NOTE ON GENERALIZING PREGROUPS

Seymour Lipschutz

Abstract

Let P be a pree which satisfies the first four axioms of Stallings' pregroup. Then the following three axioms are equivalent: [K] If $a b, b c$ and $c d$ are defined, and $(a b)(c d)$ is defined, then $(a b) c$ or $(b c) d$ is defined. [L] Suppose $V=[x, y]$ is reduced and suppose $y=a b=c d$ where $x a$ and $x c$ are defined. Then $a^{-1} c$ is defined. [M] Suppose $W=[x, y, z]$ is reduced. Then W is not reducible to a word of length one.

1. Introduction. Let P be a pree that is, let P be a nonempty set with a partial operation $m: D \rightarrow P$ where $D \subset P \times P$. [We say $p q$ is defined if $(p, q) \in D$ and we will usual denote $m(p, q)$ by $p q]$. The universal group $G(P)$ of the pree P is the group with the following presentation:
$G(P)=g p[P ; z=x y$ where $x y$ is defined and $z=m(x, y)]$.
In other words, the generators of $G(P)$ are the elements of P and the defining relations of $G(P)$ come from the partial operation m on P. A pree P is said to be group-embeddable if P can be embedded in its universal group $G(P)$. (See Rimlinger [2].)

Stallings in [4] defined a collection of press, called pregroups, which guarantees such an embedding. Specifically, a pree P is a pregroup if it satisfies the following five axioms:
[P_{1}] There exists an identity element $1 \in P$ such that, for all $p \in P, 1 p$ and $p 1$ are defined and $1 p=p=p 1$.
[P_{2}] For each $p \in P$ there exists $p^{-1} \in P$ such that $p p^{-1}$ and $p^{-1} p$ are defined and $p p^{-1}=p^{-1} p=1$.
[P_{3}] If $p q$ is defined, then $q^{-1} p^{-1}$ is defined and $(p q)^{-1}=q^{-1} p^{-1}$.
[P_{4}] Supposing $a b$ and $b c$ are defined, then $a(b c)$ is defined if and only if $(a b) c$ is defined, in which case the two are equal.
[P_{5}] If $a b, b c$ and $c d$ are defined, then either $(a b) c$ or $(b c) d$ are defined.
Kusher and Lipschutz in [1] generalized Stallings' result by weakening his last axiom $\left[P_{5}\right]$. Specifically, they proved that a pree P is group-embedable if it satisfies axioms $\left[P_{1}\right]$ through $\left[P_{4}\right]$ and the following two axioms:
[Q_{5}] If $a_{1} a_{2}, a_{2} a_{3}, a_{3} a_{4}$ and $a_{4} a_{5}$ are defined, then at least one of $\left(a_{1} a_{2}\right) a_{3}$, $\left(a_{2} a_{3}\right) a_{4},\left(a_{3} a_{4}\right) a_{5}$ is defined.
[K] If $a b, b c$ and $c d$ are defined and $(a b)(c d)$ is defined, then $(a b) c$ or $(b c) d$ is defined.

Example 1. Let A and B be groups which intersect in a subgroup H. The amalgam $P=A \cup_{H} B$ is the classical example of a pregroup. Here $G(P)$ is the free product of A and B with H amalgamated.

Example 2. Let A, B, C be groups where A and B intersect in a non-trivial subgroup H, and B and C intersect in a nontrivial subgroup K. Also, suppose $B=H \oplus K$. Consider the amalgam $P=A \cup_{H} B \cup_{K} C$. Then P is not a pregroup. For example, let $a \in A-H, h \in H, k \in K, c \in B-K$ where $h \neq 1$ and $k \neq 1$. Then $a h, h k$ and $k c$ are each defined, but neither $(a h) k$ nor $(h k) c$ is defined. On the other hand, P does satisfy axioms $\left[P_{1}\right]$ through $\left[P_{4}\right]$ and $\left[Q_{5}\right]$ and $[K]$. Moreover, $G(P)$ is the tree product of the A, B and C with H and K amalgamated.

Example 3. Let $T_{n}=\left(A_{i} ; H_{r s}\right)$ be a tree graph of groups with vertices A_{i} with edges $H_{s t}$, and with diameter n. (Here $H_{s t}$ is a subgroup of groups A_{s} and A_{t}). Let $P=\cup_{i} A_{i}$ be the amalgam of the groups in T_{n}. It is known (cf. Serre [3]) that P is group-embedable where $G(P)$ is tree product of the groups A_{i} with the semigroups $H_{s t}$ amalgamated.

The group-embeddable pree P in Example 3 is neither a pregroup nor satisfies axiom $\left[Q_{5}\right]$. However, it does satisfy axiom $[\mathrm{K}]$ and the following axiom:
[T_{k}] If $a_{1} a_{2}, a_{2} a_{3}, \ldots, a_{n+1} a_{n+2}$ are defined, then at least one of $\left(a_{1} a_{2}\right) a_{3}$, $\left(a_{2} a_{3}\right) a_{4}, \ldots,\left(a_{n} a_{n+1}\right) a_{n+2}$ iz defined.
The question of whether axioms $[K]$ and $\left[T_{n}\right]$, together with axioms [P_{1}] through $\left[P_{4}\right]$, are sufficient to guarantee that a pree P is group-embeddable is still an open question. This paper concerns axiom $[K]$ and the following two axioms:
[L] Suppose $V=[x, y]$ is reduced and suppose $y=a b=c d$ where $x a$ and $x c$ are defined. Then $a^{-1} c$ is defined.
[M] Suppose $W=[x, y, z]$ is reduced. Then W is not reducible to a word of length one.

Specifically, we prove the following theorem.
Main Theorem: Let P be a pree which satisfies axioms $\left[P_{1}\right]$ through $\left[P_{4}\right]$. Then axioms $[K],[L]$ and $[M]$ are equivalent.

In other words, if P satisfies one of $[K],[L],[M]$, then it satisfies all three axioms. (We emphasize that the pree P in the Main Theorem need not satisfy axiom $\left[P_{5}\right],\left[Q_{5}\right]$ or $\left[T_{n}\right]$ for $[K],[L]$ and $[M]$ to be equivalent).
2. Notation, Preliminaries. Throughout this section P denotes a pree which satisfies axioms [P_{1}] through [P_{4}].

Let $X=\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be an n-tuple of elements of P. Then X is caled a word of length n. The word X is said to be reduced if no pair $x_{i} x_{i+1}$ is defined. On the other hand, if some $x_{i} x_{i+1}$ is defined, then $Y=\left[x_{1}, \ldots, x_{i} x_{i+1}, \ldots, x_{n}\right]$ is said to be obtained from X by an elementary reduction.

The triple $a b c$ is said to be defined if $a b$ and $b c$ are defined and either $(a b) c$ or $a(b c)$ is defined. (By [P_{4}], if $a b c$ is defined, then $a b c=(a b) c=a(b c)$.)

Suppose $X=\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $A=\left[a_{1}, a_{2}, \ldots, a_{n-1}\right]$ are words such that each triple $a_{i-1}^{-1} x_{i} a_{i}$ iz defined (where $a_{0}=a_{n}=1$). Then the interleaving of X by A, denoted by $X * A$, is said to be defined and

$$
X * A=\left[x_{1} a_{1}, a_{1}^{-1} x_{2} a_{2}, \ldots, a_{n-1}^{-1} x_{n}\right]
$$

We write $X * A * B$ for $(X * A) * B$.
A word X is said to be reducible to a word Z if Z can be obtained from X by a sequence consisting of interleavings and elementary reductions. [Observe that if X is reducible to Z then X and Z represent the same element in the universal group $G(P)$ of P.]

Stallings proved the following in [4]:
Lemma A. Suppose P satisfies axioms $\left[P_{1}\right]$ through $\left[P_{4}\right]$. Then:
(1) $\left(x^{-1}\right)^{-1}=x$ for every x in P.
(2) If $a x$ is defined, then $a^{-1}(a x)$ is defined and $a^{-1}(a x)=x$. Dually, if $x a$ is defined, then $(x a) a^{-1}$ is defined and $(x a) a^{-1}=x$.
(3) If $x a$ and $a^{-1} y$ are defined, then $x y$ is defined if and only if $(x a)\left(a^{-1} y\right)$ is defined; in which case $x y=(x a)\left(a^{-1} y\right)$.

A word X in P is said to be fully reduced if X is reduced and $X * A_{1} * A_{2} * \cdots *$ A_{m} is reduced whenever defined. Every word X of length $n=1$ is automatically reduced and fully reduced. Lemma $A(3)$ immediately implies:

Lemma B. $X=[x, y]$ is reduced if and only if X is fully reduced.
Example 4. Consider groups $A=F \oplus G, B=G \oplus H$ and $C=H \oplus F$, where F, G, H are nontrivial subgroups. Let $P=A \cup B \cup C$. Then P is a pree which satisfies axioms [P_{1}] through [P_{4}]. Let $f_{1}, f_{2} \in F, g \in G, h \in H$ be nontrivial elements. Then $X=\left[f_{1} g^{-1}, g h, h^{-1} f_{2}\right]$ is a reduced word of length three. Let $A=\left[g, h^{-1}\right]$. Then $X * A=\left[f_{1}, 1, f_{2}\right]$ is reducible to a word $Z=f_{1} f_{2}$ of length one. Thus, by our Main Theorem, P does not satisfy any of the axioms $[K],[L]$ or [M].
3. Proof of Main Theorem. First we show that $[K]$ is equivalent to $[M]$. Suppose $[M]$ does not hold. Then there exists a reduced word X of length three which is reducible to a word Z of length one. Thus there exist words A_{1}, \ldots, A_{m} and B such that:
(1) $Y=X * A_{1} * \cdots * A_{m}$ is reduced (2) $Y * B$ is not reduced and, after an elementary reduction, $Y * B$ is reducible to Z.

Suppose $Y=[x, y, z]$ and $B=[a, b]$. Then $Y * B=\left[x a, a^{-1} y b, b^{-1} z\right]$ is not reduced. Say $(x a)\left(a^{-1} y b\right)$ is defined. By Lemma $A(3),(x a)\left(a^{-1} y b\right)=x(y b)$. By Lemma B,

$$
\left[(x a)\left(a^{-1} y b\right), b^{-1} z\right]=\left[x(y b), b^{-1} z\right]
$$

is reducible to Z if and only if $(x(y b))\left(b^{-1} z\right)$ is defined. The 4-tuple

$$
\left[x, y b, b^{-1}, z\right]
$$

satisfies the hypothesis of axiom [K]. If axiom $[K]$ holds then either

$$
x(y b) b^{-1}=x y \quad \text { or } \quad(y b) b^{-1} z=y z
$$

iz defined. This contradicts the fact that Y is reduced. Thus $[K]$ cannot hold. Accordingly, $[K]$ implies $[M]$.

On the other hand, suppose $[K]$ does not hold. Then there exist a, b, c, d such that $a b, b c, c d$ and $(a b)(c d)$ are defined but neither $(a b) c$ nor $(b c) d$ are defined. By $\left[P_{4}\right], a(b c)$ is not defined. Thus $X=[a, b c, d]$ is reduced. Let $A=\left[b, c^{-1}\right]$. Then

$$
X * A=\left[a b, b^{-1}(b c) c^{-1}, c d\right]=[a b, a, c d]
$$

is reducible to a word of length one. Thus $[M]$ does not hold. Accordingly, $[K]$ and $[M]$ are equivalent.

Next we show that $[K]$ and $[L]$ are equivalent. Suppose $[K]$ holds. Furthermore, suppose $V=[x, y]$ is reduced and suppose $y=a b=c d$ where $x a$ and $x c$ are defined. By Lemma $A(2), c^{-1}(c d)=c^{-1}(a b)$ is defined. By $\left[P_{3}\right], c^{-1} x^{-1}$ is defined, and by Lemma $A(2),\left(c^{-1} x^{-1}\right) x=c^{-1}$ is defined. Thus the 4 -tuple

$$
\left[c^{-1} x^{-1}, x, a, b\right]
$$

satisfies the hypothesis of axiom $[K]$. The second triple $x a b=x y$ is not defined since V is reduced. Thus the first triple $\left(c^{-1} x^{-1}\right) x a=c^{-1} a$ is defined. Thus $[K]$ implies [L].

On the other hand, suppose [L] holds. Suppose $a b, b c, c d$ and $(a b)(c d)$ are defined, and $(a b) c$ is not defined. We need to show that $b(c d)$ is defined for $[K]$ to hold. Note that

$$
X=[a b, c]=\left[a b,(c d) d^{-1}\right]=\left[a b, b^{-1}(b c)\right]
$$

is reduced where $(a b)(c d)$ and $(a b) b^{-1}$ are defined. By axiom $[L],\left(b^{-1}\right)^{-1}(c d)=$ $b(c d)$ is defined. Thus $[L]$ implies $[K]$. Therefore $[K]$ and $[L]$ are equivalent.

Accordingly, $[K],[L]$ and $[M]$ are equivalent and our main theorem is proved.

REFERENCES

[1] H. Kushner and S. Lipschutz, A generalization of Stalling's pregroup, J. Algebra 119 (1988), 163-172.
[2] F. S. Rimlinger, Pregroups and Bass-Serre Theory, AMS Memories Series 361 (1987).
[3] J. P. Serre (with H. Bass), Trees, Springer-Verlag, 1980.
[4] J. R. Stallings, Group theory and three-dimensional manifolds, Yale Monograps 4 (1971).
Department of Mathematics
(Received 2605 1988)
Temple University
Philadelphia, PA 19122, USA

