Jo(r)  say.

no< [ (] T e |2);( / T Hipe P ) o

" = 2 2 2n—2 : L+ (K = 1)p? :
n=2

where we have used the Cauchy-Schwartz inequality, Parseval’s equality and Lemma
2 in [5].

If fe K(B), 0<pB <1, then f is univalent in D [3]. However for 8 > 1, f
need nor be finitely valent [4]. Thus to estimate the first expression in (7) we
proceed as follows.

With p =n/(n+ 1), (2) gives

Zn2 | an |2 p2n—2 < 9](?262M(\/ﬁ)2 an—Q- (8)
n=2 n=2

(7)

It follows immediately from the definition of T} that the class T} forms a
subset of a linear-invariant family of order k£/2 + 1. Using Lemma 2.6 of [6] we
deduce that M(\/p) < 28*2M(p)/,/p. Thus from (7) and (8) we have Ji(r) <
A(K)M(r)log 1/(1 — 7).

To estimate Ju(r) we note that since Rh(z) > 0 for z € D, | h'(pe'?) |<
2R h(pe?)/(1 — p?). Thus

2 19 r
<2/ / Lot — mh( )d0dp§2k7r/ 1M(’;)2dp
.

as in the proof of Theorem 1. Combining the estimates for Ji(r) and Jo(r) gives
Theorem 2.
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Remark. The proof of Theorem 2 shows that in fact
r
M
L(r) < A(k) Mdp.
o 1—p
Thusif f € T, and M(r) < 1/(1—7)%, a >0, then L(r) < A(k,a)/(1—r), where
A(k, «) denotes a constant depending only upon k and «.
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